EXPLANATION OF THE COMPUTATION DATA FOR THE PAPER "MORDELL-WEIL GROUPS AND AUTOMORPHISM GROUPS OF ELLIPTIC K3 SURFACES"

ICHIRO SHIMADA

ABSTRACT. We explain the contents of the computation data written in the file "CompDataXfg.txt". These data are about the numerical Néron-Severi lattice S_X , the nef-and-big cone N_X , and the automorphism group $\operatorname{Aut}(X)$ of the K3 surface $X = X_{f,g}$ birational to the double plane branched along a 6-cuspidal sextic curve of torus type.

In the text file "CompDataXfg.txt", the following data about the K3 surface $X = X_{f,g}$ are presented in GAP format. (In particular, the Record format of GAP is heavily used.) These data are obtained and used in the preprint

[P] Ichiro Shimada: Mordell-Weil groups and automorphism groups of elliptic K3 surfaces.

In the following, we freely use the notation in the paper [P]. We fix a basis of S_X and a basis of L_{26} , and use these bases throughout. Vectors are written as row vectors, and matrices act on vector spaces from the right.

- GramSX is the Gram matrix of S_X .
- GramL26 is the Gram matrix of L_{26} .
- EmbSXL26 is the 13×26 matrix that expresses the primitive embedding $\iota: S_X \hookrightarrow L_{26}$.
- theh is the class $h \in S_X$.
- thecusprats is the list of 6 pairs

$$[[e_1^{(+)}, e_1^{(-)}], [e_2^{(+)}, e_2^{(-)}], \dots, [e_6^{(+)}, e_6^{(-)}]].$$

- thegammas is the pair $[\gamma^{(+)}, \gamma^{(-)}]$.
- the ample is the ample class $a \in S_X$.
- thelines is the list of classes $\ell_{\alpha\beta} \in S_X$.
- groupM is the subgroup M of $O(S_X, N_X)$.

Other than these small data, we have the following three big lists:

"VO", "InvolOverP2s", "MWs".
$$_1$$

I. SHIMADA

0.1. The list "V0". A wall $w = D \cap (v)^{\perp}$ of an L_{26}/S_X -chamber $D = \mathcal{P}_X \cap \mathbf{C}(\mathbf{w})$ is given by a pair of vectors [v, r], where $v \in S_X^{\vee}$ is a primitive defining vector of the wall w and r is the Leech root with respect to \mathbf{w} defining the wall $\mathbf{C}(\mathbf{w}) \cap (r)^{\perp}$ of the Conway chamber $\mathbf{C}(\mathbf{w})$ such that $(v)^{\perp} = \mathcal{P}_X \cap (r)^{\perp}$.

An L_{26}/S_X -chamber D is expressed by a record cham that has the following items.

- weyl is a weyl vector $\mathbf{w} \in L_{26}$ such that $D = \mathcal{P}_X \cap \mathbf{C}(\mathbf{w})$.
- walls is the list of pairs [v, r] describing the walls of D in the manner explained above.

We call a record of this type a cham-record.

The list VO is the list of seven records Drec that express L_{26}/S_X -chambers D_0 and $D_1^{(\alpha)}$ for $\alpha = 1, \ldots, 6$ in V_0 . Each record Drec has the following items.

- name is the name of the L_{26}/S_X -chamber $D \in V_0$, which is one of the strings "D0", "D11", ..., "D16". Here "D0" means D_0 , "D11" means $D_1^{(1)}$, and so on.
- cham is the cham-record expressing D.
- adjrecs is the list of records adjrec. Each record adjrec describes the L_{26}/S_X -chamber D' adjacent to D across a wall w of D, and has the following items.
 - wallvect is the primitive defining vector $v \in S_X^{\vee}$ of the wall w of D.
 - israt is true if the wall w is expressed as $D \cap (r)^{\perp}$ by some $r \in \text{Rats}(X)$ and hence $D' \notin V$. Otherwise, israt is false and adjrec has further items expressing $D' \in V$ as follows.
 - cham is the cham-record expressing D'.
 - isomto is the name of the representative L_{26}/S_X -chamber $D'' \in V_0$ that is G-equivalent to D'.
 - isomby is an automorphism $g \in G$ such that $(D'')^g = D'$.

0.2. The list InvolOverP2s. The list InvolOverP2s is the list of records involrec describing involutions $i(h) \in G = \operatorname{Aut}(X)$ of type (a)-(d) obtained from the double coverings $\pi(h): X \to \mathbb{P}^2$ given by the complete linear systems |h| of polarizations $h \in N_X \cap S_X$ of degree 2. Each record involrec in this list has the following items:

- type is the type of the involution i(h).
 - If i(h) is of type (a), then h = h, and involrec.type is equal to ["type a"].
 - If i(h) is of type (b), then $h = h_{IJ}$, and involrec.type is the triple ["type b", I, J], where $I = [i_1, i_2]$ and $J = [j_1, j_2]$ with $i_1 < i_2$ and $j_1 < j_2$.

- If i(h) is of type (c), then $h = h^{\sigma}_{\alpha}$, and involrec.type is the triple ["type c", σ, α], where $\sigma \in \{1, -1\}$ indicates the sign \pm and $\alpha \in \{1, \ldots, 6\}$.
- If i(h) is of type (d), then $h = h_{\sigma J}$, and involrec.type is the triple ["type d", σ , J], where $\sigma \in \{1, -1\}$ indicates the sign \pm and $J = [[i_1], [i_2, i_3], [i_4, i_5], [i_6]]$ with $i_2 < i_3$ and $i_4 < i_5$.
- **h** is the vector $h \in N_X \cap S_X$.
- invol is the matrix representation of $i(h) \in O(S_X, \mathcal{P}_X)$.
- singpts is the list of records singptrec describing the singular points $\bar{p} \in \text{Sing}(B(h))$ of the branch curve $B(h) \subset \mathbb{P}^2$ of the double covering $\pi(h): X \to \mathbb{P}^2$. Each singptrec has the following items:
 - ADEtype is the ADE-type of the singular point \bar{p} .
 - exceps is the list of classes of smooth rational curves that are contracted to \bar{p} by $\pi(h): X \to \mathbb{P}^2$.

0.3. The list MWs. The list MWs is the list of records mwrec describing the 120 Jacobian fibrations $\phi: X \to \mathbb{P}^1$ obtained by $f_{\phi} = f_{\sigma I}$ with the zero section $z_{\phi} = z_{\sigma I}$, and 6+3 elements of their Mordell-Weil groups MW_{ϕ} . They give the automorphisms of type (e). Each record mwrec in this list has the following items:

- type is $[\sigma, I]$, where the sign σ is either 1 or -1, and $I \in \mathcal{I}$ is given by $[[i_1], [i_2, i_3, i_4], [i_5, i_6]]$ with $i_2 < i_3 < i_4$ and $i_5 < i_6$.
- **f** is the class of a fiber of the Jacobian fibration $\phi: X \to \mathbb{P}^1$.
- z is the class of the zero section of the Jacobian fibration $\phi: X \to \mathbb{P}^1$.
- redfibs is the list of records redfib describing the reducible fibers φ^{*}(p) of φ: X → P¹. Each redfib has the following items:
 - ADEtype is the ADE-type of the reducible fiber $\phi^*(p)$.
 - irreds is the list of classes of irreducible components of $\phi^*(p)$ that are disjoint from the zero section.
 - connect is the class of the irreducible component of $\phi^*(p)$ intersecting the zero section.
- ninesections is the list of nine records secrec describing the 6+3 sections $s = \tilde{\ell}_{j_1j_2}$ $(j_1 \in \{i_2, i_3, i_4\}, j_2 \in \{i_5, i_6\})$ and $s = e_j^{(\sigma)}$ $(j \in \{i_2, i_3, i_4\})$ of ϕ . Each secrec has the following items:
 - rat is the class of the section s.
 - g is the automorphism $g \in G$ of X obtained from the translation by s.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp