## A NOTE ON MIRANDA-MORRISON THEORY

ICHIRO SHIMADA

Let $(X, f, s)$ be a complex elliptic $K 3$ surface; that is, $X$ is a complex $K 3$ surface, $f: X \rightarrow \mathbb{P}^{1}$ is a fibration whose general fiber is a curve of genus 1 , and $s: \mathbb{P}^{1} \rightarrow X$ a section of $f$. As in [2], we consider the following objects:

- $S_{X}$ is the Néron-Severi lattice of $X$, embedded primitively into the even unimodular lattice $H^{2}(X, \mathbb{Z})$ with the cup product.
- $U_{f}$ is the sublattice of $S_{X}$ generated by the class of a fiber of $f$ and the class of the zero section $s\left(\mathbb{P}^{1}\right)$. Thus $U_{f}$ is a hyperbolic plane.
- $\Phi_{f}$ is the set of classes of smooth rational curves on $X$ that are mapped by $f$ to a point and disjoint from $s\left(\mathbb{P}^{1}\right)$. It is well-known that $\Phi_{f}$ is a fundamental system of roots of type $A D E$.
- $L\left(\Phi_{f}\right)$ is the sublattice of $S_{X}$ generated by $\Phi_{f}$.
- $M_{f}$ is the primitive closure of $L\left(\Phi_{f}\right)$ in $S_{X}$. It is obvious that $L\left(\Phi_{f}\right)$ is orthogonal to $U_{f}$ in $S_{X}$, and hence the orthogonal direct sum $U_{f} \oplus M_{f}$ is embedded primitively into $S_{X}$.
- $A_{f}$ is the finite abelian group $M_{f} / L\left(\Phi_{f}\right)$. It is well-known that $A_{f}$ is isomorphic to the torsion part of the Mordell-Weil group of $(X, f, s)$.
- $T_{f}$ is the orthogonal complement of $U_{f} \oplus M_{f}$ in $H^{2}(X, \mathbb{Z})$. Then we have an isomorphism $q_{T_{f}} \cong-q_{M_{f}}$.
- $\mathrm{O}\left(T_{f}\right) \rightarrow \mathrm{O}\left(q_{T_{f}}\right)$ is the natural homomorphism from the orthogonal group of $T_{f}$ to the automorphism group of the discriminant form $q_{T_{f}}$ of $T_{f}$.
- $\mathcal{G}_{T_{f}}$ is the genus of lattices containing the isomorphism class of $T_{f}$.

Suppose that $\operatorname{rank} T_{f} \geq 3$; that is, $\operatorname{rank} L\left(\Phi_{f}\right) \leq 17$. Miranda-Morrison theory [1] enables us to put a structure of the abelian group on $\mathcal{G}_{T_{f}}$, and to calculate a group $\mathcal{M}_{T_{f}}$ that fits in the exact sequence

$$
0 \rightarrow \operatorname{Coker}\left(\mathrm{O}\left(T_{f}\right) \rightarrow \mathrm{O}\left(q_{T_{f}}\right)\right) \rightarrow \mathcal{M}_{T_{f}} \rightarrow \mathcal{G}_{T_{f}} \rightarrow 0 .
$$

We have calculated this group $\mathcal{M}_{T_{f}}$ for all elliptic $K 3$ surface $(X, f, s)$ by means of the computational tools developed in [2].

Theorem 1. Suppose that $\operatorname{rank} T_{f} \geq 3$. Then the group $\mathcal{G}_{T_{f}}$ is trivial.
Theorem 2. The list in the following page is the list of all the cases where $\operatorname{rank} T_{f} \geq$ 3 and $\mathcal{M}_{T_{f}}$ is non-trivial.

Remark 3. In order to calculate the connected components of the moduli of elliptic $K 3$ surfaces in [2], we have to take into account the positive sign structures of $T_{f}$, and the action of automorphisms of $q_{T_{f}}$ coming from the automorphisms of the diagram $\Phi_{f}$ via the isomorphism $q_{T_{f}} \cong-q_{M_{f}}$. For this purpose, we presented a refinement of the Miranda-Morrison theory in Section 4.4 of [2]. The purpose of this note is to present a simple part of the calculation, for which we need not use the refinement of Miranda-Morrison theory.

The contents of the following table are

```
    rank}L(\mp@subsup{\Phi}{f}{})\quad\mathrm{ the }ADE\mathrm{ type of 和 刦 |
[ "D4", "D4", "A2", "A2", "A2", "A2" ] [ 1 ] 2
[ "A4", "A4", "A4", "A4" ] [ 1 ] 2
[ "A4", "A4", "A4", "A3", "A1" ] [ 1 ] 2
[ "A4", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
[ "E8", "A4", "A4", "A1" ] [ 1 ] 2
[ "E7", "A4", "A4", "A1", "A1" ] [ 1 ] 2
[ "E6", "A7", "A2", "A1", "A1" ] [ 1 ] 2
[ "E6", "A4", "A4", "A3" ] [ 1 ] 2
[ "E6", "A4", "A4", "A2", "A1" ] [ 1 ] 2
[ "D8", "A4", "A4", "A1" ] [ 1 ] 2
[ "D8", "A3", "A2", "A2", "A2" ] [ 1 ] 2
[ "D7", "D4", "A2", "A2", "A2" ] [ 1 ] 2
[ "D7", "A4", "A4", "A2" ] [ 1 ] 2
[ "D7", "A3", "A3", "A2", "A2" ] [ 1 ] 2
[ "D6", "A7", "A2", "A2" ] [ 1 ] 2
[ "D5", "D4", "A4", "A4" ] [ 1 ] 2
[ "D5", "A4", "A4", "A4" ] [ 1 ] 2
[ "D5", "A4", "A4", "A3", "A1" ] [ 1 ] 2
[ "D5", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
[ "D5", "A3", "A3", "A2", "A2", "A2" ] [ 1 ] 4
[ "D4", "A7", "A2", "A2", "A1", "A1" ] [ 2 ] 2
[ "D4", "A4", "A4", "A2", "A2", "A1" ] [ 1 ] 2
[ "D4", "A3", "A3", "A3", "A2", "A2" ] [ 2 ] 2
[ "A9", "A4", "A4" ] [ 1 ] 2
[ "A9", "A4", "A3", "A1" ] [ 2 ] 2
[ "A9", "A4", "A3", "A1" ] [ 1 ] 2
[ "A9", "A4", "A2", "A1", "A1" ] [ 1 ] 2
[ "A8", "A4", "A4", "A1" ] [ 1 ] 2
[ "A7", "A5", "A5" ] [ 1 ] 2
[ "A7", "A5", "A2", "A1", "A1", "A1" ] [ 2 ] 2
[ "A7", "A4", "A4", "A1", "A1" ] [ 1 ] 2
[ "A7", "A4", "A2", "A2", "A1", "A1" ] [ 1 ] 2
[ "A7", "A3", "A3", "A2", "A2" ] [ 1 ] 2
[ "A6", "A6", "A2", "A2", "A1" ] [ 1 ] 2
[ "A6", "A4", "A4", "A3" ] [ 1 ] 2
[ "A6", "A4", "A4", "A2", "A1" ] [ 1 ] 2
[ "A5", "A5", "A3", "A2", "A1", "A1" ] [ 2 ] 2
[ "A5", "A4", "A4", "A4" ] [ 1 ] 2
[ "A5", "A4", "A4", "A3", "A1" ] [ 1 ] 2
[ "A5", "A4", "A4", "A2", "A2" ] [ 1 ] 2
[ "A5", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
[ "A5", "A3", "A3", "A3", "A2", "A1" ] [ 2 ] 2
[ "A4", "A4", "A4", "A4", "A1" ] [ 5 ] 2
[ "A4", "A4", "A4", "A3", "A1", "A1" ] [ 1 ] 2
[ "A4", "A4", "A4", "A2", "A1", "A1", "A1" ] [ 1 ] 2
[ "A4", "A4", "A3", "A2", "A2", "A2" ] [ 1 ] 2
[ "A4", "A3", "A3", "A3", "A2", "A2" ] [ 1 ] 2
```

Acknowledgement. Thanks are due to Professor Klaus Hulek and Professor Michael Lönne for their interests in my work.

## References

[1] Rick Miranda and David R. Morrison. Embeddings of integral quadratic forms. electronic, 2009, http://web.math.ucsb.edu/ drm/manuscripts/eiqf.pdf .
[2] Ichiro Shimada. Connected components of the moduli of elliptic $K 3$ surfaces, 2016. arXiv:1610.04706

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp

