CONNECTED COMPONENTS OF THE MODULI OF ELLIPTIC K3 SURFACES: COMPUTATIONAL DATA

ICHIRO SHIMADA

This note is an explanation of the computational data calculated in the paper [2] and available from the website [3]. This data EllipticK3s is written in GAP format [1].

We use the notions and notation introduced in [2]. The data EllipticK3s is the list of 3693 records, each of which corresponds to a geometrically realizable combinatorial type (Φ, A) of complex elliptic K3 surfaces. The complete list of geometrically realizable combinatorial types has been calculated in [4, 6], and in the list EllipticK3s, these types are sorted according to the table [5].

Each item X in EllipticK3s is a record with the following components.

- ADE. The ADE-type Φ of reducible fibers.
- rankADE. The rank of $L(\Phi)$.
- GramADE. The Gram matrix of the positive definite root lattice of type ADE. This means that -1 times GramADE is the Gram matrix of $L(\Phi)$ with respect to the standard basis (a fundamental root system) of $L(\Phi)$.
- MWtor. The torsion part A of the Mordell-Weil group.
- algequivclasses. The list of algebraic equivalence classes of connected components of the moduli. Each item in this list is a record with the following components.
 - torsionclasses. The list of classes of torsion sections. Let $[\tau] \in U \oplus M(\Phi)$ be the class of a torsion section τ . Each vector in this list is the image of $[\tau]$ by the projection $U \oplus M(\Phi) \to M(\Phi)$, and is written with respect to the basis of $L(\Phi)^{\vee}$ dual to the fundamental root system of $L(\Phi)$. This list enables us to see how the torsion sections intersect the irreducible components of reducible fibers. This list also recovers the even overlattice $M(\Phi)$ of $L(\Phi)$, and hence the Néron-Severi lattice $U \oplus M(\Phi)$ of the connected components in this algebraic equivalence class.
 - connected components. The list of connected components in the algebraic equivalence class. When rankADE = 18, this is the list of the pairs [T, [r, c]], where T is the transcendental lattice [[a, b], [b, c]] of the connected component,

ICHIRO SHIMADA

r is the number of real connected components, and c is the number of non-real connected components. (Hence c is always even.) When rankADE < 18, this is the quartet $[d_1, d_2, d_3, d_4]$, where

$$\begin{split} d_1 &:= \dim_{\mathbb{F}_2}(\Gamma_{\mathbb{A}} \times \operatorname{Sign}) / (\Gamma_{\mathbb{Q}}^{\sim} \cdot (\Sigma(L, \bar{G}^{\lambda}) \times \{1\})), \\ d_2 &:= \dim_{\mathbb{F}_2}((\Gamma_{\mathbb{A}} \times \operatorname{Sign}) / (\Gamma_{\mathbb{Q}}^{\sim} \cdot (\Sigma(L, \bar{G}^{\lambda}) \times \{1\}))) / \langle c \rangle, \\ d_3 &:= \dim_{\mathbb{F}_2}(\Gamma_{\mathbb{A}} \times \operatorname{Sign}) / (\Gamma_{\mathbb{Q}}^{\sim} \cdot (\Sigma(L, \{\mathrm{id}\}) \times \{1\})), \\ d_4 &:= \dim_{\mathbb{F}_2}((\Gamma_{\mathbb{A}} \times \operatorname{Sign}) / (\Gamma_{\mathbb{Q}}^{\sim} \cdot (\Sigma(L, \{\mathrm{id}\}) \times \{1\}))) / \langle c \rangle, \end{split}$$

where c is the complex conjugation. Hence 2^{d_1} is the number of connected components in the algebraic equivalence class, 2^{d_2} is the number of connected components modulo the complex conjugation (see Remark 4.16 of [2]), 2^{d_3} is the number of {id}-connected components (see Remark 4.15 of [2]), 2^{d_4} is the number of {id}-connected components modulo the complex conjugation.

References

- The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.7.9; 2015 (http://www.gapsystem.org).
- [2] Ichiro Shimada. Connected components of the moduli of elliptic K3 surfaces, 2016.
- [3] Ichiro Shimada. Connected components of the moduli of elliptic K3 surfaces: computational data, 2016. http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.
- [4] Ichiro Shimada. On elliptic K3 surfaces. Michigan Math. J., 47(3):423–446, 2000.
- [5] Ichiro Shimada. On elliptic K3 surfaces (with a large table). http://www.math.sci.hiroshimau.ac.jp/~shimada/K3.html.
- [6] Ichiro Shimada and De-Qi Zhang. Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces. Nagoya Math. J., 161:23–54, 2001.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp