ON CHARACTERISTIC POLYNOMIALS OF AUTOMORPHISMS OF ENRIQUES SURFACES: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

This note is an explanation of the computational data for the results in the paper

On characteristic polynomials of automorphisms of Enriques surfaces

(joint work with S. Brandhorst and S. Rams).

The data is available at

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html
in three txt files

autYrec1.txt, autYrec2.txt, autYrec3.txt.

Each of these text files contains a data in the Record-format of GAP [2].

2. autYrec

We fix bases of the lattices L_{26}, S_X, S_Y, P, Q . The data below are written with resepct to these bases.

Remark 2.1. An element g_Y of $\operatorname{aut}(Y) \subset O(S_Y, \mathcal{P}_Y)$ is given by a record with two components gX and gY. This record indicates the pair $[g_X, g_Y]$ of an isometry $g_X \in O(S_X, \mathcal{P}_X)$ that preserves the submodule S_Y of S_X , and the isometry $g_Y = g_X | S_Y$ of S_Y .

Each record autYrec* has the following components.

- No. The number of autYrec (1 or 2 or 3).
- GramL26. The Gram matrix of L_{26} .
- GramSX. The Gram matrix of S_X .
- GramSY. The Gram matrix of S_Y .
- GramP. The Gram matrix of the orthogonal complement P of $S_Y(2)$ in L_{26} .
- GramQ. The Gram matrix of the orthogonal complement Q of $S_Y(2)$ in S_X .
- embSXL26. The embedding ι_X of S_X into L_{26} .
- embSY2L26. The embedding ι_Y of $S_Y(2)$ into L_{26} .
- embSY2SX. The embedding π^* of $S_Y(2)$ into S_X .
- embPL26. The embedding of P into L_{26} .
- embQSX. The embedding of Q into S_X .
- iotaYtype. The type of the embedding ι_Y in the notation of [1] such as "40B", "20A", "20D".
- generatorsAutQ. A generating set of the group O(Q) of isometries of Q.
- invol. The action of the Enriques involution of $X \to Y$ on S_X .
- ampleY. An ample class α of Y contained in the interior of the initial chamber D_0 .

I. SHIMADA

- autYgenerators. The generators of aut(Y) (see Remark 2.1).
- weyl0. The Weyl vector for the Conway chamber inducing the initial chamber D_0 of \mathcal{P}_Y contained in N_Y .
- OSYDO. The list of elements of the group $O(S_Y, D_0)$.
- Drecs. The list that gives the list \mathcal{R} of representatives of $\operatorname{aut}(Y)$ -equivalence classes of induced chambers contained in N_Y . Each element of Drecs is a record Drec that has the following components. Let $D \in \mathcal{R}$ be the induced chamber that Drec describes.
 - no. The number k such that Drec appears at the (k+1)st position of Drecs. The first record in Drecs describes the initial induced chamber D_0 , and has Drec.no = 0.
 - DOtoD. An element $\tau \in O(S_Y, \mathcal{P}_Y)$ that maps D_0 to D.
 - DtoD0. The inverse $\tau^{-1} \in O(S_Y, \mathcal{P}_Y)$ of Drec.D0toD.
 - autYD. The list of elements of $\operatorname{aut}(Y, D) := \operatorname{aut}(Y) \cap O(S_Y, D)$ (see Remark 2.1).
 - walls. The list of (-2)-vectors that defines the walls of D.
 - ampleD. An interior α_D point of D.
 - orbitrecs. The list of records orbrec that describe an orbit o_i of the action of aut(Y, D) on the set of walls of D. Each member of orbrec is a record that has the following components. Let o_i be the orbit decribed by orbrec.
 - * orbitnumber. The number *i* such that orbrec appears at the *i*th position of orbrecrecs.
 - * orbit. The list of (-2)-vectors in o_i .
 - * representative. The representative vector $r \in o_i$ of this orbit. Let D' be the induced chamber adjacent to D across the wall $D \cap (r)^{\perp}$.
 - * reflection. The reflection s_r with respect to r. Note that we have $D' = D^{s_r}$.
 - * innout. If D' is contained in N_Y , then orbrec.innout is "inner". Otherwise, this item is a (-2)-vector r' of S_X such that $\langle \pi^*(\alpha_D), r' \rangle > 0$ and $\langle \pi^*(\alpha_D^{s_r}), r' \rangle < 0$. (Note that $\alpha_D^{s_r}$ is an interior point of D'.)
 - * isnew. If orbrec.innout is not "inner", then orbrec.isnew is "null". If orbrec.innout is "inner", then orbrec.isnew is either one of the following:
 - rec(flag=true, no=k), which means that D' is chosen as a representatives of an aut(Y)-equivalence class of induced chambers in N_Y and is put at the (k + 1)st position of \mathcal{R} .
 - rec(flag=false, isomwith=m, by=g), which means that D' is aut(Y)-equivalent with the induced chamber D_m at the (m+1)st position of \mathcal{R} , and $g \in \operatorname{aut}(Y)$ satisfies $D_m^g = D'$.

References

- Brandhorst, S. and Shimada, I. Borcherds' method for Enriques surfaces, 2019. Preprint, arXiv:1903.01087.
- [2] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http://www.gap-system.org).

 $\mathbf{2}$

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN *Email address*: ichiro-shimada@hiroshima-u.ac.jp