
.

.

. ..

.

.

Variants of Mersenne Twister Suitable for Graphic
Processors

Mutsuo Saito1, Makoto Matsumoto2

1Hiroshima University, 2University of Tokyo

August 16, 2010

This study is granted in part by JSPS Grant-In-Aid #21654004,
#19204002, #21654017, and JSPS Core-to-Core Program
No.18005.

August 16, 2010 1/25



Introduction

Graphic Processing Unit(GPU)

Hardware (chip) specialized for graphic processing

A GPU contains hundreds of “CPUs” (very restricted in ability)

High performance for parallel processing (over 100GFLOPS)

3D Game Machines massively use GPUs ⇒ low price

General Purpose computing on GPU (GPGPU)

Use GPUs for non-graphic computations

Cheap supercomputers (of TFLOPS) use a grid of GPUs
price ∼ 10,000 US dollars

Parallelism of GPUs is suitable for some Monte Carlo simulations
(if the problem is partitionable into pieces, e.g. 3D simulation)

Needs of pseudorandom number generators (PRNGs) for GPUs

August 16, 2010 2/25



Introduction

Graphic Processing Unit(GPU)

Hardware (chip) specialized for graphic processing

A GPU contains hundreds of “CPUs” (very restricted in ability)

High performance for parallel processing (over 100GFLOPS)

3D Game Machines massively use GPUs ⇒ low price

General Purpose computing on GPU (GPGPU)

Use GPUs for non-graphic computations

Cheap supercomputers (of TFLOPS) use a grid of GPUs
price ∼ 10,000 US dollars

Parallelism of GPUs is suitable for some Monte Carlo simulations
(if the problem is partitionable into pieces, e.g. 3D simulation)

Needs of pseudorandom number generators (PRNGs) for GPUs

August 16, 2010 2/25



Purpose of Study

Design efficient PRNGs taking advantage of GPUs:
Mersenne Twister for Graphic Processors (MTGP).

This time, we designed for NVIDIA’s CUDA-enabled GPU:
GeForce GT* series. (CUDA=a developping environment for GPU.)

The codes work for any GT* GPU, and the generated sequence is
reproducible and independent of GPUs.

Dynamic Creator for MTGP: produces parameter sets for MTGP
generators, according to the users’ specification.
Convenient for a large grid of GPUs.

August 16, 2010 3/25



GeForce GPUs from NVIDIA: processes

We mainly explain software level only (hardware: complicated).

A process is called a thread. This is a smallest unit of a program.

A block consists of many (but at most 512) threads, which may run
in parallel (physically). No ordering among the threads is assured.
(Thus, the threads are similar to the processes in a multi-process OS,
but they may run physically in paralell.)

A GPU can run several blocks in paralell (physically).
Eg. GTX-260 GPU can ran 54 blocks at the same time
(depend on consumed memory, etc.).

Each block has its own memory in the GPU chip, called shared
memory. Size of memory is 16KByte.
This is accessible from threads in the block, but inaccesible from
other blocks (so no collision between blocks for shared memory).

August 16, 2010 4/25



Many threads and one shared memory in one block

The following is a picture of one block. A GPU may ran 54 blocks in
parallel (with 27 core hardwares in GPU).

One block

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

August 16, 2010 5/25



54 blocks in one GPU

A GPU may ran 54 blocks in parallel (with 27 core hardwares in GPU).

A GPU chip

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

· · ·

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

m 448-bit data bus

Device memory (outside GPU chip)

August 16, 2010 6/25



54 blocks in one GPU

A GPU may ran 54 blocks in parallel (with 27 core hardwares in GPU).

A GPU chip

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

· · ·

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

m 448-bit data bus

Device memory (outside GPU chip)

August 16, 2010 6/25



Restriction on threads in a block

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

Every thread in a block gets one same instruction sequence. Thus,
every thread does the same operation, except for:

Each thread has its own ID number (consecutive), and acts on the
shared memory with address shifted by the ID.

Thus, two threads in one block do not access one same address of
shared memory, which avoids collision of access. Typically, 32 threads
can run “physically simultaneously” in one block, and 512 threads can
run “logically” in paralell in one block.

August 16, 2010 7/25



GeForce GPUs from NVIDIA: memory

Specialized memory chips, called device memory, are equipped outside
the GPU. Size: for GTX260, 896Mbyte. Data bus 448-bit, transfer
112Gbyte/sec. (Cf. typical CPU’s memory: transfer 26Gbyte/sec.)

Blocks running in a GPU can access the device memory. Blocks can
exchange information only via the device memory.

But typically, every block is assigned its own part in the device
memory, so access collision can possibly be avoided.

Similarly to the shared memory, each thread in one block does the
same operation on the device memory assigned for the block, with the
address shifted according to the thread ID.

August 16, 2010 8/25



GPU and Device Memory

A GPU chip

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

· · ·

Thread
ID1

Instruction
Sequence

Shared Memory

Thread
ID2

Thread
ID N

m 448-bit data bus

Device memory (896Mbyte, outside GPU chip)

August 16, 2010 9/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion
⇐ Threads get the same instructions
Possibility of distinct parameters
⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion

⇐ Threads get the same instructions
Possibility of distinct parameters
⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion
⇐ Threads get the same instructions

Possibility of distinct parameters
⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion
⇐ Threads get the same instructions
Possibility of distinct parameters

⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion
⇐ Threads get the same instructions
Possibility of distinct parameters
⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive

Most naive idea: one generator for one thread:

For each thread, prepare one generator
(say, of same recursion with distinct parameters).

Necessity of same recursion
⇐ Threads get the same instructions
Possibility of distinct parameters
⇐ Store the parameters in the shared (or device) memory

Example: SDK-MT (sample program from NVIDIA).
32 blocks × 128 = 4096 threads.
SDK-MT prepares 4096 distinct parameter sets
of MT607 = Mersenne Twister PRNG with 607-bit state space.
Each thread uses its own MT607.

August 16, 2010 10/25



PRNGs for GPUs : Naive=SDK-MT

August 16, 2010 11/25



PRNGs for GPUs : MTGP

Strategy in MTGP:

One generator for one block. Threads in one block process one large
generator, with state space of p =11213 to 44497 dimensions.
(These numbers are Mersenne exponents(MEXP), i.e.
p with 2p − 1 being prime.)

The state space is accomodated in the shared memory.

In the state space, a large part can be computed in parallel.
Select a recursion permitting this.

August 16, 2010 12/25



PRNGs for GPUs : MTGP

Thread
ID 1

Thread
ID 2

MTGP: one Block for one generator

Thread
ID n

Number of parallel 
computable words

shared memory

X1X
0

X
M

X
N

X
N

-1

Thread i + 1 processes recursion xN+i = f (xM+i , x1+i , xi ).
The gap n = N − M is the number of parallely computable words.

August 16, 2010 13/25



This parallelism is classical but efficient

This type of parallelization for Shift Register sequence is common since
1980’s. Its merit compared to SDK-MT is:

SDK-MT’s consumption of memory counted in bit is
(607 + parameter size)× the number of threads.

MTGP’s consumption is 32× the number of threads

If the state spaces of SDK-MT are kept in the shared memory
(16KByte), then the number of parallel threads is small:
(16KByte)/(size of working space for MT607)< 100

The period of generated sequence: SDK-MT has period 2607 − 1,
while MTGP has period 211213 − 1 and higher dimensional
equidistribution property (explain later).

August 16, 2010 14/25



Circuit-like description of MTGP

The size of “gap”=the max number of parallel threads workable on one
state space

August 16, 2010 15/25



Spec of designed MTGP

We distribute versions with period 211213 − 1, 223209 − 1 and
244497 − 1.

The “gap” (i.e. the number of parallel computable words) is 256,
512, and 1024, respectively.

We list 128 distinct parameter sets for each period. Thus, 128
different MTGPs for each period.

32-bit integer, 32-bit floating point, 64-bit integer, 64-bit floating
point are supported as the output.

August 16, 2010 16/25



Comparison of SDK-MT and MTGP

CUDA SDK: cuda SDK MerseneTwister sample

period: 2607 − 1
use 4096 parameter sets (=4096 different MT607s)
=32 blocks, one block has 128 threads

MTGP:

period: 211213 − 1
use 108 parameter sets (=108 different MTGP11213s)
108 blocks, one block has 256 threads

August 16, 2010 17/25



Comparison of speed

The time (ms) required for 5 × 107 generations.
SDK MT MTGP

single[0,1) 32 bit int single[1,2) single[0,1)

GT 120 (4-core) 50.2ms 32.5ms 32.8ms 33.9ms
GTX 260 (27-core) 18.6ms 4.6ms 4.8ms 4.9ms

August 16, 2010 18/25



Dimension of equidistribution

.

Definition

.

.

.

. ..

.

.

A sequence of v -bit integers with period P = 2p − 1

x0, x1, . . . , xP−1, xP = x0, . . .

is said to be k-dimensionally equidistributed if the multi set
(i.e. counted with multiplicity)

{(xi , xi+1, . . . , xi+k−1)|i = 0, . . . , P − 1}

is uniformly distributed over all possible kv -bit patterns
(we permit one time lack of all zero pattern).

August 16, 2010 19/25



dimension of equidistribution to v -bit accuracy

.

Definition

.

.

.

. ..

.

.

A periodic sequence of b(= 32)-bit integers is k-dimensionally
equidistributed to v -bit accuracy if the most significant v -bit-integer
sequence is k-dimensionally equidistributed.

The dimension of equidistribution to v -bit accuracy k(v) is max such k.
Larger is better.

For P = 2p − 1, there is a bound k(v) ≤ bp/vc.

The dimension defect d(v) at v is the difference d(v) := bp/vc − k(v),
The total dimension defect ∆ is their sum over v : ∆ :=

∑b
v=1 d(v).

August 16, 2010 20/25



dimension of equidistribution

k(v) and d(v) of MTGP23209 ID=0
v k(v) d(v) v k(v) d(v) v k(v) d(v) v k(v) d(v)
1 23209 0 9 2578 0 17 1355 10 25 726 202
2 11604 0 10 2320 0 18 1268 21 26 725 167
3 7736 0 11 2109 0 19 1200 21 27 725 134
4 5801 1 12 1933 1 20 1125 35 28 725 103
5 4641 0 13 1785 0 21 1054 51 29 725 75
6 3867 1 14 1657 0 22 926 128 30 725 48
7 3315 0 15 1547 0 23 925 84 31 725 23
8 2900 1 16 1450 0 24 924 43 32 725 0

∆ is 1149.
c.f. ∆ of MT19937 is 6750.

August 16, 2010 21/25



Dynamic Creator for MTGP

Dynamic Creator is a parameter-set generator for Mersenne Twister, which
is intended for a large scale parallel simulation.
We released MTGP Dynamic Creator (MTGPDC):

ID is any 32-bit integer, embedded in the recursion formula.

runs on CPU.

searches for parameter sets that assure the maximal period.

searches for output functions to have high k(v) (v = 1, . . . , 32).

August 16, 2010 22/25



Speed of MTGPDC

Seconds required to search one recursion and
to search one good output function
for several Mersenne Exponent (MEXP).

CPU time (sec.) for recursion and output parameter search
MEXP 3217 4423 11213 23209 44497
samples 3000 3000 1500 1500 750

re min 0 0 4 24 143
cur max 90 191 3318 10146 49987
sion average 11.2 25.0 338.1 1404.7 6529.4

out min 10 15 76 379 946
put max 25 40 253 1040 3893

average 21.7 34.1 213.7 910.0 3236.4

We used SIS (Harase-Saito-M 2009) algorithm for computing k(v).

August 16, 2010 23/25



Conclusion

Proposed MTGP: pseudorandom number generator for GPUs.

Run on GPUs, taking advantage of parallelism and memory hierarchy
of GPUs.

Merits in speed, period, and dimensions of equidistribution.

Proposed Dynamic creator for MTGP.

232 different parameter sets of recursion (and output function) of
MTGP.

Run on CPU.

32-bit integer, 32-bit floating point, 64-bit integer, 64-bit floating point
versions are downloadable from our home page:
http:
//www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MTGP/index.html

Thank you for listening.

August 16, 2010 24/25

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/index.html


Conclusion

Proposed MTGP: pseudorandom number generator for GPUs.

Run on GPUs, taking advantage of parallelism and memory hierarchy
of GPUs.

Merits in speed, period, and dimensions of equidistribution.

Proposed Dynamic creator for MTGP.

232 different parameter sets of recursion (and output function) of
MTGP.

Run on CPU.

32-bit integer, 32-bit floating point, 64-bit integer, 64-bit floating point
versions are downloadable from our home page:
http:
//www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MTGP/index.html

Thank you for listening.

August 16, 2010 24/25

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/index.html


Conclusion

Proposed MTGP: pseudorandom number generator for GPUs.

Run on GPUs, taking advantage of parallelism and memory hierarchy
of GPUs.

Merits in speed, period, and dimensions of equidistribution.

Proposed Dynamic creator for MTGP.

232 different parameter sets of recursion (and output function) of
MTGP.

Run on CPU.

32-bit integer, 32-bit floating point, 64-bit integer, 64-bit floating point
versions are downloadable from our home page:
http:
//www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MTGP/index.html

Thank you for listening.

August 16, 2010 24/25

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/index.html


Conclusion

Proposed MTGP: pseudorandom number generator for GPUs.

Run on GPUs, taking advantage of parallelism and memory hierarchy
of GPUs.

Merits in speed, period, and dimensions of equidistribution.

Proposed Dynamic creator for MTGP.

232 different parameter sets of recursion (and output function) of
MTGP.

Run on CPU.

32-bit integer, 32-bit floating point, 64-bit integer, 64-bit floating point
versions are downloadable from our home page:
http:
//www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/MTGP/index.html

Thank you for listening.

August 16, 2010 24/25

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/index.html


START

END

Device
 initialization

Constant
And

Texture
setting

LOOP

START

END

CPU GPU

synchronize

USER AP
Kernel call

Internal
 State
Read 

Random
Number

Generation

Internal
State
Write

finalization

MTGP
Kernel call

MTGP
Kernel

Program

USER AP
Kernel

Program

START

Do
Someting

END

syncronize

August 16, 2010 25/25


