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Abstract. We present examples of equisingular families of complex projective
plane curves with plural connected components that are not distinguished by

the fundamental group of the complement.

1. Introduction

The topological fundamental group of the complement to a complex singular
plane curve plays an important role in the study of families of singular plane curves.
It has been used as a tool for distinguishing connected components of an equisin-
gular family of plane curves.

According to [1], we define the equisingularity of plane curves as follows. Let
C1 and C2 be two complex projective plane curves. Suppose that both of them are
reduced and have a same degree. We say that C1 and C2 are equisingular if there
exists an open neighborhood Ti ⊂ P2 of Ci ⊂ P2 for i = 1 and 2 such that (T1, C1)
and (T2, C2) are diffeomorphic.

For an equivalence class of equisingularity of degree d, we consider the family
F ⊂ P∗H0(P2,O(d)) of all projective plane curves that belong to the given class of
equisingularity, and call it an equisingular family. Here P∗H0(P2,O(d)) stands for
the projective space of one-dimensional subspaces of the vector space H0(P2,O(d)),
which parameterizes all plane curves of degree d.

The fact that an equisingular family may fail to be connected was first observed
by Zariski in [20, 21]. (See also [10]). He constructed a pair (C1, C2) of reduced
curves of degree 6 with the following properties.

• For i = 1 and 2, the singular locus of Ci consists of 6 ordinary cusps. In
particular, C1 and C2 are equisingular.

• The fundamental group π1(P2\C1) is isomorphic to Z/6Z, while π1(P2\C2)
is isomorphic to the free product Z/2Z ∗ Z/3Z.

If C1 and C2 belonged to a same connected component of the equisingular family
F6A2 ⊂ P∗H0(P2,O(6)) of curves of degree 6 with 6 ordinary cusps, then P2 \ C1

and P2 \ C2 would be homeomorphic. Hence Zariski’s example shows that F6A2 is
not connected.

After this classical example, many equisingular families with plural connected
components have been constructed ([1], [2], [3], [9] [10], [11], [12], [13], [15], [16],
[17], [18], [19]). In these examples, the tool that was employed for distinguishing
two distinct connected components is the fundamental groups π1(P2 \ C), or its
derivatives like Alexander polynomials or the coverings of P2 branched along C.
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In this paper, we give an example of equisingular families with plural connected
components that can not be distinguished by π1(P2 \ C).

Let b and m be positive integers such that b ≥ 3 and b ≡ 0 (mod m). We put
n := b/m.

Definition 1.1. A projective plane curve R ⊂ P2 is said to be of type (b,m) if it
satisfies the following;

(1) R consists of two irreducible components B and E of degree b and 3, re-
spectively,

(2) both of B and E are non-singular,
(3) the set-theoretical intersection of B and E consists of 3n points, and
(4) at each intersection point, B and E intersect with multiplicity m.

Let Fb,m ⊂ P∗H0(P2,O(b+ 3)) be the family of all curves of type (b,m). Any
two curves R and R′ of type (b,m) are equisingular, because the singular locus of
a curve of type (b,m) always consists of 3n points of type A2m−1. On the other
hand, suppose that a curve C ⊂ P2 of degree b+3 is equisingular to a curve of type
(b,m). Then C consists of two nonsingular irreducible components, which intersect
at 3n points. Since the intersection multiplicity of two germs of nonsingular curves
is invariant under local diffeomorphisms, the intersection multiplicities at these 3n
points are all m. Therefore the degrees of the irreducible components of C are b
and 3, and hence C is of type (b,m). Thus Fb,m is an equisingular family.

The main result of this paper is as follows.

Theorem 1.2. Suppose that b ≥ 4, and let m be a divisor of b.
(1) The number of the connected components of Fb,m is equal to the number of

divisors of m.
(2) Let R be a member of Fb,m. Then the fundamental group π1(P2 \ R) is

isomorphic to Z if b is not divisible by 3, while it is isomorphic to Z⊕Z/3Z if b is
divisible by 3.

This result provides us in every degree ≥ 7 with the existence of equisingular
families with plural connected components that cannot be distinguished by the
fundamental group of the complement. It also gives us examples of equisingular
families consisting of arbitrarily many connected components.

When (b,m) = (3, 3), we also obtain an equisingular family with two connected
components. In this case, the members belonging to distinct connected components
of F3,3 have the complements with non-isomorphic fundamental groups.

The plan of this paper is as follows. In §2, we prove the assertion (1) of The-
orem 1.2. In §3, we present a proposition that is useful in the calculation of the
fundamental group of the complement to a projective plane curve. Using this propo-
sition, we prove the assertion (2) of Theorem 1.2 in §4. In §5, we transplant the
method of the construction of Fb,m to the case b = 3, and calculate the fundamental
groups of the complements to the members of F3,3.

It is an interesting problem to determine whether P2 \R1 and P2 \R2 are home-
omorphic or not for two curves R1 and R2 of a same type (b,m) that belong to
distinct connected components of Fb,m.
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2. The connected components of Fb,m

For a line bundle L→ C of degree k on a curve C, we denote by [L] ∈ Pick(C)
the isomorphism class of the line bundles containing L.

Let R = B+E be a curve of type (b,m). We denote by DR the reduced effective
divisor (B|E)red of degree 3n on E. Let H be a divisor of degree 3 on E that
is obtained as the intersection of E and a line in P2. Then OE(DR − nH) is an
invertible sheaf of degree 0 on E;

[OE(DR − nH)] ∈ Pic0(E).
Note that [OE(DR − nH)] is an element of the kernel of the homomorphism
Pic0(E)→ Pic0(E) given by

[L] �→ [L⊗m],

because we have

OE(mDR) ∼= OP2(B)|E ∼= OE(bH) ∼= OE(mnH).

Let λ(R) denote the order of the isomorphism class [OE(DR − nH)] in Pic0(E),
which is a divisor of m. It is obvious that λ(R) does not change under any contin-
uous deformation of R in Fb,m.

For a divisor µ of m, we write by Fb,m(µ) the union of all connected components
of Fb,m on which the function λ is constantly equal to µ;

Fb,m =
∐

µ|m
Fb,m(µ).

Then the first part (1) of Theorem 1.2 follows from the following proposition.
Proposition 2.1. For any divisor µ of m, the variety Fb,m(µ) is irreducible and
of dimension (b− 1)(b− 2)/2 + 3n+ 8.
Proof. Let U be the Zariski open dense subset of P∗H0(P2,O(3)) parameterizing
all non-singular cubic curves. We use the same letter to denote a non-singular cubic
curve E ⊂ P2 and the corresponding point E ∈ U . Let E → U be the universal
family of the non-singular cubic curves, and let

Pick(E/U) −→ U
be the relative Picard variety of the isomorphism classes of line bundles of degree
k on E over U . A C-valued point of Pick(E/U) is a pair (E, [L]), where E is a
non-singular cubic curve and [L] is a point of Pick(E).

There is a section of Pic3(E/U)→ U given by
E �→ (E, [OE(H)]).

Using this section, we obtain an isomorphism

φ : Pic3n(E/U) ∼−→ Pic0(E/U)
over U given by

(E, [L]) �→ (E, [L⊗ OE(−nH)])
for E ∈ U and [L] ∈ Pic3n(E).
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Suppose that a divisor µ of m is given. Let Tµ ⊂ Pic0(E/U) be the variety of all
(E, [L]) such that [L] is of order exactly µ in Pic0(E). Then the projection

Tµ −→ U
is an étale covering of degree

µ2
∏
(1 − 1/p2),

where the product is taken over all prime divisors of µ. By the definition of Fb,m(µ),
the map

R = B + E �→ (E, [OE(DR)]) ∈ Pic3n(E/U), where DR = (B|E)red,

gives a morphism
ψ : Fb,m(µ) → φ−1(Tµ).

Since
dimφ−1(Tµ) = dimTµ = dimU = 9,

Proposition 2.1 follows from the following two claims:

Claim 2.2. The variety φ−1(Tµ) is irreducible.

Claim 2.3. The fiber ψ−1(E, [L]) of ψ over an arbitrary point (E, [L]) of φ−1(Tµ)
is irreducible and of dimension (b− 1)(b− 2)/2 + 3n− 1.
Let us prove Claim 2.2. Since Tµ and φ−1(Tµ) are isomorphic, it is enough to

show the irreducibility of Tµ. We fix a base point Eb ∈ U , and consider the natural
monodromy action of π1(U , Eb) on the set of elements of order µ in Pic0(Eb). In
order to prove Claim 2.2, it suffices to show that this action is transitive. Consider
the monodromy action of π1(U , Eb) on the free Z-module H1(Eb,Z) equipped with
the intersection form;

π1(U , Eb) −→ Aut(H1(Eb,Z)) ∼= SL2(Z).

It is known that this homomorphism is surjective (see [5, Section 4]). Since the
natural action of SL2(Z) on (Z/µZ)2 is transitive on the set of elements of order
exactly µ, Claim 2.2 is proved.

Next we prove Claim 2.3. Let E be a non-singular cubic curve. Let Sk(E)
denote the symmetric product of k copies of E, which parameterizes the effective
divisors of degree k on E, and let Sk

red(E) ⊂ Sk(E) be the Zariski open dense
subset consisting of reduced divisors. Then, for each positive integer k, the natural
homomorphism

τk : Sk(E) → Pick(E)

is surjective, and, for any [M ] ∈ Pick(E), the fiber τ−1
k ([M ]) is canonically isomor-

phic to the projective space P∗H0(E,M ) of dimension k − 1. Moreover,
Sk

red(E) ∩ τ−1
k ([M ])

is a Zariski open dense subset of τ−1
k ([M ]) ∼= P∗H0(E,M ).

Let (E, [L]) be a point of φ−1(Tµ); that is, the isomorphism class [L⊗OE(−nH)]
is of order µ in Pic0(E). If R ∈ ψ−1(E, [L]), then OE(DR) is isomorphic to L.
Therefore the map R �→ DR induces a morphism

ρ(E,[L]) : ψ−1(E, [L]) → S3n
red(E) ∩ τ−1

3n ([L]) ⊂ P∗H0(E,L).
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Since S3n
red(E) ∩ τ−1

3n ([L]) is irreducible and of dimension 3n − 1, it is enough to
prove that, for any reduced divisor D of E with OE(D) ∼= L, the fiber

ρ−1
(E,[L])(D) ∼= { R = E +B ∈ Fb,m(µ) | DR = (B|E)red = D }

of ρ(E,[L]) over the point D ∈ S3n
red(E) ∩ τ−1

3n ([L]) is irreducible and of dimension
(b− 1)(b − 2)/2.
Let D be a point of S3n

red(E) ∩ τ−1
3n ([L]). Since [L ⊗ OE(−nH)] is of order µ in

Pic0(E), we have
OE(µD) ∼= L⊗µ ∼= OE(nµH).

Note that the restriction map

H0(P2,OP2(nµ))→ H0(E,OE(nµH))

is surjective. By the isomorphism τ−1
3µn([L

⊗µ]) ∼= P∗H0(E,L⊗µ), there exists a non-
zero element h ∈ H0(P2,OP2(nµ)) such that the plane curve defined by h = 0 cuts
out the divisor µD on E. We choose and fix such a homogeneous polynomial h.
We also choose and fix a homogeneous polynomial f of degree 3 defining the plane
curve E. We put

ν := m/µ.

Claim 2.4. (1) If R = B +E is a member of ρ−1
(E,[L])(D), then B is defined by an

equation of the form
f · gR + hν = 0,

where gR is a homogeneous polynomial of degree b− 3 that is uniquely determined
by R.
(2) If g is a general homogeneous polynomial of degree b− 3, and B is the curve

defined by f · g + hν = 0, then R = B +E is a member of ρ−1
(E,[L])(D).

Claim 2.4 implies that ρ−1
(E,[L])(D) is isomorphic to a Zariski open dense subset

of the vector space H0(P2,OP2(b − 3)) via the map R �→ gR. Hence the fiber
ρ−1
(E,[L])(D) is irreducible and of dimension (b− 1)(b − 2)/2.
Now all we have to do is to prove Claim 2.4.
Let R = B +E be a curve belonging to ρ−1

(E,[L])(D), and let γ = 0 be a defining
equation of the curve B. Then γ = 0 and hν = 0 cut out a same divisormD = µνD
on E. Hence, after multiplying γ by a suitable non-zero constant, γ−hν vanishes on
E. Therefore γ is of the form f ·gR+hν . It is easy to see that gR ∈ H0(P2,OP2(b−3))
is uniquely determined by the curve B, when f and h are fixed.
Conversely, let g be an element of H0(P2,OP2(b − 3)). It is obvious that, if the

curve B defined by f · g+hν = 0 is non-singular, then R = B+E is of type (b,m),
and belongs to the subset ρ−1

(E,[L])(D) of the family Fb,m. We shall show that B is
non-singular if g is general. The family of curves

{f · g + hν = 0}g∈H0(P2,O
P2(b−3))

is a linear system whose base locus Γ is given by f = h = 0. There is an element
g0 ∈ H0(P2 ,OP2(b−3)) such that g0(P ) �= 0 for any P ∈ Γ. Then the curve defined
by f · g0 + hν = 0 is non-singular at each point of Γ, because E = {f = 0} is
non-singular. Hence, by Bertini’s theorem, a general member of this linear system
is non-singular. �
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3. Fundamental group of the complement to a plane curve

The second part (2) of Theorem 1.2 is proved by using the following proposition,
which can be applied to more general situations.

Let L ⊂ P∗H0(P2,OP2(d)) be a projective linear subspace of dimension ≥ 1, and
let {Cu}u∈L be the corresponding linear system of plane curves of degree d. We
denote by Ξ the locus of all u ∈ L such that Cu is not reduced.
Proposition 3.1. Suppose that there exists a hyperplane HL ⊂ L with the following
properties;

(i) Ξ \HL is of codimension ≥ 2 in L \HL, and
(ii) π1(P2 \ Cv) is abelian for a general point v of HL.

Then π1(P2 \ Cu) is also abelian for a general u ∈ L.
Remark 3.2. Proposition 3.1 is trivial if HL �⊂ Ξ. Indeed, the assumption HL �⊂ Ξ
implies that Cv is reduced when v ∈ HL is general, and hence there is a surjective
homomorphism

π1(P2 \ Cv) → π1(P2 \ Cu)
for a general u ∈ L.

Proof. We choose a general pencil P ⊂ L, and take an affine coordinate t on P such
that P intersects HL at t = ∞. Let C∞ be the curve in this pencil corresponding
to the point t = ∞. By the assumption (ii), π1(P2 \ C∞) is abelian. Consider the
affine part

A := P \ {t =∞}
of P . By the assumption (i), A ∩ Ξ is empty. Let C ⊂ P2 × A be the universal
family of curves of degree d over the affine part A of the pencil. We put

V := (P2 ×A) \ C.
Since A ∩ Ξ = ∅, we can apply the following theorem ([14, Theorem 1]) to the
second projection V → A, and conclude that π1(V) is isomorphic to π1(P2 \Cu) for
a general u ∈ A.

Theorem 3.3. Let Y be a non-singular connected projective variety, and let Z be
a reduced effective divisor of Y × AN . For a point a ∈ AN , we denote by Za the
scheme-theoretic intersection of Z with Y × {a}, and regard it as a subscheme of
Y . Suppose that the locus

{ a ∈ A
N | Za is not a reduced divisor of Y }

is contained in a Zariski closed subset of A
N with codimension ≥ 2. Then, for a

general a ∈ AN , the inclusion

Y \ Za ↪→ (Y ×A
N ) \ Z

induces an isomorphism on the fundamental groups. �
Thus it is enough to show that π1(V) is abelian. Let

pr : V → P
2.

be the first projection. If p is a point of P2 \ C∞, then there exists a unique point
u(p) of A such that the curve Cu(p) contains p, and hence the fiber of pr over p is
isomorphic to A minus a point. Therefore, the projection

V \ pr−1(C∞) → P
2 \ C∞
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is a locally trivial fiber bundle with fibers isomorphic to a complex plane with one
point punctured. Moreover, this projection has a section

s : P
2 \ C∞ → V \ pr−1(C∞)

given by
p �→ (p, σ(p)), where t(σ(p)) = t(u(p)) + 1.

Hence we have the splitting homotopy exact sequence

1 → π1(A \ {a point }) → π1(V \ pr−1(C∞)) → π1(P2 \ C∞) → 1.

The monodromy action of π1(P2 \ C∞) on π1(A \ {a point }) associated with the
section s is trivial, because π1(A\{a point }) ∼= Z has a canonical positive generator
preserved by the monodromy. Therefore the fundamental group π1(V\pr−1(C∞)) is
isomorphic to the product of π1(P2\C∞) and Z, and hence is abelian. The inclusion
of V \pr−1(C∞) into V induces a surjective homomorphism from π1(V \pr−1(C∞))
to π1(V). Thus π1(V) is also abelian. �

4. The complement to a curve of type (b,m)

We prove the assertion (2) of Theorem 1.2.

First note that it is enough to show the commutativity of π1(P2 \R), because if
π1(P2\R) is abelian, then it is isomorphic to the first homology groupH1(P2\R,Z),
and hence is easily calculated from the degrees of the irreducible components B and
E of the curve R.

Let E be a non-singular cubic curve defined by f = 0. Then, as was shown in
Claim 2.4, there exists a homogeneous polynomial h of degree nµ such that, for a
general homogeneous polynomial g ∈ H 0(P2,OP2(b− 3)) of degree b− 3, the curve
R = B +E defined by

f(f · g + hν) = 0

is a member of Fb,m(µ). Let {e1, . . . , eN} be a set of basis of the vector space
H0(P2,O(b − 3)), where N = (b − 1)(b − 2)/2. We consider the N -dimensional
linear system L in P∗H0(P2 ,O(b+ 3)) given by

{ X1f
2e1 + · · ·+XNf2eN + Y fhν | (X1 : · · · : XN : Y ) ∈ P

N },
whose general member is a member of Fb,m(µ). Let Ru be the curve corresponding
to a point u ∈ L.
Let HL ⊂ L be the hyperplane defined by Y = 0. We will apply Proposition 3.1

to this situation, and prove the commutativity of π1(P2 \Ru) for a general u ∈ L.
For this purpose, it is enough to check the following two points;

• if v is a general point of HL, then π1(P2 \Rv) is abelian, and
• the locus Ξ\HL of all u ∈ L\HL such that Ru is non-reduced is contained
in a Zariski closed subset of codimension ≥ 2 in L \HL.

If v is a general point of HL, then Rv = 2E + D where D = {g = 0} is a curve
defined by a general homogeneous polynomial g of degree b − 3. Since the curve
E∪D has only nodes as its only singularities, P2 \Rv = P2 \ (E∪D) has an abelian
fundamental group by Fulton-Deligne’s theorem on Zariski conjecture ([4], [6], [7],
[8]). Thus the first item is checked.
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Let w be a general point of an irreducible component of Ξ \HL. We calculate
the dimension of the tangent space to Ξ \HL at w. Since w /∈ HL, the the curve
Rw is given by an equation

f(f · gw + hν) = 0
by some gw ∈ H0(P2 ,OP2(b− 3)).
Let ε be a dual number; ε2 = 0. The tangent space of the projective space L at

w can be naturally identified with the vector space H0(P2,OP2(b − 3)). The first
order deformation of Rw to the direction corresponding to δg ∈ H0(P2,OP2(b− 3))
is defined by

f(f(gw + εδg) + hν) = 0.
Since Rw is non-reduced, there exist an integer l ≥ 2 and homogeneous polynomials
a and b such that deg a ≥ 1 and

f(f · gw + hν) = alb.

Suppose that δg is contained in the tangent space to Ξ. Since w is a general point
of an irreducible component of Ξ \ HL, there exist δa ∈ H0(P2,OP2(deg a)) and
δb ∈ H0(P2,OP2(deg b)) such that

f(f(gw + εδg) + hν) = (a + εδa)l(b+ εδb).

This implies

(4.1) al−1|f2δg .

Suppose that the curve defined by a = 0 were equal to the irreducible curve E =
{f = 0}. Then f(fgw + hν) = alb would coincide with f lb modulo multiplicative
constant, and hence hν|E would be zero because of l ≥ 2. This contradicts the
required property of h. Therefore the curve {a = 0} does not coincide with E, and
hence there is an irreducible factor a′ of a such that

{a′ = 0} �⊂ E.

Therefore (4.1) implies that δg must be divided by the homogeneous polynomial a′

of degree ≥ 1. Since
dimH0(P2,OP2(b− 3− deg a′)) ≤ dimH0(P2,OP2(b− 3)) − 2

for all b ≥ 4, every irreducible component of Ξ\HL is of codimension ≥ 2 in L\HL.
Thus the second item is checked, and the assertion (2) of Theorem 1.2 is proved. �

5. The case of F3,3

Let R ⊂ P2 be a curve of type (3, 3); that is,
(1) R consists of two irreducible components E and E′,
(2) both of E and E ′ are non-singular cubic curves,
(3) E and E′ intersect at three points {p1, p2, p3}, and
(4) at each point pi, E and E ′ intersect with multiplicity 3.

The singular locus of a curve of type (3, 3) consists of three points of type A5. We
put

M := OE(p1 + p2 + p3 −H) and M ′ := OE′ (p1 + p2 + p3 −H ′),

where H and H ′ are hyperplane sections of E and E′, respectively. Then we have
M⊗3 ∼= OE and M ′⊗3 ∼= OE′ . Therefore [M ] ∈ Pic0(E) and [M ′] ∈ Pic0(E′)
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are either of order 1 or 3. We can easily check that the following conditions are
equivalent;

• [M ] is of order 3 in Pic0(E),
• [M ′] is of order 3 in Pic0(E′), and
• p1, p2 and p3 are not on a line.

Having observed this fact, we can prove the following proposition in the same way
as Proposition 2.1.
Proposition 5.1. The family F3,3 consists of two connected components F3,3(1)
and F3,3(3). A member R ∈ F3,3 is a member of F3,3(1) if and only if p1, p2 and
p3 are on a line. �
In this case, we can distinguish the two connected components by the fundamen-

tal group of the complement.
Proposition 5.2. If R is a member of F3,3(3), then π1(P2 \ R) is isomorphic to
Z⊕ Z/3Z, while if R is a member of F3,3(1), then π1(P2 \R) is isomorphic to the
free product Z ∗ Z/3Z.

Proof. Suppose that R = E+E′ is a member of F3,3(3). Consider the pencil Et of
cubic curves spanned by E0 := E and E∞ := E′. We put

Rt := E∞ +Et.

It is obvious that Rt is a member of F3,3(3) for a general t. Since the base points
p1, p2 and p3 of this pencil are not on a line, Rt is reduced for all t �= ∞. On the
other hand, the complement P2 \R∞ = P2 \E′ has an abelian fundamental group.
Applying Proposition 3.1 to this pencil with HL = {t =∞}, we see that π1(P2 \Rt)
is abelian for a general t.

Suppose that R = E + E′ is a member of F3,3(1). Then the pencil Et defined
above contains a multiple line 3D of multiplicity 3, where D is the line passing
through the points p1, p2 and p3. Therefore R is defined by an equation of the form

f(f + l3) = 0

where E = {f = 0} and D = {l = 0}. On the other hand, if f ∈ H0(P2,OP2(3))
and l ∈ H0(P2,OP2(1)) are chosen generally, then the equation f(f+ l3) = 0 defines
a member of F3,3(1). Thus we can calculate π1(P2 \ R) by the following theorem
[16, Theorem 1].

Let An be an affine space with affine coordinates (ξ1, . . . , ξn) of weights

deg ξi := ai (i = 1, . . . , n),

and let Σ be a hypersurface defined by a quasi-homogeneous equation

Φ(ξ1, . . . , ξn) = 0

of total degree d. We let C× act on An \ Σ by
(ξ1, . . . , ξn) �→ (λa1ξ1, . . . , λ

anξn) (λ ∈ C
×).

This action induces a homomorphism

(5.1) π1(C×) −→ π1(An \ Σ).
If we choose a general element

F := (F1, . . . , Fn) ∈ H0(P2,O(a1)) × · · · ×H0(P2,O(an)),
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0−ε3

α

β

P

Figure 5.1. Generators of π1(p−1(ε), P )

then the equation
Φ(F1, . . . , Fn) = 0

defines a projective plane curve CF ⊂ P2 of degree d.

Theorem 5.3. Suppose that Σ is reduced, and that F is general. Then π1(P2 \CF )
is isomorphic to the cokernel of the homomorphism (5.1). �

Consider the affine plane A2 with the affine coordinates (x, y) of weights

deg x = 3 and deg y = 1

Let W be the affine curve defined by the quasi-homogeneous equation

x(x+ y3) = 0

in A2. We consider the action of C× on the complement A2 \W given by

(x, y) �→ (λ3x, λy),

where λ ∈ C
×. We choose a base point of A

2 \W to be

P := (1, ε),

where ε is a sufficiently small positive real number. Let

p : A
2 \W → A

1

be the projection given by (x, y) �→ y. Then p is locally trivial over A1 \ {0}. We
choose generators α and β of π1(p−1(ε), P ), which is a free group of rank 2, as
in Figure 5.1. Then monodromy action on π1(p−1(ε), P ) along a small circle on
A1 \ {0} with the center 0 is as follows;

α �→ (αβ)3α(αβ)−3, β �→ (αβ)3β(αβ)−3 ,

because, when
a := ε exp(2πit)

moves along the small circle on A1\{0} with the center 0, the point x = −ε3 exp(6πit),
which is one of the two deleted points

x = 0 and x = −ε3 exp(6πit)

of p−1(a) draws a small circle of radius ε3 around the other fixed deleted point
x = 0 three times. Hence, by the classical theorem of Zariski-van Kampen, we have

π1(A2 \W ) ∼= 〈 α, β | (αβ)3 = (βα)3 〉,
On the other hand, the image of the homomorphism π1(C×)→ π1(A2 \W ) induced
from the action of C× on A2 \W is generated by (αβ)3, because the loop

(λ3, λε) ∈ A
2 \W, ( λ = exp(2πit), t ∈ [0, 1] )
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which is the orbit of P under the action of {λ ∈ C× | |λ| = 1}, represents (αβ)3 in
π1(A2 \W ). Hence, by Theorem 5.3, we obtain

π1(P2 \R) ∼= 〈 α, β | (αβ)3 = (βα)3 = 1 〉 ∼= Z ∗ Z/3Z

for all R ∈ F3,3(1). �

Let R = E + E′ be a member of F3,3. We choose a flex o of E, and consider
the elliptic curve (E, o). We let the divisor p1 + p2 + p3 on E approach to a non-
reduced divisor 3q for some q ∈ E in such a way that the limit curve R̃ consists of
two non-singular cubic curves E and Ẽ′ touching to each other at only one point
with multiplicity 9. Then R̃ is a sextic curve with only one singular point of type
A17. If R ∈ F3,3(1), then q must be a point of order 1 or 3 of (E, o), while if
R ∈ F3,3(3), then q must be a point of order 9 on (E, o). These two limit curves
form a Zariski pair, which is just one of the examples given by Artal Bartolo in [1].
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