
ON ELLIPTIC K3 SURFACES

ICHIRO SHIMADA

Abstract. We make a complete list of all possible ADE-types of singular

fibers of complex elliptic K3 surfaces and the torsion parts of their Mordell-
Weil groups.

1. Introduction

By virtue of Torelli theorem for the period map on the moduli of complex K3
surfaces ([4], [13], [18]), we can study many aspects of K3 surfaces from the lattice-
theoretic point of view. In this paper, we determine all possible ADE-types of
singular fibers of elliptic K3 surfaces using Nikulin’s theory of discriminant forms
of even integral lattices. We also determine, for each ADE-type of singular fibers,
all possible torsion parts of the Mordell-Weil groups. Throughout this paper, we
use the term “an elliptic K3 surface” for “a complex elliptic K3 surface with a
distinguished zero section” and the term “an elliptic fibration” for “a complex
Jacobian elliptic fibration”.

A finite formal sum of the symbols Al (l ≥ 1), Dm (m ≥ 4) and En (n = 6, 7, 8)
with non-negative integer coefficients is called an ADE-type. For an ADE-type

Σ :=
∑

alAl +
∑

dmDm +
∑

enEn,

we denote by L(Σ)− the negative-definite root lattice generated by a root system
of type Σ, and by rankΣ the rank of L(Σ)−. By definition, we have rankΣ =∑

all +
∑

dmm +
∑

enn.

Let f : X → P1 be an elliptic K3 surface, and O : P1 → X the zero section of
f . Let MWf be the Mordell-Weil group of f . The torsion part of MWf is a finite
abelian group, which we shall denote by Gf . We put

Rf := { p ∈ P1 : f−1(p) is reducible },

and, for each p ∈ Rf , we denote by f−1(p)] the union of irreducible components
of f−1(p) that are disjoint from the zero section. It is known that the cohomology
classes of irreducible components of f−1(p)] span a negative-definite root lattice
generated by an indecomposable root system of type Al, Dm or En. Let τf,p be the
type. The type of singular fiber f−1(p) in the list of Kodaira’s classification [7] is
related to τf,p in an almost one-to-one way (cf. Table 2.8). We define the ADE-type
Σf of f : X → P1 by

Σf :=
∑

p∈Rf

τf,p.

1991 Mathematics Subject Classification. Primary 14J28; Secondary 14Q10.

1



2 ICHIRO SHIMADA

The Néron-Severi lattice NSX of X contains the sublattice Sf generated by the
cohomology classes of the irreducible components of ∪p∈Rf

f−1(p)], which is iso-
morphic to L(Σf )−.

Through computer-aided calculation, we have made the complete list of pairs
(Σ, G) of an ADE-type Σ and a finite abelian group G that can be realized as the
data (Σf , Gf ) of an elliptic K3 surface f : X → P1. This list P consists of 3693
pairs. In this paper, we present the list P, deduce some geometric facts from it,
and explain the algorithm for obtaining it.

The list P is too large to be included here in a naive way. Therefore we describe
P by giving a subset S of P and a set of transformation rules of ADE-types that
generate P from S (cf. § 2). The reader can obtain P easily using this description.
1

An elliptic K3 surface f : X → P1 is said to be extremal if the sublattice
Sf attains the maximal rank 18. After the work of Miranda and Persson [10],
supplemented by Artal-Bartolo, Tokunaga and Zhang [1] and Ye [23], the ADE-
types of singular fibers of extremal elliptic K3 surfaces and their Mordell-Weil
groups were completely determined in [16]. The list consists of 336 pairs.

One of the remarkable facts that can be read off from the list P is that an
ADE-type Σ is an ADE-type of an elliptic K3 surface with trivial Mordell-Weil
torsion if and only if Σ is obtained from an ADE-type of an extremal elliptic K3
surface with trivial Mordell-Weil torsion by elementary transformation; that is,
by deleting vertices from the corresponding Dynkin graph (cf. Theorem 2.3). In
order to describe the list of ADE-types of elliptic K3 surfaces with non-trivial
Mordell-Weil torsion, however, we have to forbid to use some types of elementary
transformation (cf. Theorems 2.4-2.7).

By Nishiyama [12] and by Besser [2], the technique of discriminant forms was
used to find out all possible elliptic fibrations on special K3 surfaces. In [19, 20],
Urabe investigated possible configurations of singular points on K3 surfaces and
suggested an existence of a set of simple rules that generates all possible config-
urations. In [21, 22], Yang made the complete list of all possible configurations
of singularities of ADE-type on plane sextic curves and quartic surfaces using the
technique of discriminant forms and a computer.

This paper is organized as follows. In § 2, we describe P and state some facts
about elliptic K3 surfaces that can be derived from the list P. In § 3, we recall
the definition and properties of local invariants of lattices over Z according to
Conway and Sloane [6, Chapter 15]. In § 4 and 5, we review Nikulin’s theory [11] of
discriminant forms of even lattices over Z. A criterion whether there exists an even
integral lattice of a given signature and a discriminant form is described in detail
in § 5. This criterion is slightly different from [11, Theorem 1.10.1], and is more
suited to machine calculation. In § 6, we recall the properties of root lattices. In §
7, we show that it is possible to determine by a purely lattice-theoretic calculation
whether a given pair (Σ, G) can be realized as (Σf , Gf ) of an elliptic K3 surface
f : X → P1. Here we use Kondo-Nishiyama’s lemma on the Néron-Severi lattice of
an elliptic K3 surface. In § 8, we explain our algorithm.

1The list can also be retrieved from the author’s homepage.
http://www.math.sci.hokudai.ac.jp/~shimada/K3.html
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Table 2.1. Cardinalities of PG

G [1] [2] [3] [4] [5] [6] [7] [8] [2, 2] [4, 2] [6, 2] [3, 3] [4, 4] total

|PG| 2746 732 85 41 6 10 1 1 61 5 1 3 1 3693

The program for making P was written by Maple V. The author would like to
thank Waterloo Maple Incorporation for developing the nice software. The author
also would like to thank the referee for suggesting some improvements on the first
version of the paper.

2. Main results

All results in this section are obtained simply by looking at the list P.

2.1. Torsion parts of Mordell-Weil groups.

Theorem 2.1. The torsion part of the Mordell-Weil group of an elliptic K3 surface
is isomorphic to one of the following:

(0), Z/(2), Z/(3), Z/(4), Z/(5), Z/(6), Z/(7), Z/(8),

Z/(2) × Z/(2), Z/(4) × Z/(2), Z/(6) × Z/(2),

Z/(3) × Z/(3), Z/(4) × Z/(4).

(2.1)

For a group G in (2.1), we denote by PG the set of all ADE-types Σ such that
there exists an elliptic K3 surface f : X → P1 with Σf = Σ and Gf

∼= G. The
cardinalities of PG are given in Table 2.1. Here, [a] denotes the cyclic group Z/(a),
and [a, b] denotes Z/(a) × Z/(b). In particular, [1] denotes the trivial group.

For a positive integer r, let PG
r be the subset of PG that consists of Σ ∈ PG

with rankΣ = r. Let f : X → P1 be an elliptic K3 surface. Since the Néron-Severi
lattice NSX of X is the orthogonal direct sum of Sf

∼= L(Σf )− and the lattice of
rank 2 generated by the cohomology classes of the zero section and a general fiber,
and since the Néron-Severi rank of X is at most 20, we always have

rank(Σf ) ≤ 18.

Hence PG
r is empty for r > 18.

2.2. ADE-types of singular fibers. Next we describe the list PG for each abelian
group G in (2.1). We carry out this task by three different methods according to
the size of PG.

Case 1. G ∈ {[1], [2], [3], [4], [2, 2]} . We describe PG by giving a subset SG ⊂
PG and a set of transformation rules on ADE-types that generate the whole PG

from the subset SG.
Let Γ(Σ) be the Dynkin graph of the ADE-type Σ. If we remove a vertex P of

Γ(Σ) and the edges emitting from P , we obtain the Dynkin graph Γ(Σ′) of another
ADE-type Σ′ with rankΣ′ = rankΣ − 1. In this case, we say that Σ′ is obtained
from Σ by deleting a vertex. In other words, an ADE-type Σ′ is obtained from
Σ by deleting a vertex if and only if Σ′ is obtained by applying to Σ one of the
substitutions listed in Table 2.2. In this Table, we understand that A0 := 0.
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Table 2.2. Substitutions.

Al 7→ Al′ + Al−1−l′ (0 ≤ l′ ≤ l/2),

Dm 7→
{

Am−1, 2A1 + Am−3, A3 + Am−4,

Dm′ + Am−1−m′ (4 ≤ m′ ≤ m − 1),

En 7→
{

An−1, Dn−1, A1 + An−2, A1 + A2 + An−4, A4 + An−5,

D5 + An−6, En′ + An−1−n′ (6 ≤ n′ ≤ n − 1).

Definition 2.2. When we can obtain an ADE-type Σ′ from an ADE-type Σ by
applying substitutions in Table 2.2 several times, we say that Σ′ is obtained from
Σ by elementary transformation.

Theorem 2.3. (1) The list P [1]
18 consists of 199 elements listed below.

2E8 + A2, 2E8 + 2A1, E8 + E7 + A3, E8 + E7 + A2 + A1, E8 + E6 + D4, E8 + E6 + A4,
E8 + E6 + A3 + A1, E8 + D10, E8 + D9 + A1, E8 + D7 + A2 + A1, E8 + D6 + A4, E8 + D6 +2A2,

E8+2D5, E8+D5+A5, E8+D5+A4+A1, E8+A10, E8+A9+A1, E8+A8+A2, E8+A8+2A1,
E8 + A7 + A2 + A1, E8 + A6 + A4, E8 + A6 + A3 + A1, E8 + A6 + 2A2, E8 + A6 + A2 + 2A1,
E8 + 2A5, E8 + A5 + A4 + A1, E8 + A5 + A3 + A2, E8 + 2A4 + 2A1, E8 + A4 + A3 + A2 + A1,
E8 + 2A3 + 2A2, 2E7 + A4, 2E7 + 2A2, E7 + E6 + D5, E7 + E6 + A5, E7 + E6 + A4 + A1,

E7 + E6 + A3 + A2, E7 + D11, E7 + D9 + A2, E7 + D7 + A4, E7 + D5 + A6, E7 + D5 + A4 + A2,
E7 + A11, E7 + A10 + A1, E7 + A9 + A2, E7 + A8 + A3, E7 + A8 + A2 + A1, E7 + A7 + A4,
E7 + A7 + 2A2, E7 + A6 + A5, E7 + A6 + A4 + A1, E7 + A6 + A3 + A2, E7 + A6 + 2A2 + A1,
E7 +A5 +A4 +A2, E7 +A4 +A3 +2A2, 2E6 +D6, 2E6 +A6, 2E6 +2A3, E6 +D12, E6 +D11 +A1,

E6 +D9 +A3, E6 +D9 +A2 +A1, E6 +D8 +A4, E6 +D7 +D5, E6 +D7 +A4 +A1, E6 +D6 +A6,
E6 + D6 + A4 + A2, E6 + D5 + A7, E6 + D5 + A6 + A1, E6 + D5 + A4 + A3, E6 + A12,
E6 +A11 +A1, E6 +A10 +A2, E6 +A10 +2A1, E6 +A9 +A3, E6 +A9 +A2 +A1, E6 +A8 +A4,

E6 + A8 + A3 + A1, E6 + A7 + A5, E6 + A7 + A4 + A1, E6 + A6 + A5 + A1, E6 + A6 + A4 + A2,
E6 + A6 + A4 + 2A1, E6 + A6 + A3 + A2 + A1, E6 + A5 + A4 + A3, E6 + 2A4 + A3 + A1,
D18, D17 + A1, D15 + A2 + A1, D14 + A4, D14 + 2A2, D13 + D5, D13 + A5, D13 + A4 + A1,
D11 + A6 + A1, D11 + A5 + A2, D11 + A4 + A2 + A1, D11 + A3 +2A2, D10 + A8, D10 + A6 + A2,

D10 + 2A4, 2D9, D9 + D5 + A4, D9 + A9, D9 + A8 + A1, D9 + A6 + A2 + A1, D9 + A5 + A4,
D9 + A4 + 2A2 + A1, D8 + A6 + 2A2, 2D7 + 2A2, D7 + A10 + A1, D7 + A9 + A2, D7 + A6 + A5,
D7 + A6 + A4 + A1, D7 + A6 + A3 + A2, D7 + 2A4 + A2 + A1, D6 + A12, D6 + A10 + A2,
D6 + A8 + A4, D6 + 2A6, D6 + A6 + A4 + A2, D6 + 2A4 + 2A2, 2D5 + A8, 2D5 + 2A4, D5 + A13,

D5+A12+A1, D5+A10+A2+A1, D5+A9+A4, D5+A9+2A2, D5+A8+A5, D5+A8+A4+A1,
D5 +2A6 +A1, D5 +A6 +A5 +A2, D5 +A6 +A4 +A2 +A1, D5 +A6 +A3 +2A2, D5 +A5 +2A4,
A18, A17 + A1, A16 + A2, A16 + 2A1, A15 + A2 + A1, A14 + A4, A14 + A3 + A1, A14 + A2 + 2A1,
A13+A5, A13+A4+A1, A13+A3+A2, A13+2A2+A1, A12+A6, A12+A5+A1, A12+A4+A2,

A12+A4+2A1, A12+A3+A2+A1, A12+2A2+2A1, A11+A6+A1, A11+A4+A2+A1, A10+A8,
A10 + A7 + A1, A10 + A6 + A2, A10 + A6 +2A1, A10 + A5 + A3, A10 + A5 + A2 + A1, A10 +2A4,
A10 +A4 +A3 +A1, A10 +A4 +2A2, A10 +A4 +A2 +2A1, A10 +2A3 +A2, A10 +A3 +2A2 +A1,
2A9, A9 + A8 + A1, A9 + A7 + A2, A9 + A6 + A3, A9 + A6 + A2 + A1, A9 + A5 + A4, 2A8 + 2A1,

A8 + A7 + A2 + A1, A8 + A6 + A4, A8 + A6 + A3 + A1, A8 + A6 + A2 + 2A1, A8 + A5 + A4 + A1,
A8 + 2A4 + 2A1, A8 + A4 + A3 + A2 + A1, 2A7 + 2A2, A7 + A6 + A5, A7 + A6 + A4 + A1,
A7 +A6 +A3 +A2, A7 +A6 +2A2 +A1, A7 +A5 +A4 +A2, A7 +A4 +A3 +2A2, 2A6 +A4 +A2,

2A6 +2A3, 2A6 +2A2 +2A1, A6 + A5 + A4 + A3, A6 + A5 + A4 + A2 + A1, A6 +2A4 + A3 + A1,
A6 +2A4 +A2 +2A1, A6 +A4 +2A3 +A2, A6 +A4 +A3 +2A2 +A1, 2A5 +2A4, 2A4 +2A3 +2A2.

(2) An ADE-type Σ with r := rankΣ < 18 is a member of P [1]
r if and only if Σ is

obtained from a member of P [1]
18 by elementary transformation.

Theorem 2.4. (1) The list P [2]
18 consists of 84 elements listed below.
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Table 2.3. Forbidden substitutions for [2].

Al 7→ Al′ + Al−1−l′ with l odd and l′ even (0 ≤ l′ < l/2),
Dm 7→ Am−1,

Dm 7→ A3 + Am−4 with m even,
Dm 7→ Dm′ + Am−1−m′ with m even and m′ odd (5 ≤ m′ ≤ m − 1),
E7 7→ A6, A4 + A2, E6.

Table 2.4. Forbidden substitutions for [3].

Al 7→ Al1 + Al2 (l1 + l2 = l − 1, 0 ≤ l1 ≤ l2)
with l mod 3 = 2 , l1 mod 3 6= 2, l′2 mod 3 6= 2,

E6 7→ A4 + A1, D5.

Table 2.5. Forbidden substitutions for [4].

A1 7→ 0
Al 7→ Al1 + Al2 (l1 + l2 = l − 1, 0 ≤ l1 ≤ l2)

with l mod 4 = 3 , l1 mod 4 6= 3, l′2 mod 4 6= 3,
Dm 7→ Am−1, Dm−1, 2A1 + Am−3 with m odd,

Dm 7→ Dm−3 + A2 with m odd and > 6.

Table 2.6. Forbidden substitutions for [2, 2].

Al 7→ Al′ + Al−1−l′ with l odd and l′ even (0 ≤ l′ < l/2),
Dm 7→ Am−1, A3 + Am−4 with m even,
Dm 7→ Dm′ + Am−1−m′ with m even and m′ odd (5 ≤ m′ ≤ m − 1).

2E7 +D4, 2E7 +A3 +A1, E7 +D10 +A1, E7 +D8 +A2 +A1, E7 +D7 +A3 +A1, E7 +D6 +D5,
E7+D6+A5, E7+D6+A3+A2, E7+D5+A5+A1, E7+A9+A2, E7+A9+2A1, E7+A7+A3+A1,
E7+A7+A2+2A1, E7+A5+A4+2A1, E7+A5+2A3, E7+A5+A3+A2+A1, E7+A4+2A3+A1,

D16 +A2, D16 +2A1, D14 +A3 +A1, D14 +A2 +2A1, D12 +D6, D12 +D5 +A1, D12 +A4 +2A1,
D12 + A3 + A2 + A1, D12 + 2A2 + 2A1, D10 + D7 + A1, D10 + D6 + A2, D10 + D5 + A2 + A1,
D10 +A5 +A3, D10 +A4 +A3 +A1, D9 +A7 +2A1, D9 +A5 +A3 +A1, D8 +2D5, D8 +A9 +A1,
D8+A7+A2+A1, D8+2A5, D8+A5+A4+A1, D8+2A3+2A2, D7+D6+A5, D7+D5+A5+A1,

D7+A9+2A1, D7+A7+A2+2A1, D6+D5+A7, D6+D5+A5+A2, D6+A11+A1, D6+A9+A3,
D6+A9+A2+A1, D6+A7+A4+A1, D6+A7+A3+A2, D6+A7+2A2+A1, D6+A5+A4+A3,
D5 + A11 + A2, D5 + A9 + A3 + A1, D5 + A9 + A2 + 2A1, D5 + A7 + A4 + 2A1, D5 + 2A5 + A3,
D5 + A5 + A4 + A3 + A1, A15 + A2 + A1, A13 + A4 + A1, A13 + A3 + 2A1, A13 + 2A2 + A1,

A13 + A2 + 3A1, A11 + A5 + 2A1, A11 + A4 + 3A1, A11 + A3 + A2 + 2A1, A9 + A6 + 3A1,
A9 +A5 +A4, A9 +A5 +A3 +A1, A9 +A5 +A2 +2A1, A9 +A4 +A3 +2A1, A9 +A4 +A2 +3A1,
A9 + 2A3 + A2 + A1, A9 + A3 + 2A2 + 2A1, 2A7 + 2A2, A7 + A6 + A3 + 2A1, A7 + 2A5 + A1,

A7 + A5 + A4 + 2A1, A7 + A5 + A3 + A2 + A1, A7 + A4 + A3 + A2 + 2A1, A6 + 2A5 + 2A1,
A6 + A5 + 2A3 + A1, 2A5 + A4 + A3 + A1, A5 + A4 + 2A3 + A2 + A1.
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Table 2.7. Cardinalities of PG
r

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 total

|P [1]
r | 1 2 3 6 9 16 24 39 57 88 127 189 262 360 448 500 416 199 2746

|P [2]
r | 0 0 0 0 0 0 0 1 2 6 13 29 53 92 133 164 155 84 732

|P [3]
r | 0 0 0 0 0 0 0 0 0 0 0 1 2 6 12 21 24 19 85

|P [4]
r | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 10 15 11 41

|P [2,2]
r | 0 0 0 0 0 0 0 0 0 0 0 1 2 5 10 16 16 11 61

(2) Let S [2] be the union of P [2]
18 and the following list.

2E7 + A3, E7 + D10, E7 + D5 + A5, D12 + D5, 2D8 + A1, D7 + A9 + A1, D7 + 2A5, D6 + A11,
2D5 + A7, A15 + A2, E7 + A9, D16, 2D8, D5 + A11, A15.

Then an ADE-type Σ is a member of P [2] if and only if Σ is a member of S [2] or
obtained from a member of S [2] by applying substitutions listed in Table 2.2 but not
in Table 2.3.

Theorem 2.5. (1) The list P [3]
18 consists of 19 elements listed below.

3E6, 2E6 + A5 + A1, E6 + A11 + A1, E6 + A8 + 2A2, E6 + A8 + A2 + 2A1, E6 + 2A5 + A2,
E6 + A5 + A3 + 2A2, A17 + A1, A14 + 2A2, A14 + A2 + 2A1, A11 + A5 + A2, A11 + A3 + 2A2,

A11+3A2+A1, 2A8+2A1, A8+A5+A3+A2, A8+A5+2A2+A1, A8+A4+3A2, A8+A3+3A2+A1,
2A5 + A4 + 2A2.

(2) Let S [3] be P [3]
18 . Then an ADE-type Σ is a member of P [3] if and only if Σ is

a member of S [3] or obtained from a member of S [3] by applying substitutions listed
in Table 2.2 but not in Table 2.4.

Theorem 2.6. (1) The list P [4]
18 consists of 11 elements listed below.

D7+A11, D7+A7+A3+A1, D7+3A3+A2, 2D5+A7+A1, D5+A11+2A1, D5+A7+A3+A2+A1,

A15 + A3, A15 + 3A1, A11 + 2A3 + A1, A11 + A3 + A2 + 2A1, A7 + 3A3 + A2.

(2) Let S [4] be the union of P [4]
18 and the following list.

2D5 + A7, A15 + 2A1.

Then an ADE-type Σ is a member of P [4] if and only if Σ is a member of S [4] or
obtained from a member of S [4] by applying substitutions listed in Table 2.2 but not
in Table 2.5.

Theorem 2.7. (1) The list P [2,2]
18 consists of 11 elements listed below.

D10 + A5 + 3A1, D10 + 2A3 + 2A1, 2D8 + 2A1, D8 + D6 + A3 + A1, D8 + A5 + A3 + 2A1, 3D6,
2D6 + 2A3, D6 + 2A5 + 2A1, D6 + A5 + 2A3 + A1, A7 + A5 + A3 + 3A1, 2A5 + 2A3 + 2A1.

(2) Let S [2,2] be the union of P [2,2]
18 and the list

4D4.

Then an ADE-type Σ is a member of P [2,2] if and only if Σ is a member of S [2,2]

or obtained from a member of S [2,2] by applying substitutions listed in Table 2.2 but
not in Table 2.6.

By these theorems, we can easily generate the complete list PG for G = [1], [2],
[3], [4], [2, 2]. Table 2.7 shows the cardinalities of PG

r .

Case 2. G ∈ {[5], [6], [4, 2]}. We simply give the table of PG. In each box, the
ADE-types are listed according to the rank and the lexicographical order.
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G = [5]:
2A9, A9 + 2A4 + A1, 4A4 + 2A1, A9 + 2A4, 4A4 + A1, 4A4.

G = [6]:
A11+A5+2A1, A11+A3+2A2, A11+2A2+3A1, 3A5+A3, 2A5+A3+2A2+A1, A11+2A2+2A1,
3A5 + 2A1, 2A5 + A3 + 2A2, 2A5 + 2A2 + 3A1, 2A5 + 2A2 + 2A1.

G = [4, 2]:
2A7 + 4A1, A7 + 3A3 + 2A1, A7 + 2A3 + 4A1, 5A3 + 2A1, 4A3 + 4A1.

Case 3. G ∈ {[7], [8], [6, 2], [3, 3], [4, 4]}. In this case, the ADE-type determines
the torsion of the Mordell-Weil group uniquely.

Theorem 2.8. Let f : X → P1 be an elliptic K3 surface. Then the following hold.
• Gf

∼= Z/(7) ⇐⇒ Σf = 3A6.
• Gf

∼= Z/(8) ⇐⇒ Σf = 2A7 + A3 + A1.
• Gf

∼= Z/(6) × Z/(2) ⇐⇒ Σf = 3A5 + 3A1.
• Gf

∼= Z/(4) × Z/(4) ⇐⇒ Σf = 6A3.
• Gf

∼= Z/(3) × Z/(3) ⇐⇒ Σf ∈ {2A5 + 4A2, A5 + 6A2, 8A2}.

Remark 2.9. Elliptic K3 surfaces with Gf = [7], [8], [6, 2], [4, 4] are constructed
as elliptic modular surfaces (cf. [17, 14]). The corresponding congruence groups
Γ ⊂ SL2(Z) are as follows.

Gf [7] [8] [6, 2] [4, 4]

Γ Γ1(7) Γ1(8) Γ0(3) ∩ Γ(2) Γ(4)

2.3. From ADE-types to configurations of singular fibers. The correspon-
dence between the type (in the notation of Kodaira) of a singular fiber of an elliptic
fibration and an ADE-type is shown in Table 2.8. There are following ambiguities
in recovering the configurations of singular fibers from its ADE-type.

• An irreducible singular fiber is of type either I1 or II.
• A singular fiber of ADE-type A1 is of type either I2 or III.
• A singular fiber of ADE-type A2 is of type either I3 or IV.

We present some restrictions on the possibilities of configuration of singular fibers
of an elliptic K3 surface f : X → P1 with a given ADE-type.

Let ib be the number of singular fibers of f of type Ib. We define similarly i∗b ,
ii, ii∗, iii, iii∗, iv, iv∗. Miranda and Persson gave a formula for the degree of the
modulus function Jf : P1 → P1 := H/SL2(Z) associated with f : X → P1:

deg Jf :=
∑
b≥1

b(ib + i∗b).

By the Hurwitz formula, they obtained the following necessary condition for con-
figurations; if deg Jf > 0, then

deg Jf ≤ 6
∑
b≥1

(ib + i∗b) + 4(ii + iv∗) + 3(iii + iii∗) + 2(iv + ii∗) − 12.

See [9, §3] for the proof.

The euler number 24 of the K3 surface X is equal to the sum of euler numbers
of singular fibers of f . The third column of Table 2.8 shows the euler number of a
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Table 2.8. Singular fibers of elliptic fibration.

Singular fiber ADE-type Euler number Possible torsion parts

I0 regular 0 all

I1 irreducible 1
♦Ib (b ≥ 2) Ab−1 b

I∗b (b ≥ 0) D4+b 6 + b

{
[1], [2], [2, 2] if b is even
[1], [2], [4] if b is odd

II irreducible 2 [1]

II∗ E8 10 [1]

III A1 3 [1], [2]

III∗ E7 9 [1], [2]

IV A2 4 [1], [3]

IV∗ E6 8 [1], [3]

♦


[a] is possible for a = 1, . . . , 8,
[2a, 2] is possible for a = 1, . . . , 3 if and only if b = 0 mod 2,
[3, 3] is possible if and only if b = 0 mod 3,
[4, 4] is possible if and only if b = 0 mod 4.

singular fiber of each type. We define the euler number euler(Σ) of an ADE-type
Σ :=

∑
alAl +

∑
dmDm +

∑
enEn by

euler(Σ) :=
∑

al · (l + 1) +
∑

dm · (m + 2) +
∑

en · (n + 2).

Then euler(Σf ) is less than or equal to the sum of euler numbers of reducible
singular fibers. Hence we always have

euler(Σf ) ≤ 24.

We can deduce from Table 2.8, for example, that, if euler(Σf ) = 24, thenf : X → P1

has no irreducible fibers nor fibers of type III or IV.

When Gf is non-trivial, certain types of singular fibers cannot appear. Let
g : S → ∆ be an elliptic fibration over an open unit disk ∆ such that g is smooth
over ∆× := ∆\{0}, and let E := g−1(p) be the fiber over a point p ∈ ∆×. Looking
at the monodromy action of π1(∆×, p) on the set of torsion points of E, we can
determine whether a finite abelian group can be embedded into the Mordell-Weil
group of g. The fourth column of Table 2.8 shows the groups among the list (2.1)
that can be isomorphic to the torsion part of the Mordell-Weil group of an elliptic
surface having the singular fiber. We see, for example, that, if Gf is non-trivial,
then every irreducible singular fiber must be of type I1.
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Table 2.9. Cardinalities of Rr, Er and Pr

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 total

|Rr| 1 2 3 6 9 16 24 39 57 88 128 193 276 403 570 815 1137 1599 5366
| Er | 1 2 3 6 9 16 24 39 57 88 128 193 274 393 531 688 773 712 3937
|Pr| 1 2 3 6 9 16 24 39 57 88 128 193 274 392 518 624 580 325 3279
| Tr| 1 2 3 6 9 16 24 38 55 82 115 162 217 289 362 419 372 188 2360

2.4. Miscellaneous facts. For an integer r with 1 ≤ r ≤ 18, we put as follows.

Rr := { Σ ; Σ is an ADE-type with rank(Σ) = r },
Er := { Σ ∈ Rr ; euler(Σ) ≤ 24 }, and

Pr := { Σ ∈ Er ; there exists an elliptic K3 surface f : X → P1 with Σf = Σ } = ∪GPG
r .

For Σ ∈ ∪18
r=1 Pr, we denote by G(Σ) the set of isomorphism classes of finite abelian

groups G such that (Σ, G) ∈ P. For each r, we denote by Tr the set of Σ ∈ Pr

such that G(Σ) consists of only the trivial group [1]. The cardinalities of these
sets are given in Table 2.9. Note that, if rank(Σ) ≤ 12, then euler(Σ) ≤ 24 holds
automatically.

Theorem 2.10. Let Σ be an ADE-type with euler(Σ) ≤ 24. Suppose that rank(Σ) ≤
13. Then there exists an elliptic K3 surface f : X → P1 with Σf = Σ.

Remark 2.11. The complement of P14 in E14 consists of a single element E6 + 8A1.
Hence, when euler(Σ) ≤ 24 and rank(Σ) = 14, there exists an elliptic K3 surface
f : X → P1 with Σf = Σ if and only if Σ 6= E6 + 8 A1.

Theorem 2.12. Suppose that rank(Σ) ≤ 10. Then there exists an elliptic K3
surface f : X → P1 with Gf = [1] and Σf = Σ.

Remark 2.13. The complement P11 \ P [1]
11 consists of a single element 11A1. We

have G(11A1) = {[2]}.

Theorem 2.14. Let f : X → P1 be an elliptic K3 surface. If rank(Σf ) ≤ 7, then
Gf must be trivial.

Remark 2.15. The complement P [1]
8 \ T8 consists of a single element 8A1, and the

complement P [1]
9 \ T9 consists of two elements 9A1 and A3 + 6A1. We have

G(8A1) = G(9A1) = G(A3 + 6A1) = {[1], [2]}.

Remark 2.16. There are several ADE-types Σ with |G(Σ)| ≥ 3. For example,

G(2A5 + 2A2 + 2A1) = G(A11 + 2A2 + 2A1) = {[1], [2], [3], [6]}.

3. Local invariants of lattices

First we fix some terminologies about lattices.

Let R be either Z or Zp. A lattice over R is, by definition, a free R-module L of
finite rank equipped with a non-degenerate symmetric bilinear form ( , ) : L×L →
R. For α ∈ R \ {0}, let αL denote the lattice obtained from L by multiplying the
symmetric bilinear form by α. We will denote L− for (−1)L. We often express a
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lattice by the intersection matrix with respect to a certain basis of L. For example,
(a) is the lattice of rank 1 generated by a vector e such that (e, e) = a. A sublattice
N of L is said to be primitive if L/N is torsion free. A lattice L over R is said to
be even if (v, v) ∈ 2R holds for any v ∈ L. Note that, when R is Zp with p an
odd prime, every lattice over R is even. The discriminant disc(L) of a lattice L is
considered as an element of (R \ {0})/(R×)2. A lattice L is said to be unimodular
if disc(L) ∈ R×/(R×)2.

Suppose that R = Zp. Then we have disc(L) = pνu for some ν ≥ 0, where
u ∈ Z×

p /(Z×
p )2. We denote the element u by reddisc(L) and call it the reduced

discriminant of L.

Let k be the quotient field of R. The k-vector space L ⊗R k has a natural
symmetric bilinear form with values in k. We denote by L∨ the R-submodule of
L ⊗R k consisting of all vectors v such that (v, w) ∈ R holds for every w ∈ L, and
call it the dual lattice of L. An R-submodule M of L∨ is said to be an overlattice of
L if M contains L and the symmetric bilinear form restricted to M takes values in
R. Two lattices L and M over R are said to be k-equivalent if L⊗R k and M ⊗R k
together with their symmetric k-valued bilinear forms are isomorphic.

For a detailed account of the following definitions and theorems, see Conway and
Sloane [6, Chapter 15] and Cassels [5, Chapters 8 and 9].

3.1. Local invariants. Let Λ be a lattice over Zp. Then Λ is decomposed into
the orthogonal direct sum Λ =

⊕
ν≥0 pνΛν with each Λν being unimodular. This

decomposition is called a Jordan decomposition of Λ, and each pνΛν is called a
Jordan component of Λ. Note that the reduced discriminant of Λ is the product of
the discriminants of Λν .

Suppose that p is odd. Then a lattice Λ over Zp is isomorphic to an orthogonal
direct sum ⊕ip

νi(ai), where ai ∈ Z×
p . The p-excess of Λ is defined to be

− rank(Λ) + 4m +
∑

i

pνi ∈ Z/(8),

where m is the number of orthogonal direct summands pνi(ai) such that νi is odd
and that ai is not square in Z×

p . It is known that the p-excess is a well-defined
invariant of Qp-equivalence classes of lattices over Zp.

Suppose that p = 2. We put

U :=
(

0 1
1 0

)
and V :=

(
2 1
1 2

)
,

both of which are even unimodular lattices of rank 2 over Z2. Then a lattice over
Z2 is decomposed into the orthogonal direct sum of lattices such that each direct
summand is isomorphic to 2ν(a) (a ∈ Z×

2 ), 2νU or 2νV . We define the 2-excesses
of these lattices by

2-excess(2ν(a)) =

{
1 − a mod 8 if ν is even or a = ±1 mod 8,
5 − a mod 8 if ν is odd and a = ±3 mod 8,

2-excess(2νU) = 2 mod 8,

2-excess(2νV ) =

{
2 mod 8 if ν is even,
6 mod 8 if ν is odd.
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Then we define the 2-excess of

Λ ∼=
⊕

i

2νi(ai) ⊕
⊕

j

2νj U ⊕
⊕

k

2νkV (3.1)

to be the sum of the 2-excesses of direct summands in the decomposition (3.1).
Even though the decomposition (3.1) is not unique in general, it turns out that
the 2-excess is a well-defined invariant of Q2-equivalence classes of lattices over Z2.
(Note that U and V are Q2-equivalent to 2(1)⊕ 2(7) and 2(1)⊕ 2(3), respectively.)

3.2. Existence of lattices over Z with given local data. Combining [6, Chap-
ter 15, Theorem 5] and [5, Chapter 9, Theorem 1.2], we obtain the following:

Theorem 3.1. Let d be a non-zero integer, and (r, s) a pair of non-negative integers
such that n := r + s is positive and that d = (−1)s|d| holds. Suppose that, for each
prime divisor p of 2d, a lattice Λ(p) of rank n over Zp is given. Then there exists
a lattice L over Z with discriminant d and signature (r, s) such that L ⊗Z Zp is
isomorphic to Λ(p) for each p if and only if the following two conditions are satisfied:

(i) disc(Λ(p)) is equal to d · (Z×
p )2 for each p, and

(ii) r − s +
∑

p|2d p-excess(Λ(p)) = n mod 8 holds. ¤

4. Theory of discriminant forms

4.1. Definitions. Let R and k be as above. Let D be a finite abelian group. A
finite symmetric bilinear form on D with values in k/R is, by definition, a homo-
morphism b : D × D → k/R such that b(x, y) = b(y, x) holds for any x, y ∈ D. A
finite quadratic form on D with values in k/2R is a map q : D → k/2R with the
following properties:

(i) q(nx) = n2q(x) for n ∈ Z and x ∈ D, and
(ii) the map b[q] : D×D → k/R defined by (x, y) 7→ (q(x + y)− q(x)− q(y))/2

is a finite symmetric bilinear form.
Let H be a subgroup of D. The orthogonal complement H⊥ of H with respect to q
is the subgroup of D consisting of elements y such that b[q](x, y) = 0 holds for any
x ∈ H. We say that q is non-degenerate if D⊥ = (0). Note that, if D = H ⊕ H⊥,
then q is written as q|H ⊕ q|H⊥ , because the homomorphism a 7→ a/2 from k/2R
to k/R is injective.

The length of D is, by definition, the minimal number of generators of D. A
subset {γ1, . . . , γl} of D is said to be a reduced set of generators of D if l is the
length of D and D = 〈γ1〉 × · · · × 〈γl〉 holds. Let {γ1, . . . , γl} be a reduced set of
generators of D. Then a finite quadratic form q on D is expressed by a symmetric
l× l matrix whose diagonal entries are q(γi) ∈ k/2R and whose off-diagonal entries
are b[q](γi, γj) ∈ k/R.

Let L be a lattice over R. The discriminant group DL of L is, by definition,
the quotient group L∨/L. We denote by ΨL : L∨ → DL the natural projection.
Suppose that L is even. Then we can define a finite quadratic form qL on DL

with values in k/2R by qL(x) := (x′, x′) mod 2R, where x′ is a vector of L∨ such
that ΨL(x′) = x. We call qL the discriminant form of L. Because L is non-
degenerate, qL is also non-degenerate. By definition, we have (DL⊕M , qL⊕M ) =
(DL, qL) ⊕ (DM , qM ).
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Table 4.1. Discriminant forms of even lattices over Zp

Λ pν(a) 2νU 2νV

DΛ Z/(pν) (Z/(2ν))⊕2 (Z/(2ν))⊕2

qΛ

[ a

pν

]
1
2ν

[
0 1
1 0

]
1
2ν

[
2 1
1 2

]

4.2. Discriminant forms and overlattices. The following two propositions, due
to Nikulin, play a central role in making the list P.

Proposition 4.1 ([11] Proposition 1.4.1). Let L be an even lattice over Z.
(1) If H ⊂ DL is a subgroup totally isotropic with respect to qL, then M :=

Ψ−1
L (H) is an even overlattice of L, and the discriminant form of M is isomorphic

to (H⊥/H, qL|H⊥/H).
(2) The map H 7→ Ψ−1

L (H) establishes a bijection between the set of totally
isotropic subgroups of (DL, qL) and the set of even overlattices of L. ¤

Proposition 4.2 ([11] Proposition 1.6.1). Let L and M be even lattices over Z.
Then the following are equivalent.

(i) The two finite quadratic forms (DL, qL) and (DM ,−qM ) are isomorphic.
(ii) There exists an even unimodular overlattice of L⊕M into which L and M

are embedded primitively.

¤

4.3. Localization and discriminant form. Let L be an even lattice over Z. We
decompose DL into the direct sum of its p-Sylow subgroups D

(p)
L , where p runs

through the set of prime divisors of |DL| = |disc(L)|. These p-parts are orthogonal
to each other with respect to qL, and hence qL is also decomposed into the p-parts;
qL = ⊕pq

(p)
L , where q

(p)
L is the restriction of qL to D

(p)
L . By the definition of the

discriminant form, we can easily prove the following:

Lemma 4.3. The image of q
(p)
L is contained in 2 Z[1/p]/2 Z ⊂ Q/2 Z. The natural

inclusion 2 Z[1/p] ↪→ Qp induces an isomorphism 2 Z[1/p]/2 Z ∼= Qp/2 Zp Under
this identification, (D(p)

L , q
(p)
L ) is isomorphic to (DL⊗Zp , qL⊗Zp). ¤

The discriminant form of an even lattice Λ over Zp is calculated by Table 4.1.
In particular, DΛ is a p-group of length equal to rank(Λ) − rank(Λ0), where Λ0 is
the first Jordan component of Λ. We also have disc(Λ) = |DΛ| · reddisc(Λ).

5. Existence of even lattices with a given discriminant form

5.1. Over Zp. Suppose that a finite abelian p-group D and a non-degenerate finite
quadratic form q : D → Qp/2 Zp are given. It is known that, if n ≥ length(D), then
there exists an even lattice Λ of rank n over Zp such that (DΛ, qΛ) is isomorphic to
(D, q). The purpose of this subsection is to describe a method to determine the set
L(p)(n,D, q) of all [σ, u] ∈ Z/(8)× Z×

p /(Z×
p )2 such that there exists an even lattice

Λ of rank n over Zp with (DΛ, qΛ) ∼= (D, q), p-excess(Λ) = σ and reddisc(Λ) = u.
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Note that

p-excess(Λ1 ⊕ Λ2) = p-excess(Λ1) + p-excess(Λ2), and

reddisc(Λ1 ⊕ Λ2) = reddisc(Λ1) · reddisc(Λ2).

Taking these into account, for sets L and L′ of elements of Z/(8) × Z×
p /(Z×

p )2, we
define L ∗ L′ to be the set

{ [σ + σ′, uu′] ; [σ, u] ∈ L, [σ′, u′] ∈ L′ }.

We also put L(p)
0 := {[0, 1]}. Then L ∗ L(p)

0 = L holds for any L.

Lemma 5.1. Let l be the length of D. Then we have

L(p)(n,D, q) = L(p)(n − l, (0), [0]) ∗ L(p)(l,D, q). (5.1)

If p is odd, then

L(p)(n − l, (0), [0]) =


∅ if n < l,
L(p)

0 if n = l,
{[0, 1], [0, vp]} if n > l,

(5.2)

where vp is the unique non-trivial element of Z×
p /(Z×

p )2. If p = 2, then

L(2)(n − l, (0), [0]) =


∅ if n < l or n − l mod 2 = 1,
L(2)

0 if n = l,
{[n − l, 1], [n − l, 5]} if n > l and n − l mod 4 = 0,
{[n − l, 3], [n − l, 7]} if n > l and n − l mod 4 = 2.

Proof. Let Λ = Λ0 ⊕
⊕

ν>0 pνΛν be a Jordan decomposition of an even lattice Λ
over Zp with (DΛ, qΛ) ∼= (D, q). We put Λ>0 := Λ⊥

0 =
⊕

ν>0 pνΛν . Then we
have rank(Λ>0) = l, (DΛ0 , qΛ0) = ((0), [0]) and (DΛ>0 , qΛ>0) = (DΛ, qΛ) ∼= (D, q).
Hence (5.1) holds. The statement (5.2) is obvious. A lattice Λ over Z2 is even if
and only if Λ0 is of even rank and is isomorphic to an orthogonal direct sum of
copies of U and V . Because of

[2-excess(U), reddisc(U)] = [2, 7] and [2-excess(V ), reddisc(V )] = [2, 3],

we can easily prove the last statement. ¤

Lemma 5.2. Let p be a prime integer, and ν a positive integer.
(1) Suppose that p is an odd prime, and let vp be the unique non-trivial element

of Z×
p /(Z×

p )2. Let u be an integer prime to p. We put

χp(u) :=
(

u

p

)
∈ {±1}.

Then

L(p)(1, Z/(pν),
[ u

pν

]
) =


{[pν − 1, 1]} if χp(u) = 1,
{[pν − 1, vp]} if ν is even and χp(u) = −1,
{[pν + 3, vp]} if ν is odd and χp(u) = −1.
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(2) Suppose that p = 2 and a is an odd integer. Then we have

L(2)(1, Z/(2ν),
[ a

2ν

]
) =



{[1 − a, a]} if ν is even,
{[1 − a, a]} if ν is odd, ν ≥ 2, and a ≡ ±1 mod 8,
{[5 − a, a]} if ν is odd, ν ≥ 2, and a ≡ ±3 mod 8,
{[1 − a, a], [1 − a, 5a]} if ν = 1 and a ≡ ±1 mod 8,
{[5 − a, a], [5 − a, 5a]} if ν = 1 and a ≡ ±3 mod 8.

Let u, v and w be integers with v being odd. Then

L(2)(2, (Z/(2ν))⊕2,
1
2ν

[
2u v
v 2w

]
) =


{[2, 7]} if ν is even and uw is even,
{[2, 3]} if ν is even and uw is odd,
{[2, 7]} if ν is odd and uw is even,
{[6, 3]} if ν is odd and uw is odd.

Proof. Two non-degenerate quadratic forms [u/pν ] and [u′/pν ] on Z/(pν) with val-
ues in Qp/2 Zp are isomorphic if and only if

uu′ ∈ (Z×
p )2, or ( p = 2, ν = 1, and u = u′ mod 4 )

is satisfied. On the other hand, two lattices pν(u) and pν(u′) with u, u′ ∈ Z×
p of

rank 1 over Zp are isomorphic if and only if uu′ ∈ (Z×
p )2 holds. Therefore the first

statement follows. The finite quadratic form

q =
1
2ν

[
2u v
v 2w

]
(v : odd)

on (Z/(2ν))⊕2 with values in Q2/2 Z2 is isomorphic to q2νU (resp. q2νV ) if and only
if uw mod 2 = 0 (resp. uw mod 2 = 1). These two forms can never be isomorphic to
[u′/2ν ]⊕ [w′/2ν ] with u′ and w′ being odd. Thus the second statement follows. ¤

Now we state an algorithm to calculate L(p)(n,D, q). By Lemma 5.1, it is enough
to determine L(p)(l,D, q). Let {γ1, . . . , γl} be a reduced set of generators of D.
We denote the order of γi by pνi , and arrange the generators in such a way that
ν1 ≥ · · · ≥ νl holds. For an element α ∈ Qp/Zp, we define φp(α) to be the integer
such that the order of α is pφp(α). Note that φp(b[q](γi, γj)) ≤ min(νi, νj) holds for
any γi and γj .

When l = 1, L(p)(l,D, q) is given by Lemma 5.2. Suppose that l > 1.

Case 1. Suppose that there exists a generator γi such that φp(b[q](γi, γi)) = ν1.
Then we have νi = ν1. Interchanging γ1 and γi, we will assume that φp(b[q](γ1, γ1)) =
ν1. Let u be an integer such that b[q](γ1, γ1) = u/pν1 mod Zp. Then u is prime
to p, and hence there is an integer v such that uv = 1 mod pν1 holds. Since
φp(b[q](γj , γ1)) ≤ min(νj , ν1) = νj , we can write b[q](γj , γ1) in the form wj/pν1 mod
Zp by some integer wj that is divisible by pν1−νj . For j ≥ 2, we put γ′

j := γj−vwjγ1.
Because γ1 is of order pν1 in D, γ′

j is independent of the choice of u, v and wj .
Moreover, γ′

j is of order pνj , and {γ1, γ
′
2, . . . , γ

′
l} is again a reduced set of generators.

By definition, we have b[q](γ′
j , γ1) = 0 for any j ≥ 2. We put

(D1, q1) := (〈γ1〉, q|〈γ1〉) ∼= (Z/(pν1), [u/pν1 ])

and (D2, q2) := (〈γ′
2, . . . , γ

′
l〉, q|〈γ′

2,...,γ′
l
〉). Then (D, q) is decomposed into the or-

thogonal direct sum of (D1, q1) and (D2, q2).
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Let Λ be an even lattice of rank l over Zp such that there exists an isomorphism
h : (DΛ, qΛ) ∼→ (D, q). Let e∗ ∈ Λ∨ be a vector such that h ◦ ΨΛ(e∗) = γ1, and
Λ′

1 ⊂ Λ∨ the Zp-submodule generated by e∗. Then Λ1 := Λ′
1 ∩ Λ is a sublattice

of rank 1 generated by e := pν1e∗. Let x be an arbitrary vector of Λ. Because of
ordp((x, e)) ≥ ν1 = ordp((e, e)), the vector

x′ := x − (x, e)
(e, e)

e

is in Λ and orthogonal to Λ1. Hence we obtain an orthogonal decomposition Λ =
Λ1⊕Λ⊥

1 . The homomorphism h◦ΨΛ : Λ∨ = Λ∨
1 ⊕(Λ⊥

1 )∨ → D induces isomorphisms
(DΛ1 , qΛ1) ∼= (D1, q1) and (DΛ⊥

1
, qΛ⊥

1
) ∼= (D2, q2). It follows that

L(p)(l,D, q) = L(p)(1, D1, q1) ∗ L(p)(l − 1, D2, q2).

Thus L(p)(l,D, q) is calculated by Lemma 5.2 and the induction hypothesis on l.

Case 2. Suppose that φp(b[q](γi, γi)) < ν1 holds for any generator γi. Since q is
non-degenerate, there exists at least one generator γk that satisfies φp(b[q](γ1, γk)) =
ν1. Because of φp(b[q](γ1, γk)) ≤ νk, we have νk = ν1.

Case 2.1. Suppose that p is odd. We replace γ1 by γ′
1 := γ1 + γk, which is an

element of order pν1 . It is obvious that {γ′
1, γ2, . . . , γl} is again a reduced set of

generators of D. Moreover we have φp(b[q](γ′
1, γ

′
1)) = ν1. Therefore we are led to

Case 1.
Case 2.2. Suppose that p = 2. We replace γ2 by γk. There exist integers u, v

and w with v being odd such that

b[q](γ1, γ1) =
2u

2ν1
, b[q](γ1, γ2) =

v

2ν1
, and b[q](γ2, γ2) =

2 w

2ν1

hold modulo Z2. Note that q(γ1) = 2ũ/2ν1 and q(γ2) = 2w̃/2ν1 hold modulo 2 Z2

for some integers ũ and w̃ with u = ũ mod 2ν1−1 and w = w̃ mod 2ν1−1.

If l = 2, then L(2)(l,D, q) is determined by Lemma 5.2. Suppose that l ≥ 3.
There exists an integer t such that (4uw − v2)t = 1 mod 2ν1 holds. For each
j ≥ 3, we choose integers sj1 and sj2 such that b[q](γj , γ1) = sj1/2ν1 mod Z2 and
b[q](γj , γ2) = sj2/2ν1 mod Z2 hold, and calculate(

βj1

βj2

)
:= t ·

(
2w −v
−v 2u

)
·
(

sj1

sj2

)
.

Then βj1 and βj2 are divisible by 2ν1−νj . Hence γ′
j := γj − βj1γ1 − βj2γ2 is an

element of order 2νj , which is independent of the choice of the integers. The set
{γ1, γ2, γ

′
3, . . . , γ

′
l} is again a reduced set of generators of D, and the two subgroups

〈γ1, γ2〉 and 〈γ′
3, . . . , γ

′
l〉 of D are orthogonal with respect to q. Therefore, putting

(D1, q1) := (〈γ1, γ2〉, q|〈γ1,γ2〉) ∼=
(
(Z/(pν1))⊕2,

1
2ν1

[
2ũ v
v 2w̃

])
and (D2, q2) := (〈γ′

3, . . . , γ
′
l〉, q|〈γ′

3,...,γ′
l
〉), we obtain an orthogonal decomposition

(D, q) = (D1, q1) ⊕ (D2, q2).

Let Λ be an even lattice of rank l over Z2 such that there exists an isomorphism
h : (DΛ, qΛ) ∼→ (D, q). We pick up two vectors e∗1, e

∗
2 ∈ Λ∨ such that h◦ΨΛ(e∗1) = γ1

and h ◦ ΨΛ(e∗2) = γ2. Let Λ′
1 ⊂ Λ∨ be the Z2-submodule of Λ∨ generated by e∗1

and e∗2. Then Λ1 := Λ′
1 ∩ Λ is a sublattice of Λ generated by e1 := 2ν1e∗1 and
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e2 := 2ν1e∗2. The intersection matrix M1 of Λ1 with respect to e1 and e2 satisfies
ord2(detM−1

1 ) = −ν1. Because ord2((x, e1)) ≥ ν1 and ord2((x, e2)) ≥ ν1 hold for
any vector x ∈ Λ, we have ((x, e1), (x, e2)) ·M−1

1 ∈ Z⊕2
2 . Therefore Λ is decomposed

into the orthogonal direct sum of Λ1 and Λ⊥
1 . The homomorphism h ◦ ΨΛ induces

isomorphisms (DΛ1 , qΛ1) ∼= (D1, q1) and (DΛ⊥
1
, qΛ⊥

1
) ∼= (D2, q2). It follows that

L(2)(l,D, q) = L(2)(2, D1, q1) ∗ L(2)(l − 2, D2, q2).

Thus L(2)(l,D, q) is calculated by Lemma 5.2 and the induction hypothesis on l.

5.2. Over Z. Let D be a finite abelian group, and q : D → Q/2 Z a non-degenerate
finite quadratic form. Let (r, s) be a pair of non-negative integers such that n :=
r + s > 0. We will describe a criterion to determine whether there exists an even
lattice L over Z with signature (r, s) such that (DL, qL) is isomorphic to the given
finite quadratic form (D, q).

We put d := (−1)s|D|. Let P be the set of prime divisors of 2 d, and let (D, q) =
⊕p∈P (D(p), q(p)) be the orthogonal decomposition of (D, q) into the p-parts. If d is
odd, then we put (D(2), q(2)) = ((0), [0]). By Lemma 4.3 and Theorem 3.1, an even
lattice L over Z with signature (r, s) and (DL, qL) ∼= (D, q) exists if and only if the
following claim is verified:

(]) For each p ∈ P , there exists an even lattice Λ(p) of rank n over Zp such that
(i) disc(Λ(p)) = d · (Z×

p )2 and
(ii) (DΛ(p) , qΛ(p)) ∼= (D(p), q(p)) hold,

and they satisfy
r − s +

∑
p∈P

p-excess(Λ(p)) = n mod 8.

We put δp := d/pordp(d) ∈ Z. Under the condition (ii), which implies |DΛ(p) | = d/δp,
the condition (i) is equivalent to the condition

reddisc(Λ(p)) = δp · (Z×
p )2.

Therefore we can check the claim (]) by the following method. First we calculate
L(p)(n,D(p), q(p)) for each p ∈ P . Then we search for an element ( [σp, up] ; p ∈ P )
of the Cartesian product of the sets L(p)(n,D(p), q(p)) that satisfies up = δp · (Z×

p )2

for each p ∈ P and r − s +
∑

σp = n mod 8. The claim (]) is true if and only if we
find such an element.

6. Roots

For the following, we refer to [3], [6, Chapter 4] or [12].

6.1. Root system of a positive-definite even lattice over Z. Let L be a
positive-definite even lattice over Z. A vector of L is said to be a root if its norm
is 2. We denote by Lroot the sublattice of L generated by roots. The lattice L
is said to be a root lattice if L = Lroot holds. Let Roots(L) be the set of roots
of L. We define ∼ to be the finest equivalence relation on Roots(L) that satisfies
(v, w) 6= 0 =⇒ v ∼ w. Let I1, . . . , Ik be the equivalence classes of roots under
the relation ∼, and let Li be the sublattice of Lroot generated by Ii. There exists
a basis Bi ⊂ Ii such that the intersection matrix of Li with respect to Bi is the
Cartan matrix corresponding to a Dynkin diagram of type Al, Dm or En. Let τi
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Figure 6.1. Dynkin diagram

Al b
a1

b
a2

b
a3

. . . . . . . . . b
al

Dm b
d2

b d1b
d3

b
d4

. . . . . . . . . b
dm

En b
e2

b
e3

b e1b
e4

. . . . . . . . . b
en

Table 6.1. Number of roots and discriminant forms of root lattices

τ |Roots(L(τ))| DL(τ) qL(τ)

Al l(l + 1) 〈ā∗
l 〉 ∼= Z/(l + 1)

[
l

l + 1

]
Dm (m : even) 2m(m − 1) 〈d̄∗

1〉 ⊕ 〈d̄∗
m〉 ∼= (Z/(2))⊕2

[
m/4 1/2
1/2 1

]
Dm (m : odd) 2m(m − 1) 〈d̄∗

1〉 ∼= Z/(4)
[
m/4

]
E6 72 〈ē∗6〉 ∼= Z/(3)

[
4/3

]
E7 126 〈ē∗7〉 ∼= Z/(2)

[
3/2

]
E8 240 (0)

[
0
]

be the type of the Dynkin diagram of the intersection matrix of Li. We define the
root type of L to be

∑k
i=1 τi. Conversely, for an ADE-type Σ, there exists a root

lattice L(Σ), unique up to isomorphism, whose root type is Σ.

The root type of a positive-definite even lattice L over Z is therefore determined
by the following procedure.

(1) Create the list Roots(L), and decompose it into I1, . . . , Ik.
(2) Calculate the rank of Li for i = 1, . . . , k.
(3) Determine the type τi from rank(Li) and |Ii| by using Table 6.1.

6.2. Discriminant forms of root lattices. The discriminant form (DL(τ), qL(τ)),
where τ is Al, Dm or En, is indicated in Table 6.1. In this table, for example,
{a∗

1, . . . , a
∗
l } is the basis of L(Al)∨ dual to the basis {a1, . . . , al} of L(Al) given in

Figure 6.1, and ā∗
i ∈ DL(Al) is the image of a∗

i by the homomorphism ΨL(Al) :
L(Al)∨ → DL(Al).

Let Γ(τ) denote the image of the natural homomorphism from the orthogonal
group O(L(τ)) of the lattice L(τ) to Aut(DL(τ), qL(τ)). The structure of Γ(τ) is
given as follows.

• If τ = A1 or τ = E7, then Γ(τ) is trivial.
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• If τ = Al (l > 1) or τ = Dm (m : odd) or τ = E6, then Γ(τ) is isomorphic
to Z/(2) generated by the multiplication by −1.

• If τ = Dm with m being even and > 4, then Γ(τ) is isomorphic to Z/(2)
generated by

d̄∗
1 7→ d̄∗

1 + d̄∗m, d̄∗m 7→ d̄∗m.

• If τ = D4, then Γ(τ) is isomorphic to the full symmetric group acting on
the set {d̄∗

1, d̄
∗
4, d̄

∗
1 + d̄∗

4} of non-trivial elements of DL(τ).

7. Existence of an elliptic K3 surface with given data

Theorem 7.1. Let Σ be an ADE-type with rank(Σ) ≤ 18, and G a finite abelian
group. There exists an elliptic K3 surface f : X → P1 with Σf = Σ and Gf

∼= G
if and only if the root lattice L(Σ) has an even overlattice M with the following
properties.

(i) M/L(Σ) ∼= G,
(ii) there exists an even lattice N of signature (2, 18 − rank(Σ)) such that

(DN , qN ) is isomorphic to (DM , qM ), and
(iii) the sublattice Mroot of M coincides with L(Σ).

Proof. Suppose that a pair (Σ, G) satisfies the condition of Theorem. By Proposi-
tion 4.2, the property (ii) implies that there exists an even unimodular overlattice
K ′ of M−⊕N into which M− and N are primitively embedded. Let H denote the
hyperbolic lattice;

H :=
(

0 1
1 0

)
.

Then K := K ′ ⊕ H is an even unimodular lattice with signature (3, 19). Hence
K is isomorphic to the K3 lattice L(2E8)− ⊕ H⊕2 by Milnor’s structure theorem
(cf. [15]). There exists a 2-dimensional linear subspace V of N ⊗Z R such that the
bilinear form is positive-definite on V and that, if N ′ ⊂ N is a sublattice such that
N ′ ⊗Z R contains V , then N ′ coincides with N . By the surjectivity of the period
map on the moduli of K3 surfaces, there exists a complex K3 surface X and an
isomorphism α : H2(X; Z) ∼→K of lattices such that

α−1
R (V ) = (H0,2(X) ⊕ H2,0(X)) ∩ H2(X; R)

holds, where αR := α ⊗Z R. Then we have

α−1(M− ⊕ H) = NSX . (7.1)

By Kondo’s lemma [8, Lemma 2.1], there exists a structure of the elliptic fibration
f : X → P1 with a section O : P1 → X such that, if F denotes the cohomology
class of a general fiber of f , then

Z[F ]⊥/Z[F ] ∼= M− (7.2)

holds, where Z[F ]⊥ is the orthogonal complement of Z[F ] in the Néron-Severi lattice
NSX of X. Let Hf be the sublattice of NSX spanned by the cohomology classes of
the zero section and a general fiber of f , Sf the sublattice of NSX defined in § 1,
and Wf the orthogonal complement of Hf in NSX . The lattice Hf is isomorphic to
the hyperbolic lattice H, and is orthogonal to Sf . By abuse of notation, we denote
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(Wf )root for the sublattice of Wf generated by the vectors of norm −2. From (7.2),
we have

Wf
∼= M−. (7.3)

On the other hand, by Nishiyama’s lemma [12, Lemma 6.1], we have

Wf/(Wf )root
∼= MWf , and (7.4)

Sf = (Wf )root. (7.5)

Combining these with the properties (i) and (iii) of M and the isomorphism (7.3),
we have Sf

∼= L(Σ)− and MWf
∼= G. Hence Σ = Σf and G ∼= Gf hold.

Conversely, suppose that there exists an elliptic K3 surface f : X → P1 with
Σf = Σ and Gf

∼= G. Using Nishiyama’s lemma again, we see that the primitive
closure Sf of Sf in NSX satisfies Sf/Sf

∼= G and (Sf )root = Sf . We have an
isomorphism Sf

∼= L(Σ)−. Let M− be the overlattice of L(Σ)− corresponding
to Sf via this isomorphism. Then M := (M−)− is an even overlattice of L(Σ)
that possess the properties (i) and (iii). Moreover, Sf ⊕Hf is primitive in the even
unimodular lattice H2(X; Z), and hence Proposition 4.2 implies that the orthogonal
complement Nf of Sf ⊕ Hf in H2(X; Z) satisfies (DNf

, qNf
) ∼= (DSf

,−qSf
) ∼=

(DM , qM ). Because the signature of Nf is (2, 18 − rank(Σ)), the even overlattice
M has the property (ii). ¤

8. Making the list

Recall that, in order for an ADE-type Σ to be an ADE-type of an elliptic K3
surface, it is necessary that rank(Σ) ≤ 18 and euler(Σ) ≤ 24. It is obvious that the
torsion part of the Mordell-Weil group of an elliptic surface is of length ≤ 2.

First we list up all ADE-types Σ with rank(Σ) ≤ 18 and euler(Σ) ≤ 24. There
are 3937 such ADE-types. For each

Σ :=
∑

alAl +
∑

dmDm +
∑

enEn

in this list, we carry out the following calculation.

Step 1. We calculate the discriminant form (DL(Σ), qL(Σ)) using Table 6.1. Note
that the product of the wreath products∏

al>0

(Γ(Al) o Sal
) ×

∏
dm>0

(Γ(Dm) o Sdm) ×
∏

en>0

(Γ(En) o Sen)

acts on (DL(Σ), qL(Σ)). Here, for example, the full symmetric group Sal
acts on

DL(Σ) as the permutation group on the al components of DL(Σ) isomorphic to
DL(Al). We denote this group by Γ(Σ).

Step 2. We make a complete list of representatives of the quotient set DL(Σ)/Γ(Σ)
and pick up from this list elements isotropic with respect to qL(Σ). Let VΣ =
{v̄1, . . . , v̄N} be the list of isotropic elements of DL(Σ) modulo Γ(Σ). For each
v̄i ∈ VΣ, we calculate the stabilizer subgroup St(Γ(Σ), v̄i) of v̄i in Γ(Σ). Then we
make a complete list of representatives of DL(Σ)/St(Γ(Σ), v̄i), and pick up from
this list elements isotropic with respect to qL(Σ) and orthogonal to v̄i with respect
to b[qL(Σ)]. Let WΣ,i be the list of isotropic elements orthogonal to v̄i modulo
St(Γ(Σ), v̄i).



20 ICHIRO SHIMADA

Next we make the list G′
Σ of all pairs [v̄i, w̄j ] of v̄i ∈ VΣ and w̄j ∈ WΣ,i. Then

every totally isotropic subgroup of (DL(Σ), qL(Σ)) with length ≤ 2 is conjugate
under the action of Γ(Σ) to a subgroup 〈v̄i, w̄j〉 generated by v̄i and w̄j for some
[v̄i, w̄j ] ∈ G′

Σ. Of course, there are several different pairs that generate a same
subgroup. We remove this redundancy from G′

Σ, and make a list GΣ.

Step 3. For each [v̄, w̄] ∈ GΣ, we calculate the subgroup G := 〈v̄, w̄〉 of DL(Σ),
its orthogonal complement G⊥ in (DL(Σ), qL(Σ)), and the finite quadratic form
(DG, qG) := (G⊥/G, qL(Σ)|G⊥/G).

Step 3.1. By the algorithm described in § 5, we determine whether there exists an
even lattice N over Z of signature (2, 18−rank(Σ)) such that (DN , qN ) ∼= (DG, qG).
If the answer is affirmative, we go to the next step.

Step 3.2. We calculate the intersection matrix of the even overlattice MG of
L(Σ) generated by L(Σ) and v, w in L(Σ)∨, where v and w are vectors of L(Σ)∨

such that ΨL(Σ)(v) = v̄ and ΨL(Σ)(w) = w̄. Then we calculate the root type of
MG by the algorithm described in § 6. If this root type coincides with the initial
ADE-type Σ, then we let the pair (Σ, G) be a member of the list P.

By Theorem 7.1, the list P thus made is the complete list of the data of elliptic
K3 surfaces.

The following remarks are useful in checking the program.

Remark 8.1. Note that neither euler(Σ) ≤ 24 nor length(G) ≤ 2 is contained in the
conditions of Theorem 7.1. Therefore, if we input Σ with euler(Σ) > 24 into the
program, then it should return no subgroups G of DL(Σ) such that (Σ, G) can be
a member of the list P. If we change Step 2 of the program so that it lists up all
totally isotropic subgroups of length ≥ 3, then the result should also be an empty
set.

Remark 8.2. Suppose that the root type Σ′ of MG is not equal to Σ in Step 3.2
of the program. Let G′ be the finite abelian group MG/(MG)root. Then (Σ′, G′)
appears in P.

Remark 8.3. For each (Σ, G) ∈ P, there should be at least one configuration that
satisfies the conditions given in § 2.3.
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