ON BALLICO-HEFEZ CURVES AND ASSOCIATED SUPERSINGULAR SURFACES

HOANG THANH HOAI AND ICHIRO SHIMADA

Abstract

Let p be a prime integer, and q a power of p. The Ballico-Hefez curve is a non-reflexive nodal rational plane curve of degree $q+1$ in characteristic p. We investigate its automorphism group and defining equation. We also prove that the surface obtained as the cyclic cover of the projective plane branched along the Ballico-Hefez curve is unirational, and hence is supersingular. As an application, we obtain a new projective model of the supersingular $K 3$ surface with Artin invariant 1 in characteristic 3 and 5.

1. Introduction

We work over an algebraically closed field k of positive characteristic $p>0$. Let $q=p^{\nu}$ be a power of p.

In positive characteristics, algebraic varieties often possess interesting properties that are not observed in characteristic zero. One of those properties is the failure of reflexivity. In [4], Ballico and Hefez classified irreducible plane curves X of degree $q+1$ such that the natural morphism from the conormal variety $C(X)$ of X to the dual curve X^{\vee} has inseparable degree q. The Ballico-Hefez curve in the title of this note is one of the curves that appear in their classification. It is defined in Fukasawa, Homma and Kim [8] as follows.
Definition 1.1. The Ballico-Hefez curve is the image of the morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ defined by

$$
[s: t] \mapsto\left[s^{q+1}: t^{q+1}: s t^{q}+s^{q} t\right] .
$$

Theorem 1.2 (Ballico and Hefez [4], Fukasawa, Homma and Kim [8]). (1) Let B be the Ballico-Hefez curve. Then B is a curve of degree $q+1$ with $\left(q^{2}-q\right) / 2$ ordinary nodes, the dual curve B^{\vee} is of degree 2, and the natural morphism $C(B) \rightarrow B^{\vee}$ has inseparable degree q.
(2) Let $X \subset \mathbb{P}^{2}$ be an irreducible singular curve of degree $q+1$ such that the dual curve X^{\vee} is of degree >1 and the natural morphism $C(X) \rightarrow X^{\vee}$ has inseparable degree q. Then X is projectively isomorphic to the Ballico-Hefez curve.

Recently, geometry and arithmetic of the Ballico-Hefez curve have been investigated by Fukasawa, Homma and Kim [8] and Fukasawa [7] from various points of view, including coding theory and Galois points. As is pointed out in [8], the Ballico-Hefez curve has many properties in common with the Hermitian curve; that

[^0]is, the Fermat curve of degree $q+1$, which also appears in the classification of Ballico and Hefez [4]. In fact, we can easily see that the image of the line
$$
x_{0}+x_{1}+x_{2}=0
$$
in \mathbb{P}^{2} by the morphism $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ given by
$$
\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0}^{q+1}: x_{1}^{q+1}: x_{2}^{q+1}\right]
$$
is projectively isomorphic to the Ballico-Hefez curve. Hence, up to linear transformation of coordinates, the Ballico-Hefez curve is defined by an equation
$$
x_{0}^{\frac{1}{q+1}}+x_{1}^{\frac{1}{q+1}}+x_{2}^{\frac{1}{q+1}}=0
$$
in the style of "Coxeter curves" (see Griffith [9]).
In this note, we prove the the following:
Proposition 1.3. Let B be the Ballico-Hefez curve. Then the group
$$
\operatorname{Aut}(B):=\left\{g \in \mathrm{PGL}_{3}(k) \mid g(B)=B\right\}
$$
of projective automorphisms of $B \subset \mathbb{P}^{2}$ is isomorphic to $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$.
Proposition 1.4. The Ballico-Hefez curve is defined by the following equations:

- When $p=2$,

$$
x_{0}^{q} x_{1}+x_{0} x_{1}^{q}+x_{2}^{q+1}+\sum_{i=0}^{\nu-1} x_{0}^{2^{i}} x_{1}^{2^{i}} x_{2}^{q+1-2^{i+1}}=0, \quad \text { where } q=2^{\nu}
$$

- When p is odd,

$$
2\left(x_{0}^{q} x_{1}+x_{0} x_{1}^{q}\right)-x_{2}^{q+1}-\left(x_{2}^{2}-4 x_{1} x_{0}\right)^{\frac{q+1}{2}}=0 .
$$

Remark 1.5. In fact, the defining equation for $p=2$ has been obtained by Fukasawa in an apparently different form (see Remark 3 of [6]).

Another property of algebraic varieties peculiar to positive characteristics is the failure of Lüroth's theorem for surfaces; a non-rational surface can be unirational in positive characteristics. A famous example of this phenomenon is the Fermat surface of degree $q+1$. Shioda [18] and Shioda-Katsura [19] showed that the Fermat surface F of degree $q+1$ is unirational (see also [16] for another proof). This surface F is obtained as the cyclic cover of \mathbb{P}^{2} with degree $q+1$ branched along the Fermat curve of degree $q+1$, and hence, for any divisor d of $q+1$, the cyclic cover of \mathbb{P}^{2} with degree d branched along the Fermat curve of degree $q+1$ is also unirational.

We prove an analogue of this result for the Ballico-Hefez curve. Let d be a divisor of $q+1$ larger than 1 . Note that d is prime to p.
Proposition 1.6. Let $\gamma: S_{d} \rightarrow \mathbb{P}^{2}$ be the cyclic covering of \mathbb{P}^{2} with degree d branched along the Ballico-Hefez curve. Then there exists a dominant rational map $\mathbb{P}^{2} \cdots \rightarrow S_{d}$ of degree $2 q$ with inseparable degree q.

Note that S_{d} is not rational except for the case $(d, q+1)=(3,3)$ or $(2,4)$.
A smooth surface X is said to be supersingular (in the sense of Shioda) if the second l-adic cohomology group $H^{2}(X)$ of X is generated by the classes of curves. Shioda [18] proved that every smooth unirational surface is supersingular. Hence we obtain the following:

Corollary 1.7. Let $\rho: \tilde{S}_{d} \rightarrow S_{d}$ be the minimal resolution of S_{d}. Then the surface \tilde{S}_{d} is supersingular.

We present a finite set of curves on \tilde{S}_{d} whose classes span $H^{2}\left(\tilde{S}_{d}\right)$. For a point P of \mathbb{P}^{1}, let $l_{P} \subset \mathbb{P}^{2}$ denote the line tangent at $\phi(P) \in B$ to the branch of B corresponding to P. It was shown in [8] that, if P is an $\mathbb{F}_{q^{2}}$-rational point of \mathbb{P}^{1}, then l_{P} and B intersect only at $\phi(P)$, and hence the strict transform of l_{P} by the composite $\tilde{S}_{d} \rightarrow S_{d} \rightarrow \mathbb{P}^{2}$ is a union of d rational curves $l_{P}^{(0)}, \ldots, l_{P}^{(d-1)}$.

Proposition 1.8. The cohomology group $H^{2}\left(\tilde{S}_{d}\right)$ is generated by the classes of the following rational curves on \tilde{S}_{d}; the irreducible components of the exceptional divisor of the resolution $\rho: \tilde{S}_{d} \rightarrow S_{d}$ and the rational curves $l_{P}^{(i)}$, where P runs through the set $\mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)$ of $\mathbb{F}_{q^{2}}$-rational points of \mathbb{P}^{1} and $i=0, \ldots, d-1$.

Note that, when $(d, q+1)=(4,4)$ and $(2,6)$, the surface \tilde{S}_{d} is a $K 3$ surface. In these cases, we can prove that the classes of rational curves given in Proposition 1.8 generate the Néron-Severi lattice $\operatorname{NS}\left(\tilde{S}_{d}\right)$ of \tilde{S}_{d}, and that the discriminant of $\operatorname{NS}\left(\tilde{S}_{d}\right)$ is $-p^{2}$. Using this fact and the result of Ogus [13, 14] and Rudakov-Shafarevic [15] on the uniqueness of a supersingular $K 3$ surface with Artin invariant 1, we prove the following:
Proposition 1.9. (1) If $p=q=3$, then \tilde{S}_{4} is isomorphic to the Fermat quartic surface

$$
w^{4}+x^{4}+y^{4}+z^{4}=0 .
$$

(2) If $p=q=5$, then \tilde{S}_{2} is isomorphic to the Fermat sextic double plane

$$
w^{2}=x^{6}+y^{6}+z^{6} .
$$

Recently, many studies on these supersingular $K 3$ surfaces with Artin invariant 1 in characteristics 3 and 5 have been carried out. See [10, 12] for characteristic 3 case, and $[11,17]$ for characteristic 5 case.

Thanks are due to Masaaki Homma and Satoru Fukasawa for their comments. We also thank the referee for his/her suggestion on the first version of this paper.

2. Basic properties of the Ballico-Hefez curve

We recall some properties of the Ballico-Hefez curve B. See Fukasawa, Homma and Kim [8] for the proofs.

It is easy to see that the morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is birational onto its image B, and that the degree of the plane curve B is $q+1$. The singular locus $\operatorname{Sing}(B)$ of B consists of $\left(q^{2}-q\right) / 2$ ordinary nodes, and we have

$$
\phi^{-1}(\operatorname{Sing}(B))=\mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right) \backslash \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)
$$

In particular, the singular locus $\operatorname{Sing}\left(S_{d}\right)$ of S_{d} consists of $\left(q^{2}-q\right) / 2$ ordinary rational double points of type A_{d-1}. Therefore, by Artin [1, 2], the surface S_{d} is not rational if $(d, q+1) \neq(3,3),(2,4)$.

Let t be the affine coordinate of \mathbb{P}^{1} obtained from $[s: t]$ by putting $s=1$, and let (x, y) be the affine coordinates of \mathbb{P}^{2} such that $\left[x_{0}: x_{1}: x_{2}\right]=[1: x: y]$. Then the morphism $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by

$$
t \mapsto\left(t^{q+1}, t^{q}+t\right)
$$

For a point $P=[1: t]$ of \mathbb{P}^{1}, the line l_{P} is defined by

$$
x-t^{q} y+t^{2 q}=0
$$

Suppose that $P \notin \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)$. Then l_{P} intersects B at $\phi(P)=\left(t^{q+1}, t^{q}+t\right)$ with multiplicity q and at the point $\left(t^{q^{2}+q}, t^{q^{2}}+t^{q}\right) \neq \phi(P)$ with multiplicity 1 . In particular, we have $l_{P} \cap \operatorname{Sing}(B)=\emptyset$.

Suppose that $P \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right) \backslash \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$. Then l_{P} intersects B at the node $\phi(P)$ of B with multiplicity $q+1$. More precisely, l_{P} intersects the branch of B corresponding to P with multiplicity q, and the other branch transversely.

Suppose that $P \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$. Then $\phi(P)$ is a smooth point of B, and l_{P} intersects B at $\phi(P)$ with multiplicity $q+1$. In particular, we have $l_{P} \cap \operatorname{Sing}(B)=\emptyset$.

Combining these facts, we see that $\phi\left(\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right)$ coincides with the set of smooth inflection points of B. (See [8] for the definition of inflection points.)

3. Proof of Proposition 1.3

We denote by $\phi_{B}: \mathbb{P}^{1} \rightarrow B$ the birational morphism $t \mapsto\left(t^{q+1}, t^{q}+t\right)$ from \mathbb{P}^{1} to B. We identify $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ with $\mathrm{PGL}_{2}(k)$ by letting $\mathrm{PGL}_{2}(k)$ act on \mathbb{P}^{1} by

$$
[s: t] \mapsto[a s+b t: c s+d t] \quad \text { for } \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{PGL}_{2}(k)
$$

Then $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ is the subgroup of $\mathrm{PGL}_{2}(k)$ consisting of elements that leave the set $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$ invariant. Since ϕ_{B} is birational, the projective automorphism group $\operatorname{Aut}(B)$ of B acts on \mathbb{P}^{1} via ϕ_{B}. The subset $\phi_{B}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right)$ of B is projectively characterized as the set of smooth inflection points of B, and we have $\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)=\phi_{B}^{-1}\left(\phi_{B}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q}\right)\right)\right)$. Hence $\operatorname{Aut}(B)$ is contained in the subgroup $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ of $\mathrm{PGL}_{2}(k)$. Thus, in order to prove Proposition 1.3, it is enough to show that every element

$$
g:=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { with } \quad a, b, c, d \in \mathbb{F}_{q}
$$

of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ is coming from the action of an element of $\operatorname{Aut}(B)$. We put

$$
\tilde{g}:=\left[\begin{array}{ccc}
a^{2} & b^{2} & a b \\
c^{2} & d^{2} & c d \\
2 a c & 2 b d & a d+b c
\end{array}\right],
$$

and let the matrix \tilde{g} act on \mathbb{P}^{2} by the left multiplication on the column vector ${ }^{t}\left[x_{0}: x_{1}: x_{2}\right]$. Then we have

$$
\phi \circ g=\tilde{g} \circ \phi,
$$

because we have $\lambda^{q}=\lambda$ for $\lambda=a, b, c, d \in \mathbb{F}_{q}$. Therefore $g \mapsto \tilde{g}$ gives an isomorphism from $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ to $\operatorname{Aut}(B)$.

4. Proof of Proposition 1.4

We put

$$
F(x, y):= \begin{cases}x+x^{q}+y^{q+1}+\sum_{i=0}^{\nu-1} x^{2^{i}} y^{q+1-2^{i+1}} & \text { if } p=2 \text { and } q=2^{\nu} \\ 2 x+2 x^{q}-y^{q+1}-\left(y^{2}-4 x\right)^{\frac{q+1}{2}} & \text { if } p \text { is odd }\end{cases}
$$

that is, F is obtained from the homogeneous polynomial in Proposition 1.4 by putting $x_{0}=1, x_{1}=x, x_{2}=y$. Since the polynomial F is of degree $q+1$ and the plane curve B is also of degree $q+1$, it is enough to show that $F\left(t^{q+1}, t^{q}+t\right)=0$.

Suppose that $p=2$ and $q=2^{\nu}$. We put

$$
S(x, y):=\sum_{i=0}^{\nu-1}\left(\frac{x}{y^{2}}\right)^{2^{i}} .
$$

Then $S(x, y)$ is a root of the Artin-Schreier equation

$$
s^{2}+s=\left(\frac{x}{y^{2}}\right)^{q}+\frac{x}{y^{2}} .
$$

Hence $S_{1}:=S\left(t^{q+1}, t^{q}+t\right)$ is a root of the equation $s^{2}+s=b$, where

$$
b:=\left[\frac{t^{q+1}}{\left(t^{q}+t\right)^{2}}\right]^{q}+\frac{t^{q+1}}{\left(t^{q}+t\right)^{2}}=\frac{t^{2 q^{2}+q+1}+t^{q^{2}+3 q}+t^{q^{2}+q+2}+t^{3 q+1}}{\left(t^{q}+t\right)^{2 q+2}} .
$$

We put

$$
S^{\prime}(x, y):=\frac{x+x^{q}+y^{q+1}}{y^{q+1}}
$$

We can verify that $S_{2}:=S^{\prime}\left(t^{q+1}, t^{q}+t\right)$ is also a root of the equation $s^{2}+s=b$. Hence we have either $S_{1}=S_{2}$ or $S_{1}=S_{2}+1$. We can easily see that both of the rational functions S_{1} and S_{2} on \mathbb{P}^{1} have zero at $t=\infty$. Hence $S_{1}=S_{2}$ holds, from which we obtain $F\left(t^{q+1}, t^{q}+t\right)=0$.

Suppose that p is odd. We put

$$
\begin{aligned}
& S(x, y):=2 x+2 x^{q}-y^{q+1}, \quad S_{1}:=S\left(t^{q+1}, t^{q}+t\right), \quad \text { and } \\
& S^{\prime}(x, y):=\left(y^{2}-4 x\right)^{\frac{q+1}{2}}, \quad S_{2}:=S^{\prime}\left(t^{q+1}, t^{q}+t\right) .
\end{aligned}
$$

Then it is easy to verify that both of S_{1}^{2} and S_{2}^{2} are equal to
$t^{2 q^{2}+2 q}-2 t^{2 q^{2}+q+1}+t^{2 q^{2}+2}-2 t^{q^{2}+3 q}+4 t^{q^{2}+2 q+1}-2 t^{q^{2}+q+2}+t^{4 q}-2 t^{3 q+1}+t^{2 q+2}$.
Therefore either $S_{1}=S_{2}$ or $S_{1}=-S_{2}$ holds. Comparing the coefficients of the top-degree terms of the polynomials S_{1} and S_{2} of t, we see that $S_{1}=S_{2}$, whence $F\left(t^{q+1}, t^{q}+t\right)=0$ follows.

5. Proof of Propositions 1.6 and 1.8

We consider the universal family

$$
L:=\left\{(P, Q) \in \mathbb{P}^{1} \times \mathbb{P}^{2} \mid Q \in l_{P}\right\}
$$

of the lines l_{P}, which is defined by

$$
x-t^{q} y+t^{2 q}=0
$$

in $\mathbb{P}^{1} \times \mathbb{P}^{2}$, and let

$$
\pi_{1}: L \rightarrow \mathbb{P}^{1}, \quad \pi_{2}: L \rightarrow \mathbb{P}^{2}
$$

be the projections. We see that $\pi_{1}: L \rightarrow \mathbb{P}^{1}$ has two sections

$$
\begin{aligned}
\sigma_{1} & : \quad t \mapsto(t, x, y)=\left(t, t^{q+1}, t^{q}+t\right) \\
\sigma_{q} & : t \mapsto(t, x, y)=\left(t, t^{q^{2}+q}, t^{q^{2}}+t^{q}\right) .
\end{aligned}
$$

For $P \in \mathbb{P}^{1}$, we have $\pi_{2}\left(\sigma_{1}(P)\right)=\phi(P)$ and $l_{P} \cap B=\left\{\pi_{2}\left(\sigma_{1}(P)\right), \pi_{2}\left(\sigma_{q}(P)\right)\right\}$. Let $\Sigma_{1} \subset L$ and $\Sigma_{q} \subset L$ denote the images of σ_{1} and σ_{q}, respectively. Then Σ_{1} and Σ_{q} are smooth curves, and they intersect transversely. Moreover, their intersection points are contained in $\pi_{1}^{-1}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)\right)$.

We denote by \bar{M} the fiber product of $\gamma: S_{d} \rightarrow \mathbb{P}^{2}$ and $\pi_{2}: L \rightarrow \mathbb{P}^{2}$ over \mathbb{P}^{2}. The pull-back $\pi_{2}^{*} B$ of B by π_{2} is equal to the divisor $q \Sigma_{1}+\Sigma_{q}$. Hence \bar{M} is defined by

$$
\left\{\begin{array}{l}
z^{d}=\left(y-t^{q}-t\right)^{q}\left(y-t^{q^{2}}-t^{q}\right) \tag{5.1}\\
x-t^{q} y+t^{2 q}=0
\end{array}\right.
$$

We denote by $M \rightarrow \bar{M}$ the normalization, and by

$$
\alpha: M \rightarrow L, \quad \eta: M \rightarrow S_{d}
$$

the natural projections. Since d is prime to q, the cyclic covering $\alpha: M \rightarrow L$ of degree d branches exactly along the curve $\Sigma_{1} \cup \Sigma_{q}$. Moreover, the singular locus Sing (M) of M is located over $\Sigma_{1} \cap \Sigma_{q}$, and hence is contained in $\alpha^{-1}\left(\pi_{1}^{-1}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)\right)\right)$.

Since η is dominant and $\rho: \tilde{S}_{d} \rightarrow S_{d}$ is birational, η induces a rational map

$$
\eta^{\prime}: M \cdots \rightarrow \tilde{S}_{d}
$$

Let A denote the affine open curve $\mathbb{P}^{1} \backslash \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)$. We put

$$
L_{A}:=\pi_{1}^{-1}(A), \quad M_{A}:=\alpha^{-1}\left(L_{A}\right) .
$$

Note that M_{A} is smooth. Let $\pi_{1, A}: L_{A} \rightarrow A$ and $\alpha_{A}: M_{A} \rightarrow L_{A}$ be the restrictions of π_{1} and α, respectively. If $P \in A$, then l_{P} is disjoint from $\operatorname{Sing}(B)$, and hence $\eta\left(\alpha^{-1}\left(\pi_{1}^{-1}(P)\right)\right)=\gamma^{-1}\left(l_{P}\right)$ is disjoint from $\operatorname{Sing}\left(S_{d}\right)$. Therefore the restriction of η^{\prime} to M_{A} is a morphism. It follows that we have a proper birational morphism

$$
\beta: \tilde{M} \rightarrow M
$$

from a smooth surface \tilde{M} to M such that β induces an isomorphism from $\beta^{-1}\left(M_{A}\right)$ to M_{A} and that the rational map η^{\prime} extends to a morphism $\tilde{\eta}: \tilde{M} \rightarrow \tilde{S}_{d}$. Summing up, we obtain the following commutative diagram:

$$
\begin{array}{rllll}
M_{A} & \hookrightarrow & \tilde{M} & \xrightarrow{\tilde{\eta}} & \tilde{S}_{d} \tag{5.2}\\
\| & \square & \downarrow \beta & & \downarrow \rho \\
M_{A} & \hookrightarrow & M & \xrightarrow{\eta} & S_{d} \\
\alpha_{A} \downarrow & \square & \downarrow \alpha & & \downarrow \gamma \\
L_{A} & \hookrightarrow & L & \xrightarrow{\pi_{2}} & \mathbb{P}^{2} \\
\pi_{1, A} \downarrow & \square & \downarrow \pi_{1} & & \\
A & \hookrightarrow & \mathbb{P}^{1} & &
\end{array}
$$

Since the defining equation $x-t^{q} y+t^{2 q}=0$ of L in $\mathbb{P}^{1} \times \mathbb{P}^{2}$ is a polynomial in $k[x, y]\left[t^{q}\right]$, and its discriminant as a quadratic equation of t^{q} is $y^{2}-4 x \neq 0$, the projection π_{2} is a finite morphism of degree $2 q$ and its inseparable degree is q. Hence η is also a finite morphism of degree $2 q$ and its inseparable degree is q. Therefore, in order to prove Proposition 1.6, it is enough to show that M is rational. We denote by $k(M)=k(\bar{M})$ the function field of M. Since $x=t^{q} y-t^{2 q}$ on \bar{M}, the field $k(M)$ is generated over k by y, z and t. Let c denote the integer $(q+1) / d$, and put

$$
\tilde{z}:=\frac{z}{\left(y-t^{q}-t\right)^{c}} \in k(M)
$$

Then, from the defining equation (5.1) of \bar{M}, we have

$$
\tilde{z}^{d}=\frac{y-t^{q^{2}}-t^{q}}{y-t^{q}-t} .
$$

Therefore we have

$$
y=\frac{\tilde{z}^{d}\left(t^{q}+t\right)-\left(t^{q^{2}}+t^{q}\right)}{\tilde{z}^{d}-1}
$$

and hence $k(M)$ is equal to the purely transcendental extension $k(\tilde{z}, t)$ of k. Thus Proposition 1.6 is proved.

We put

$$
\Xi:=\tilde{M} \backslash M_{A}=\beta^{-1}\left(\alpha^{-1}\left(\pi_{1}^{-1}\left(\mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)\right)\right)\right)
$$

Since the cyclic covering $\alpha: M \rightarrow L$ branches along the curve $\Sigma_{1}=\sigma_{1}\left(\mathbb{P}^{1}\right)$, the section $\sigma_{1}: \mathbb{P}^{1} \rightarrow L$ of π_{1} lifts to a section $\tilde{\sigma}_{1}: \mathbb{P}^{1} \rightarrow M$ of $\pi_{1} \circ \alpha$. Let $\tilde{\Sigma}_{1}$ denote the strict transform of the image of $\tilde{\sigma}_{1}$ by $\beta: \tilde{M} \rightarrow M$.

Lemma 5.1. The Picard group $\operatorname{Pic}(\tilde{M})$ of \tilde{M} is generated by the classes of $\tilde{\Sigma}_{1}$ and the irreducible components of Ξ.

Proof. Since $\Sigma_{1} \cap \Sigma_{q} \cap L_{A}=\emptyset$, the morphism

$$
\pi_{1, A} \circ \alpha_{A}: M_{A} \rightarrow A
$$

is a smooth \mathbb{P}^{1}-bundle. Let D be an irreducible curve on \tilde{M}, and let e be the degree of

$$
\left.\pi_{1} \circ \alpha \circ \beta\right|_{D}: D \rightarrow \mathbb{P}^{1}
$$

Then the divisor $D-e \tilde{\Sigma}_{1}$ on \tilde{M} is of degree 0 on the general fiber of the smooth \mathbb{P}^{1} bundle $\pi_{1, A} \circ \alpha_{A}$. Therefore $\left.\left(D-e \tilde{\Sigma}_{1}\right)\right|_{M_{A}}$ is linearly equivalent in M_{A} to a multiple of a fiber of $\pi_{1, A} \circ \alpha_{A}$. Hence D is linearly equivalent to a linear combination of $\tilde{\Sigma}_{1}$ and irreducible curves in the boundary $\Xi=\tilde{M} \backslash M_{A}$.

The rational curves on \tilde{S}_{d} listed in Proposition 1.8 are exactly equal to the irreducible components of

$$
\rho^{-1}\left(\gamma^{-1}\left(\bigcup_{P \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)} l_{P}\right)\right) .
$$

Let $V \subset H^{2}\left(\tilde{S}_{d}\right)$ denote the linear subspace spanned by the classes of these rational curves. We will show that $V=H^{2}\left(\tilde{S}_{d}\right)$.

Let $h \in H^{2}\left(\tilde{S}_{d}\right)$ denote the class of the pull-back of a line of \mathbb{P}^{2} by the morphism $\gamma \circ \rho: \tilde{S}_{d} \rightarrow \mathbb{P}^{2}$. Suppose that $P \in \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$. Then l_{P} is disjoint from $\operatorname{Sing}(B)$. Therefore we have

$$
h=\left[(\gamma \circ \rho)^{*}\left(l_{P}\right)\right]=\left[l_{P}^{(0)}\right]+\cdots+\left[l_{P}^{(d-1)}\right] \in V .
$$

Let \tilde{B} denote the strict transform of B by $\gamma \circ \rho$. Then \tilde{B} is written as $d \cdot R$, where R is a reduced curve on \tilde{S}_{d} whose support is equal to $\tilde{\eta}\left(\tilde{\Sigma}_{1}\right)$. On the other hand, the class of the total transform $(\gamma \circ \rho)^{*} B$ of B by $\gamma \circ \rho$ is equal to $(q+1) h$. Since the difference of the divisors $d \cdot R$ and $(\gamma \circ \rho)^{*} B$ is a linear combination of exceptional curves of ρ, we have

$$
\begin{equation*}
\tilde{\eta}_{*}\left(\left[\tilde{\Sigma}_{1}\right]\right) \in V . \tag{5.3}
\end{equation*}
$$

By the commutativity of the diagram (5.2), we have

$$
\tilde{\eta}(\Xi) \subset \rho^{-1}\left(\gamma^{-1}\left(\bigcup_{P \in \mathbb{P}^{1}\left(\mathbb{F}_{q^{2}}\right)} l_{P}\right)\right) .
$$

Hence, for any irreducible component Γ of Ξ, we have

$$
\begin{equation*}
\tilde{\eta}_{*}([\Gamma]) \in V \tag{5.4}
\end{equation*}
$$

Let C be an arbitrary irreducible curve on \tilde{S}_{d}. Then we have

$$
\tilde{\eta}_{*} \tilde{\eta}^{*}([C])=2 q[C] .
$$

By Lemma 5.1, there exist integers a, b_{1}, \ldots, b_{m} and irreducible components $\Gamma_{1}, \ldots, \Gamma_{m}$ of Ξ such that the divisor $\eta^{*} C$ of \tilde{M} is linearly equivalent to

$$
a \tilde{\Sigma}_{1}+b_{1} \Gamma_{1}+\cdots+b_{m} \Gamma_{m}
$$

By (5.3) and (5.4), we obtain

$$
[C]=\frac{1}{2 q} \tilde{\eta}_{*} \tilde{\eta}^{*}([C]) \in V .
$$

Therefore $V \subset H^{2}\left(\tilde{S}_{d}\right)$ is equal to the linear subspace spanned by the classes of all curves. Combining this fact with Corollary 1.7, we obtain $V=H^{2}\left(\tilde{S}_{d}\right)$.

6. Supersingular $K 3$ Surfaces

In this section, we prove Proposition 1.9. First, we recall some facts on supersingular $K 3$ surfaces. Let Y be a supersingular $K 3$ surface in characteristic p, and let $\mathrm{NS}(Y)$ denote its Néron-Severi lattice, which is an even hyperbolic lattice of rank 22. Artin [3] showed that the discriminant of $\mathrm{NS}(Y)$ is written as $-p^{2 \sigma}$, where σ is a positive integer ≤ 10. This integer σ is called the Artin invariant of Y. Ogus [13, 14] and Rudakov-Shafarevic [15] proved that, for each p, a supersingular $K 3$ surface with Artin invariant 1 is unique up to isomorphisms. Let X_{p} denote the supersingular $K 3$ surface with Artin invariant 1 in characteristic p. It is known that X_{3} is isomorphic to the Fermat quartic surface, and that X_{5} is isomorphic to the Fermat sextic double plane. (See, for example, [12] and [17], respectively.) Therefore, in order to prove Proposition 1.9, it is enough to prove the following:

Proposition 6.1. Suppose that $(d, q+1)=(4,4)$ or $(2,6)$. Then, among the curves on \tilde{S}_{d} listed in Proposition 1.8, there exist 22 curves whose classes together with the intersection pairing form a lattice of rank 22 with discriminant $-p^{2}$.
Proof. Suppose that $p=q=3$ and $d=4$. We put $\alpha:=\sqrt{-1} \in \mathbb{F}_{9}$, so that $\mathbb{F}_{9}:=\mathbb{F}_{3}(\alpha)$. Consider the projective space \mathbb{P}^{3} with homogeneous coordinates [$w: x_{0}: x_{1}: x_{2}$]. By Proposition 1.4, the surface S_{4} is defined in \mathbb{P}^{3} by an equation

$$
w^{4}=2\left(x_{0}^{3} x_{1}+x_{0} x_{1}^{3}\right)-x_{2}^{4}-\left(x_{2}^{2}-x_{1} x_{0}\right)^{2} .
$$

Hence the singular locus $\operatorname{Sing}\left(S_{4}\right)$ of S_{4} consists of the three points

$$
\begin{array}{lll}
Q_{0}:=[0: 1: 1: 0] & \text { (located over } \phi([1: \alpha])=\phi([1:-\alpha]) \in B), \\
Q_{1}:=[0: 1: 2: 1] & \text { (located over } \phi([1: 1+\alpha])=\phi([1: 1-\alpha]) \in B), \\
Q_{2}:=[0: 1: 2: 2] & \text { (located over } \phi([1: 2+\alpha])=\phi([1: 2-\alpha]) \in B),
\end{array}
$$

and they are rational double points of type A_{3}. The minimal resolution $\rho: \tilde{S}_{4} \rightarrow S_{4}$ is obtained by blowing up twice over each singular point $Q_{a}\left(a \in \mathbb{F}_{3}\right)$. The rational
curves $l_{P}^{(i)}$ on \tilde{S}_{4} given in Proposition 1.8 are the strict transforms of the following 40 lines $\bar{L}_{\tau}^{(\nu)}$ in \mathbb{P}^{3} contained in S_{4}, where $\nu=0, \ldots, 3$:

$$
\begin{aligned}
\bar{L}_{0}^{(\nu)} & :=\left\{x_{1}=w-\alpha^{\nu} x_{2}=0\right\} \\
\bar{L}_{1}^{(\nu)} & :=\left\{x_{0}+x_{1}-x_{2}=w-\alpha^{\nu}\left(x_{2}+x_{0}\right)=0\right\} \\
\bar{L}_{2}^{(\nu)} & :=\left\{x_{0}+x_{1}+x_{2}=w-\alpha^{\nu}\left(x_{2}-x_{0}\right)=0\right\} \\
\bar{L}_{\infty}^{(\nu)} & :=\left\{x_{0}=w-\alpha^{\nu} x_{2}=0\right\} \\
\bar{L}_{ \pm \alpha}^{(\nu)} & :=\left\{-x_{0}+x_{1} \pm \alpha x_{2}=w-\alpha^{\nu} x_{2}=0\right\} \\
\bar{L}_{1 \pm \alpha}^{(\nu)} & :=\left\{ \pm \alpha x_{0}+x_{1}+(-1 \pm \alpha) x_{2}=w-\alpha^{\nu}\left(x_{2}+x_{0}\right)=0\right\}, \\
\bar{L}_{2 \pm \alpha}^{(\nu)} & :=\left\{\mp \alpha x_{0}+x_{1}+(1 \pm \alpha) x_{2}=w-\alpha^{\nu}\left(x_{2}-x_{0}\right)=0\right\} .
\end{aligned}
$$

We denote by $L_{\tau}^{(\nu)}$ the strict transform of $\bar{L}_{\tau}^{(\nu)}$ by ρ. Note that the image of $\bar{L}_{\tau}^{(\nu)}$ by the covering morphism $S_{4} \rightarrow \mathbb{P}^{2}$ is the line $l_{\phi([1: \tau])}$. Note also that, if $\tau \in \mathbb{F}_{3} \cup\{\infty\}$, then $\bar{L}_{\tau}^{(\nu)}$ is disjoint from $\operatorname{Sing}\left(S_{4}\right)$, while if $\tau=a+b \alpha \in \mathbb{F}_{9} \backslash \mathbb{F}_{3}$ with $a \in \mathbb{F}_{3}$ and $b \in \mathbb{F}_{3} \backslash\{0\}=\{ \pm 1\}$, then $\bar{L}_{\tau}^{(\nu)} \cap \operatorname{Sing}\left(S_{4}\right)$ consists of a single point Q_{a}. Looking at the minimal resolution ρ over Q_{a} explicitly, we see that the three exceptional (-2)-curves in \tilde{S}_{4} over Q_{a} can be labeled as $E_{a-\alpha}, E_{a}, E_{a+\alpha}$ in such a way that the following hold:

- $\left\langle E_{a-\alpha}, E_{a}\right\rangle=\left\langle E_{a}, E_{a+\alpha}\right\rangle=1,\left\langle E_{a-\alpha}, E_{a+\alpha}\right\rangle=0$.
- Suppose that $b \in\{ \pm 1\}$. Then $L_{a+b \alpha}^{(\nu)}$ intersects $E_{a+b \alpha}$, and is disjoint from the other two irreducible components E_{a} and $E_{a-b \alpha}$.
- The four intersection points of $L_{a+b \alpha}^{(\nu)}(\nu=0, \ldots, 3)$ and $E_{a+b \alpha}$ are distinct. Using these, we can calculate the intersection numbers among the $9+40$ curves E_{τ} and $L_{\tau^{\prime}}^{(\nu)}\left(\tau \in \mathbb{F}_{9}, \tau^{\prime} \in \mathbb{F}_{9} \cup\{\infty\}, \nu=0, \ldots, 3\right)$. From among them, we choose the following 22 curves:

$$
\begin{aligned}
& E_{-\alpha}, E_{0}, E_{\alpha}, E_{1-\alpha}, E_{1}, E_{1+\alpha}, E_{2-\alpha}, E_{2}, E_{2+\alpha}, \\
& L_{0}^{(0)}, L_{0}^{(1)}, L_{0}^{(2)}, L_{0}^{(3)}, L_{1}^{(0)}, L_{1}^{(1)}, L_{2}^{(0)}, L_{2}^{(1)}, L_{\infty}^{(1)}, \\
& L_{-\alpha}^{(0)}, L_{-\alpha}^{(1)}, L_{1-\alpha}^{(2)}, L_{2-\alpha}^{(0)} .
\end{aligned}
$$

Their intersection numbers are calculated as in Table 6.1. We can easily check that this matrix is of determinant -9 .

The proof for the case $p=q=5$ and $d=2$ is similar. We put $\alpha:=\sqrt{2}$ so that $\mathbb{F}_{25}=\mathbb{F}_{5}(\alpha)$. In the weighted projective space $\mathbb{P}(3,1,1,1)$ with homogeneous coordinates $\left[w: x_{0}: x_{1}: x_{2}\right.$], the surface S_{2} for $p=q=5$ is defined by

$$
w^{2}=2\left(x_{0}^{5} x_{1}+x_{0} x_{1}^{5}\right)-x_{2}^{6}-\left(x_{2}^{2}+x_{0} x_{1}\right)^{3} .
$$

The singular locus $\operatorname{Sing}\left(S_{2}\right)$ consists of ten ordinary nodes

$$
Q_{\{a+b \alpha, a-b \alpha\}} \quad\left(a \in \mathbb{F}_{5}, b \in\{1,2\}\right)
$$

located over the nodes $\phi([1: a+b \alpha])=\phi([1: a-b \alpha])$ of the branch curve B. Let $E_{\{a+b \alpha, a-b \alpha\}}$ denote the exceptional (-2)-curve in \tilde{S}_{2} over $Q_{\{a+b \alpha, a-b \alpha\}}$ by the minimal resolution. As the 22 curves, we choose the following eight exceptional
$\left[\begin{array}{cccccccccccccccccccccc}-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -2 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -2 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & -2\end{array}\right]$

Table 6.1. Gram matrix of $\operatorname{NS}\left(\tilde{S}_{4}\right)$ for $q=3$
$\left[\begin{array}{cccccccccccccccccccccc}-2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 3 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -2 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & -2 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & -2 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & -2 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & -2\end{array}\right]$

Table 6.2. Gram matrix of $\operatorname{NS}\left(\tilde{S}_{2}\right)$ for $q=5$
(-2)-curves

$$
\begin{aligned}
& E_{\{-\alpha, \alpha\}}, \quad E_{\{-2 \alpha, 2 \alpha\}}, \quad E_{\{1-\alpha, 1+\alpha\}}, \quad E_{\{1-2 \alpha, 1+2 \alpha\}}, \\
& E_{\{2-\alpha, 2+\alpha\}}, \quad E_{\{3-2 \alpha, 3+2 \alpha\}}, \quad E_{\{4-\alpha, 4+\alpha\}}, \quad E_{\{4-2 \alpha, 4+2 \alpha\}},
\end{aligned}
$$

and the strict transforms of the following 14 curves on S_{2} :

$$
\begin{aligned}
& \left\{x_{1}=w-2 \alpha x_{2}{ }^{3}=0\right\}, \\
& \left\{x_{1}=w+2 \alpha x_{2}^{3}=0\right\}, \\
& \left\{x_{0}+x_{1}+4 x_{2}=w+2 \alpha\left(3 x_{0}+x_{2}\right)^{3}=0\right\}, \\
& \left\{3 x_{0}+x_{1}+3 \alpha x_{2}=w-2 \alpha x_{2}^{3}=0\right\}, \\
& \left\{2 x_{0}+x_{1}+4 \alpha x_{2}=w+2 \alpha x_{2}{ }^{3}=0\right\}, \\
& \left\{3 x_{0}+x_{1}+2 \alpha x_{2}+3 x_{0}=w-2 \alpha x_{2}^{3}=0\right\}, \\
& \left\{(3+3 \alpha) x_{0}+x_{1}+(4+\alpha) x_{2}=w+2 \alpha\left(3 x_{0}+x_{2}\right)^{3}=0\right\}, \\
& \left\{(4+\alpha) x_{0}+x_{1}+(4+2 \alpha) x_{2}=w+2 \alpha\left(3 x_{0}+x_{2}\right)^{3}=0\right\}, \\
& \left\{(2+3 \alpha) x_{0}+x_{1}+(3+3 \alpha) x_{2}=w-2 \alpha\left(x_{0}+x_{2}\right)^{3}=0\right\}, \\
& \left\{(1+\alpha) x_{0}+x_{1}+(3+\alpha) x_{2}=w-2 \alpha\left(x_{0}+x_{2}\right)^{3}=0\right\}, \\
& \left\{(1+\alpha) x_{0}+x_{1}+(2+4 \alpha) x_{2}=w-2 \alpha\left(x_{2}+4 x_{0}\right)^{3}=0\right\}, \\
& \left\{(2+3 \alpha) x_{0}+x_{1}+(2+2 \alpha) x_{2}=w+2 \alpha\left(x_{2}+4 x_{0}\right)^{3}=0\right\}, \\
& \left\{(3+3 \alpha) x_{0}+x_{1}+(1+4 \alpha) x_{2}=w-2 \alpha\left(x_{2}+2 x_{0}\right)^{3}=0\right\}, \\
& \left\{(4+4 \alpha) x_{0}+x_{1}+(1+2 \alpha) x_{2}=w-2 \alpha\left(x_{2}+2 x_{0}\right)^{3}=0\right\} .
\end{aligned}
$$

Their intersection matrix is given in Table 6.2. It is of determinant -25 .
Remark 6.2. In the case $q=5$, the Ballico-Hefez curve B is one of the sextic plane curves studied classically by Coble [5].

References

[1] M. Artin. Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math., 84:485-496, 1962.
[2] M. Artin. On isolated rational singularities of surfaces. Amer. J. Math., 88:129-136, 1966.
[3] M. Artin. Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. (4), 7:543-567 (1975), 1974.
[4] E. Ballico and A. Hefez. Nonreflexive projective curves of low degree. Manuscripta Math., 70(4):385-396, 1991.
[5] A. B. Coble. The Ten Nodes of the Rational Sextic and of the Cayley Symmetroid. Amer. J. Math., 41(4):243-265, 1919.
[6] S. Fukasawa. Complete determination of the number of Galois points for a smooth plane curve. Rend. Semin. Mat. Univ. Padova, (to appear).
[7] S. Fukasawa. Galois points for a non-reflexive plane curve of low degree. Finite Fields. Appl., 23:69-79, 2013.
[8] S. Fukasawa, M. Homma and S. J. Kim. Rational curves with many rational points over a finite field. In Arithmetic, geometry, cryptography and coding theory, volume 574 of Contemp. Math., pages 37-48. Amer. Math. Soc., Providence, RI, 2012.
[9] G. J. Griffith. The "Coxeter curves", $x^{2 / p}+y^{2 / p}+z^{2 / p}=0$ for odd values of p. J. Geom., 20(2):111-115, 1983.
[10] T. Katsura and S. Kondō. Rational curves on the supersingular K3 surface with Artin invariant 1 in characteristic 3. J. Algebra, 352:299-321, 2012.
[11] T. Katsura, S. Kondō and I. Shimada. On the supersingular K3 surface in characteristic 5 with Artin invariant 1, 2013. preprint, arXiv:1312.0687.
[12] S. Kondō and I. Shimada. The automorphism group of a supersingular K3 surface with Artin invariant 1 in characteristic 3, 2012. arXiv:1205.6520, to appear in Int. Math. Res. Not. doi: 10.1093/imrn/rns274.
[13] A. Ogus. Supersingular K3 crystals. In Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, volume 64 of Astérisque, pages 3-86. Soc. Math. France, Paris, 1979.
[14] A. Ogus. A crystalline Torelli theorem for supersingular K3 surfaces. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 361-394. Birkhäuser Boston, Boston, MA, 1983.
[15] A. N. Rudakov and I. R. Shafarevich. Surfaces of type $K 3$ over fields of finite characteristic. In Current problems in mathematics, Vol. 18, pages 115-207. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981. Reprinted in I. R. Shafarevich, Collected Mathematical Papers, Springer-Verlag, Berlin, 1989, pp. 657-714.
[16] I. Shimada. Unirationality of certain complete intersections in positive characteristics. Tohoku Math. J. (2), 44(3):379-393, 1992.
[17] I. Shimada. Projective models of the supersingular $K 3$ surface with Artin invariant 1 in characteristic 5, 2012. preprint, arXiv:1201.4533, to appear in J. Algebra.
[18] T. Shioda. An example of unirational surfaces in characteristic p. Math. Ann., 211:233-236, 1974.
[19] T. Shioda and T. Katsura. On Fermat varieties. Tohoku Math. J. (2), 31(1):97-115, 1979.
Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: hoangthanh2127@yahoo.com
Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. primary 14H45, secondary 14J25.
 Partially supported by JSPS Grant-in-Aid for Challenging Exploratory Research No. 23654012 and JSPS Grants-in-Aid for Scientific Research (C) No. 25400042 .

