ON AN ENRIQUES SURFACE ASSOCIATED WITH A QUARTIC HESSIAN SURFACE: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

We explain the contents of the text file compdataEnriquesQH.txt, which presents the computational data for the results of the paper [1]. This text file is available from

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html as a zipped file. The items below can also be obtained separately from the folder

EnriquesQHFolder,

whose zip file is also at the webpage above.

2. The data

We use the notions and notation of [1]. In particular, we use the bases of the lattices L_{26} , S_X , and $L_{10} = S_Y$ that are fixed in the paper [1].

2.1. The data on L_{10} and L_{26} .

- GramL10 is the Gram matrix of L_{10} , which is the standard Gram matrix of $U \oplus E_8$.
- WeylVectorL10 is the Weyl vector w_{10} of L_{10} .
- WallsVinberg is the list of the primitive defining vectors e_1, \ldots, e_{10} of the walls of the Vinberg chamber $D_{10} = V_0$ corresponding to the Weyl vector WeylVectorL10.
- BasisLeechGolay is the basis of the Leech lattice Λ (Table 3.1 of [1]).
- GramL26 is the Gram matrix of $L_{26} = U \oplus \Lambda$.

2.2. The data on S_X and D_X .

- EmbSXinL26 is the 16×26 matrix M such that $v \mapsto vM$ is the primitive embedding of S_X into L_{26} .
- ProjL26toSX is the 26 × 16 matrix N such that $v \mapsto vN$ is the orthogonal projection $\operatorname{pr}_S \colon L_{26} \otimes \mathbb{R} \to S_X \otimes \mathbb{R}$.
- GramSX is the Gram matrix of S_X .

²⁰¹⁰ Mathematics Subject Classification. 14J28. This work was supported by JSPS KAKENHI Grant Number 16H03926, 16K13749.

ICHIRO SHIMADA

• DiscGroupSX is [2, 2, 2, 6], which describes the discriminant group

(2.1)
$$S_X^{\vee}/S_X \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$$

of S_X .

DiscFormSX is the discriminant form q_{Sx} of S_X. We fix a basis a₁, a₂, a₃, a₄ of S[∨]_X/S_X that gives the isomorphism (2.1); that is, a_i is the generator of the *i*th cyclic factor in Z/2Z × Z/2Z × Z/2Z × Z/6Z. DiscFormSX is a 4 × 4 matrix whose *i*th diagonal component is q_{Sx}(a_i) ∈ Q/2Z, and whose off-diagonal (*i*, *j*)-component is b_{Sx}(a_i, a_j) ∈ Q/Z, where

$$b_{S_X}(x,y) := \frac{1}{2} \left(q_{S_X}(x+y) - q_{S_X}(x) - q_{S_X}(y) \right).$$

• ProjDiscFormSX is the 16×4 matrix P that gives the natural projection

$$\operatorname{pr}_{S_X^{\vee}} \colon S_X^{\vee} \to S_X^{\vee} / S_X$$

We write an element $v \in S_X^{\vee}$ as a vector of $S_X \otimes \mathbb{Q}$ with respect to the fixed basis of S_X . Then

$$vP = [x_1, x_2, x_3, x_4] = x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4$$

is equal to $\operatorname{pr}_{S_{\mathbf{x}}^{\vee}}(v)$.

• LiftDiscFormSX is the 4×16 matrix Q whose *i*th row vector is an element v_i of $S_X^{\vee} \subset S_X \otimes \mathbb{Q}$ such that $\operatorname{pr}_{S_X^{\vee}}(v_i) = a_i \in S_X^{\vee}/S_X$.

Using P = ProjDiscFormSX and Q = LiftDiscFormSX, we can compute the natural homomorphism

$$\eta_{S_X} : \mathcal{O}(S_X) \to \mathcal{O}(q_{S_X}).$$

If an element $g \in O(S_X)$ is given as a 16×16 matrix M with integer components, then the 4×4 matrix QMP gives the image $\eta_{S_X}(g) \in O(q_{S_X})$.

- alphas is the list A.
- betas is the list B. The *i*th element of betas is the complement of the *i*th element of alphas in $\{1, \ldots, 5\}$.
- alphasbetas is the concatenation of the lists A and B. If $i \leq 10$, then the *i*th element of alphasbetas is an element α_i of alphas. If i > 10, then the *i*th element is the complement of α_{i-10} in $\{1, \ldots, 5\}$.
- hQ is $h_Q \in S_X$.
- hX is $h_X \in S_X$.
- autDX is the subgroup $\operatorname{aut}(D_X) \subset \operatorname{O}^+(S_X)$, which is the list of 240 square matrices of size 16 belonging to $\operatorname{O}^+(S_X)$.
- WallsOfDXTypea is the list of vectors $[E_{\alpha}] \in S_X$ and $[L_{\beta}] \in S_X$, which define the outer walls (walls of type (a)) of D_X . These vectors are sorted according to the list of indices alphasbetas.

 $\mathbf{2}$

AN ENRIQUES SURFACE ASSOCIATED WITH A QUARTIC HESSIAN

- WallsOfDXTypeb is the list of primitive defining vectors v_{α} of inner walls of D_X of type (b). These vectors are sorted according to the list of indices alphas.
- WallsOfDXTypec is the list of primitive defining vectors of inner walls of D_X of type (c).
- WallsOfDXTyped is the list of primitive defining vectors of inner walls of D_X of type (d).
- OuterReflectsDX is the list of reflections with respect to the defining roots of the outer walls of D_X (that is, the elements of WallsOfDXTypea). This list is sorted according to WallsOfDXTypea.
- InvolsAutXTypeb is the list of lists of involutions in aut(X) that map D_X to the induced chamber adjacent to D_X across a wall of type (b). This list is sorted according to WallsOfDXTypeb. Each item of InvolsAutXTypeb is a list consisting of two matrices belonging to $O^+(S_X)$, the first of which is the involution g_{α} we constructed in Proposition 6.8 of [1], and the second of which is the involution $g_{\alpha}g_{\varepsilon} = g_{\varepsilon}g_{\alpha}$.
- InvolsAutXTypec is the list of lists of involutions in aut(X) that map D_X to the induced chamber adjacent to D_X across a wall of type (c). This list is sorted according to WallsOfDXTypec. Each item of InvolsAutXTypec is a list consisting of only one matrix.
- InvolsAutXTyped is the list of lists of involutions in aut(X) that map D_X to the induced chamber adjacent to D_X across a wall of type (d). This list is sorted according to WallsOfDXTyped. Each item of InvolsAutXTyped is a list consisting of only one matrix.

2.3. The data on S_Y and D_Y .

- EnriquesInvol is the matrix representation g_{ε} of the Enriques involution $\varepsilon \colon X \to X$.
- SXplus is the basis of the sublattice S_X^+ of S_X .
- SXminus is the basis of the sublattice S_X^- of S_X .
- EmbSYinSX is the matrix M such that $v \mapsto vM$ is the embedding of S_Y into S_X . This matrix is identical with SXplus.
- MinusFourVectorsInSXminus is the list of all vectors $t \in S_X^-$ such that $\langle t, t \rangle = -4$. This list consists of 72 vectors, and each of them is written as a row vector with respect to the basis of S_X (not of S_X^-).
- ProjSXtoSY is the 16 × 10 matrix M such that $v \mapsto vM$ is the orthogonal projection $\mathrm{pr}^+: S_X \otimes \mathbb{R} \to S_Y \otimes \mathbb{R}$.
- GramSY is the Gram matrix of $S_Y = S_X^+(1/2)$. By the choice of the basis of S_Y , this Gram matrix is identical with GramL10.
- hY is $h_Y \in S_Y$.

ICHIRO SHIMADA

- OuterWallsOfDY is the list of primitive defining vectors $u_{\alpha} := 2 \operatorname{pr}^+([E_{\alpha}]) = 2 \operatorname{pr}^+([L_{\bar{\alpha}}])$ of the outer walls of D_Y . These vectors are sorted according to the list of indices alphas.
- InnerWallsOfDY is the list of primitive defining vectors $\bar{v}_{\alpha} := 2 \operatorname{pr}^+(v_{\alpha})$ of the inner walls of D_Y . These vectors are sorted according to the list of indices alphas.
- WallsOfDY is the concatenation of OuterWallsOfDY and InnerWallsOfDY. This list is useful in presenting the lists FacesOfDY and FacesOfDYWithGeomData below.
- autDY is the subgroup $\operatorname{aut}(D_Y)$ of $O^+(S_Y)$, which is the list of 120 square matrices of size 10 belonging to $O^+(S_Y)$.
- OuterReflectsDY is the list of reflections with respect to the defining roots of the outer walls of D_Y (that is, the elements of OuterWallsOfDY). This list is sorted according to OuterWallsOfDY.
- InvolsAutY is the list of involutions in $\operatorname{aut}(Y)$ that map D_Y to the induced chamber adjacent to D_Y across an inner wall of D_Y . This list is sorted according to InnerWallsOfDY. The involutions in this list generate the group $\operatorname{aut}(Y)$.
- SmoothRationalCurvesOnY consists of 46 lists. For d = 1, ..., 46, the dth item of SmoothRationalCurvesOnY is the list of the classes of all smooth rational curves C on Y such that $\langle [C], h_Y \rangle = d$.

2.4. Data of faces of D_Y with geometric data.

• FacesOfDY is the list of faces of D_Y . Each item of this list is of the form

```
[n, \{i_1, \ldots, i_m\}].
```

Let F be the face of D_Y corresponding to this item. Then n is the dimension of F, and the set $\{i_1, \ldots, i_m\}$ indicates that the set of all walls of D_Y containing the face F consists of the i_{ν} th member of WallsOfDY for $\nu = 1, \ldots, m$.

• FacesOfDYWithGeomData is the list of faces of D_Y and their geometric data. Each item of this list is of the form

$$[n, \{i_1, \ldots, i_m\}, \text{ geomdata}].$$

Let F be the face of D_Y corresponding to this item. Then n and $\{i_1, \ldots, i_m\}$ are the same as FacesOfDY.

If F is an ideal face, then geomdata is the following data that describe the elliptic fibration $\phi: Y \to \mathbb{P}^1$ corresponding to the face F.

["ellfib", f, types, [Rfull, Rhalf]].

The first item is the string "ellfib", which shows that F is an ideal face. The second item f is the primitive vector in S_Y such that $F = \mathbb{R}_{>0} f$. Thus

4

 $2f \in S_Y$ is the class of a fiber of ϕ . The third item types is an ordered pair of lists of indecomposable ADE-types, which indicate the ADE-type of non-multiple reducible fibers and of multiple reducible fibers. (For example, types = [["A5", "A1"], []] means that ϕ has exactly two reducible fibers, both of which is non-multiple, one of which is of type A_5 , and the other of which is of type A_1 .) The first member Rfull of the fourth item [Rfull, Rhalf] is the data of reducible fibers of $\phi: Y \to \mathbb{P}^1$. The list Rfull consists of items

[ADEtype, irreds],

each of which describes a non-multiple reducible fiber. Here ADEtype is the indecomposable ADE-type of a non-multiple reducible fiber $\phi^{-1}(p)$ and irreds is the list of classes of irreducible components of $\phi^{-1}(p)$. The list Rhalf is the data of the divisors E such that 2E is a multiple reducible fiber of ϕ . The contents of Rhalf have the same structure and the meaning as those of Rfull.

If F is not an ideal face, then geomdata is the data

["RDPs", $\mathcal{G}(F)$, types, singpts, ismaximal],

which describe a birational morphism $\Phi_{|L_F|}: Y \to \overline{Y}$ to a surface \overline{Y} with only rational double points such that the pull-back of the class of a hyperplane section of \overline{Y} is a point of F that is not contained in any wall of F. The first item is the string "RDPs", which shows that F is not an ideal face. The second item $\mathcal{G}(F)$ is the list of all $\overline{g} \in \operatorname{aut}(Y)$ such that $F \subset D_Y^{\overline{g}}$. The third item types is the list of indecomposable ADE-types that gives the ADE-type of the configuration of smooth rational curves contracted by $\Phi_{|L_F|}$. (Note that, if types is the empty list [], then F is an inner face. If, moreover, $n = \dim F$ is equal to 8, then we can obtain from the list $\mathcal{G}(F)$ the defining relation of aut(Y) with respect to the generators $\overline{g}(\alpha)$ $(\alpha \in A)$ corresponding to the face F.) The fourth item singpts is the list that describes singular points of \overline{Y} , each item of which is the following data on a singular point $p \in \operatorname{Sing}(\overline{Y})$;

[ADEtype, irreds],

where ADEtype is the indecomposable ADE-type of the exceptional divisor over p, and **irreds** is the list of classes of the irreducible components of the exceptional divisor. The last item **ismaximal** is either

[true] or [false,
$$\nu$$
].

Let $\mathcal{R}(F)$ denote the set of the classes of smooth rational curves contracted by $\Phi_{|L_F|}$; that is, $\mathcal{R}(F)$ is the union of the second items **irreds** of the items [ADEtype, irreds] of all singpts in geomdata. If there exists another face F' of D_Y that satisfies

 $F \subset F', \quad F \neq F', \quad \mathcal{R}(F) = \mathcal{R}(F'),$

then ismaximal is [false, ν], and an example of such a face F' is given by the ν th element of the list FacesOfDYWithGeomData. Otherwise, ismaximal is [true].

• autYClassesOfFacesOfDY is the list of aut(Y)-equivalence classes of faces of D_Y . Each item of this list is of the form

$$[n, \{k_1, \ldots, k_N\}],$$

where n is the dimension of the faces in this class, and $\{k_1, \ldots, k_N\}$ indicates that this $\operatorname{aut}(Y)$ -equivalence class consists of the k_{ν} th member of FacesOfDY for $\nu = 1, \ldots, N$.

From these two lists FacesOfDYWithGeomData and autYClassesOfFacesOfDY, we can make Tables 1.1 and 1.2 of [1].

References

 Ichiro Shimada. On an Enriques surface associated with a quartic Hessian surface, preprint, 2016, http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

 $E\text{-}mail\ address:$ ichiro-shimada@hiroshima-u.ac.jp