CLASSIFICATION OF EXTREMAL ELLIPTIC $K 3$ SURFACES AND FUNDAMENTAL GROUPS OF OPEN $K 3$ SURFACES

ICHIRO SHIMADA AND DE-QI ZHANG

Abstract

We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an $A D E$-configuration of smooth rational curves on a $K 3$ surface to be trivial (Proposition 4.1 and Theorems 4.3).

1. Introduction

A complex elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with a section O is said to be extremal if the Picard number $\rho(X)$ of X is 20 and the Mordell-Weil group $M W_{f}$ of f is finite. The purpose of this paper is to present the complete list of all extremal elliptic $K 3$ surfaces. As an application, we show that, if an $A D E$-configuration of smooth rational curves on a $K 3$ surface satisfies a certain condition, then the topological fundamental group of the complement is trivial. (See Theorem 4.3 for the precise statement.)

Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic $K 3$ surface with a section O. We denote by R_{f} the set of all points $v \in \mathbb{P}^{1}$ such that $f^{-1}(v)$ is reducible. For a point $v \in R_{f}$, let $f^{-1}(v)^{\#}$ be the union of irreducible components of $f^{-1}(v)$ that are disjoint from the zero section O. It is known that the cohomology classes of irreducible components of $f^{-1}(v)^{\#}$ form a negative definite root lattice $S_{f, v}$ of type A_{l}, D_{m} or E_{n} in $H^{2}(X ; \mathbb{Z})$. Let $\tau\left(S_{f, v}\right)$ be the type of this lattice. We define Σ_{f} to be the formal sum of these types;

$$
\Sigma_{f}:=\sum_{v \in R_{f}} \tau\left(S_{f, v}\right)
$$

The Néron-Severi lattice $N S_{X}$ of X is defined to be $H^{1,1}(X) \cap H^{2}(X ; \mathbb{Z})$, and the transcendental lattice T_{X} of X is defined to be the orthogonal complement of $N S_{X}$ in $H^{2}(X ; \mathbb{Z})$. We call the triple $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ the data of the elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$. When $f: X \rightarrow \mathbb{P}^{1}$ is extremal, the transcendental lattice T_{X} is a positive definite even lattice of rank 2 .

Theorem 1.1. There exists an extremal elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with data $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ if and only if $\left(\Sigma_{f}, M W_{f}, T_{X}\right)$ appears in Table 2 given at the end of this paper.

In Table 2, the transcendental lattice T_{X} is expressed by the coefficients of its Gram matrix

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

See Subsection 2.1 on how to recover the $K 3$ surface X from T_{X}.

[^0]The classification of semi-stable extremal elliptic $K 3$ surfaces has been done by Miranda and Persson[7] and complemented by Artal-Bartolo, Tokunaga and Zhang[1]. We can check that the semi-stable part of our list (No. 1- No. 112) coincides with theirs. Nishiyama[12] classified all elliptic fibrations (not necessarily extremal) on certain $K 3$ surfaces. On the other hand, Ye[19] has independently classified all extremal elliptic $K 3$ surfaces with no semi-stable singular fibers by different methods from ours.

Acknowledgment. The authors would like to thank Professors Shigeyuki Kondō, Ken-ichi Nishiyama and Keiji Oguiso for helpful discussions.

2. Preliminaries

2.1. Transcendental lattice of singular $K 3$ surfaces. Let \mathcal{Q} be the set of symmetric matrices

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

of integer coefficients such that a and c are even and that the corresponding quadratic forms are positive definite. The group $G L_{2}(\mathbb{Z})$ acts on \mathcal{Q} from right by

$$
Q \mapsto{ }^{t} g \cdot Q \cdot g,
$$

where $g \in G L_{2}(\mathbb{Z})$. Let Q_{1} and Q_{2} be two matrices in \mathcal{Q}, and let L_{1} and L_{2} be the positive definite even lattices of rank 2 whose Gram matrices are Q_{1} and Q_{2}, respectively. Then L_{1} and L_{2} are isomorphic as lattices if and only if Q_{1} and Q_{2} are in the same orbit under the action of $G L_{2}(\mathbb{Z})$. On the other hand, each orbit in \mathcal{Q} under the action of $S L_{2}(\mathbb{Z})$ contains a unique matrix with coefficients satisfying

$$
-a<2 b \leq a \leq c, \quad \text { with } \quad b \geq 0 \quad \text { if } \quad a=c .
$$

(See, for example, Conway and Sloane[3, p. 358].) Hence each orbit in \mathcal{Q} under the action of $G L_{2}(\mathbb{Z})$ contains a unique matrix with coefficients satisfying

$$
\begin{equation*}
0 \leq 2 b \leq a \leq c . \tag{2.1}
\end{equation*}
$$

In Table 2, the transcendental lattice is represented by the Gram matrix satisfying the condition(2.1).

Let X be a $K 3$ surface with $\rho(X)=20$; that is, X is a singular $K 3$ surface in the terminology of Shioda and Inose[16]. The transcendental lattice T_{X} can be naturally oriented by means of a holomorphic two form on X (cf. [16, p.128]). Let \mathcal{S} denote the set of isomorphism classes of singular $K 3$ surfaces. Using the natural orientation on the transcendental lattice, we can lift the $\operatorname{map} \mathcal{S} \rightarrow \mathcal{Q} / G L_{2}(\mathbb{Z})$ given by $X \mapsto T_{X}$ to the map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$.

Proposition 2.1 (Shioda and Inose[16]). This map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$ is bijective.

Moreover, Shioda and Inose[16] gave us a method to construct explicitly the singular $K 3$ surface corresponding to a given element of $\mathcal{Q} / S L_{2}(\mathbb{Z})$ by means of Kummer surfaces. The injectivity of the map $\mathcal{S} \rightarrow \mathcal{Q} / S L_{2}(\mathbb{Z})$ had been proved by Piateskii-Shapiro and Shafarevich[14].

Suppose that an orbit $[Q] \in \mathcal{Q} / G L_{2}(\mathbb{Z})$ is represented by a matrix Q satisfying (2.1). Let $\rho: \mathcal{Q} / S L_{2}(\mathbb{Z}) \rightarrow \mathcal{Q} / G L_{2}(\mathbb{Z})$ be the natural projection. Then we
have

$$
\left|\rho^{-1}([Q])\right|= \begin{cases}2 & \text { if } 0<2 b<a<c \\ 1 & \text { otherwise }\end{cases}
$$

Therefore, if a data in Table 2 satisfies $a=c$ or $b=0$ or $2 b=a$ (resp. $0<2 b<$ $a<c$), then the number of the isomorphism classes of $K 3$ surfaces that possess a structure of the extremal elliptic $K 3$ surfaces with the given data is one (resp. two).
2.2. Roots of a negative definite even lattice. Let M be a negative definite even lattice. A vector of M is said to be a root of M if its norm is -2 . We denote by $\operatorname{root}(M)$ the number of roots of M, and by $M_{\text {root }}$ the sublattice of M generated by the roots of M. Suppose that a Gram matrix $\left(a_{i j}\right)$ of M is given. Then root (M) can be calculated by the following method. Let

$$
g_{r}(x)=-\sum_{i, j=1}^{r} a_{i j} x_{i} x_{j}
$$

be the positive definite quadratic form associated with the opposite lattice M^{-}of M, where r is the rank of M. We consider the bounded closed subset

$$
E\left(g_{r}, 2\right):=\left\{x \in \mathbb{R}^{r} ; g_{r}(x) \leq 2\right\}
$$

of \mathbb{R}^{r}. Then we have

$$
\operatorname{root}(M)+1=\left|E\left(g_{r}, 2\right) \cap \mathbb{Z}^{r}\right|
$$

where +1 comes from the origin. For a positive integer k less than r, we write by $p_{k}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{k}$ the projection $\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right)$. Then there exists a positive definite quadratic form g_{k} of variables $\left(x_{1}, \ldots, x_{k}\right)$ and a positive real number σ_{k} such that

$$
p_{k}\left(E\left(g_{r}, 2\right)\right)=E\left(g_{k}, \sigma_{k}\right):=\left\{y \in \mathbb{R}^{k} ; g_{k}(y) \leq \sigma_{k}\right\} .
$$

The projection $\left(x_{1}, \ldots, x_{k+1}\right) \mapsto\left(x_{1}, \ldots, x_{k}\right)$ maps $E\left(g_{k+1}, \sigma_{k+1}\right)$ to $E\left(g_{k}, \sigma_{k}\right)$. Hence, if we have the list of the points of $E\left(g_{k}, \sigma_{k}\right) \cap \mathbb{Z}^{k}$, then it is easy to make the list of the points of $E\left(g_{k+1}, \sigma_{k+1}\right) \cap \mathbb{Z}^{k+1}$. Thus, starting from $E\left(g_{1}, \sigma_{1}\right) \cap \mathbb{Z}$, we can make the list of the points of $E\left(g_{r}, 2\right) \cap \mathbb{Z}^{r}$ by induction on k.
2.3. Root lattices of type $A D E$. A root type is, by definition, a finite formal sum Σ of A_{l}, D_{m} and E_{n} with non-negative integer coefficients;

$$
\Sigma=\sum_{l \geq 1} a_{l} A_{l}+\sum_{m \geq 4} d_{m} D_{m}+\sum_{n=6}^{8} e_{n} E_{n}
$$

We denote by $L(\Sigma)$ the negative definite root lattice corresponding to Σ. The rank of $L(\Sigma)$ is given by

$$
\operatorname{rank}(L(\Sigma))=\sum_{l \geq 1} a_{l} l+\sum_{m \geq 4} d_{m} m+\sum_{n=6}^{8} e_{n} n,
$$

and the number of roots of $L(\Sigma)$ is given by
(2.2) $\operatorname{root}(L(\Sigma))=\sum_{l \geq 1} a_{l}\left(l^{2}+l\right)+\sum_{m \geq 4} d_{m}\left(2 m^{2}-2 m\right)+72 e_{6}+126 e_{7}+240 e_{8}$.
(See, for example, Bourbaki[2].) Because of $L(\Sigma)_{\text {root }}=L(\Sigma)$, we have

$$
\begin{equation*}
L\left(\Sigma_{1}\right) \cong L\left(\Sigma_{2}\right) \Longleftrightarrow \Sigma_{1}=\Sigma_{2} \tag{2.3}
\end{equation*}
$$

We also define $e u(\Sigma)$ by

$$
e u(\Sigma):=\sum_{l \geq 1} a_{l}(l+1)+\sum_{m \geq 4} d_{m}(m+2)+\sum_{n=6}^{8} e_{n}(n+2)
$$

Lemma 2.2. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic K3 surface. Then eu $\left(\Sigma_{f}\right)$ is at most 24. Moreover, if $\mathrm{eu}\left(\Sigma_{f}\right)<24$, then there exists at least one singular fiber of type I_{1}, II, III or IV.
Proof. Let $e(Y)$ denote the topological euler number of a $C W$-complex Y. Then $e(X)=24$ is equal to the sum of topological euler numbers of singular fibers of f. Every singular fiber has a positive topological euler number. We have defined $e u(\Sigma)$ in such a way that, if $v \in R_{f}$, then $e u\left(\tau\left(S_{f, v}\right)\right) \leq e\left(f^{-1}(v)\right)$ holds, and if $e u\left(\tau\left(S_{f, v}\right)\right)<e\left(f^{-1}(v)\right)$, then the type of the fiber $f^{-1}(v)$ is either III or IV. Hence $e u\left(\Sigma_{f}\right)$ does not exceed the sum of the topological euler numbers of reducible singular fibers, and if $e u\left(\Sigma_{f}\right)<24$, then there is an irreducible singular fiber or a singular fiber of type III or IV.
2.4. Discriminant form and overlattices. Let L be an even lattice, L^{\vee} the dual of L, D_{L} the discriminant group L^{\vee} / L of L, and q_{L} the discriminant form on D_{L}. (See Nikulin[11, n. 4] for the definitions.) An overlattice of L is, by definition, an integral sublattice of the \mathbb{Q}-lattice L^{\vee} containing L.
Lemma 2.3 (Nikulin[11] Proposition 1.4.2). (1) Let A be an isotropic subgroup of $\left(D_{L}, q_{L}\right)$. Then the pre-image $M:=\phi_{L}^{-1}(A)$ of A by the natural projection ϕ_{L} : $L^{\vee} \rightarrow D_{L}$ is an overlattice of L, and the discriminant form $\left(D_{M}, q_{M}\right)$ of M is isomorphic to $\left(A^{\perp} / A,\left.q_{L}\right|_{A^{\perp} / A}\right)$, where A^{\perp} is the orthogonal complement of A in D_{L}, and $\left.q_{L}\right|_{A^{\perp} / A}$ is the restriction of q_{L} to A^{\perp} / A. (2) The correspondence $A \mapsto M$ gives a bijection from the set of isotropic subgroups of $\left(D_{L}, q_{L}\right)$ to the set of even overlattices of L.

Lemma 2.4 (Nikulin[11] Corollary 1.6.2). Let S and K be two even lattices. Then the following two conditions are equivalent. (i) There is an isomorphism $\gamma: D_{S} \xrightarrow{\sim} D_{K}$ of abelian groups such that $\gamma^{*} q_{K}=-q_{S}$. (ii) There is an even unimodular overlattice of $S \oplus K$ into which S and K are primitively embedded.
2.5. Néron-Severi groups of elliptic $K 3$ surfaces. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic $K 3$ surface with the zero section O. In the Néron-Severi lattice $N S_{X}$ of X, the cohomology classes of the zero section O and a general fiber of f generate a sublattice U_{f} of rank 2, which is isomorphic to the hyperbolic lattice

$$
H:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Let W_{f} be the orthogonal complement of U_{f} in $N S_{X}$. Because U_{f} is unimodular, we have $N S_{X}=U_{f} \oplus W_{f}$. Because U_{f} is of signature $(1,1)$ and $N S_{X}$ is of signature $(1, \rho(X)-1), W_{f}$ is negative definite of $\operatorname{rank} \rho(X)-2$. Note that W_{f} contains the sublattice

$$
S_{f}:=\bigoplus_{v \in R_{f}} S_{f, v}
$$

generated by the cohomology classes of irreducible components of reducible fibers of f that are disjoint from the zero section. By definition, S_{f} is isomorphic to $L\left(\Sigma_{f}\right)$.

Lemma 2.5 (Nishiyama[12] Lemma 6.1). The sublattice S_{f} of W_{f} coincides with $\left(W_{f}\right)_{\text {root }}$, and the Mordell-Weil group $M W_{f}$ of f is isomorphic to W_{f} / S_{f}. In particular, $\operatorname{root}\left(L\left(\Sigma_{f}\right)\right)$ is equal to $\operatorname{root}\left(W_{f}\right)$.

Because $W_{f} \oplus U_{f} \oplus T_{X}$ has an even unimodular overlattice $H^{2}(X ; \mathbb{Z})$ into which $N S_{X}=W_{f} \oplus U_{f}$ and T_{X} are primitively embedded, and because the discriminant form of $N S_{X}$ is equal to the discriminant form of W_{f} by $D_{U_{f}}=(0)$, Lemma 2.4 implies the following:
Corollary 2.6. There is an isomorphism $\gamma: D_{W_{f}} \xrightarrow{\sim} D_{T_{X}}$ of abelian groups such that $\gamma^{*} q_{T_{X}}$ coincides with $-q_{W_{f}}$.
2.6. Existence of elliptic $K 3$ surfaces. Let Λ be the $K 3$ lattice $L\left(2 E_{8}\right) \oplus H^{\oplus 3}$.

Lemma 2.7 (Kondō[5] Lemma 2.1). Let T be a positive definite primitive sublattice of Λ with $\operatorname{rank}(T)=2$, and T^{\perp} the orthogonal complement of T in Λ. Suppose that T^{\perp} contains a sublattice H_{T} isomorphic to the hyperbolic lattice. Let M_{T} be the orthogonal complement of H_{T} in T^{\perp}. Then there exists an elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ such that $T_{X} \cong T$ and $W_{f} \cong M_{T}$.

Proof. By the surjectivity of the period map of the moduli of $K 3$ surfaces (cf. Todorov[17]), there exist a $K 3$ surface X and an isomorphism $\alpha: H^{2}(X ; \mathbb{Z}) \cong \Lambda$ of lattices such that $\alpha^{-1}(T)=T_{X}$. By Kondō[5, Lemma 2.1], the $K 3$ surface X has an elliptic fibration $f: X \rightarrow \mathbb{P}^{1}$ with a section such that $\mathbb{Z}[F]^{\perp} / \mathbb{Z}[F] \cong M_{T}$, where $[F] \in U_{f}$ is the cohomology class of a fiber of f, and $\mathbb{Z}[F]^{\perp}$ is the orthogonal complement of $[F]$ in the Néron-Severi lattice $N S_{X}$. Because $N S_{X}$ coincides with $U_{f} \oplus W_{f}$, and because $\mathbb{Z}[F]^{\perp} \cap U_{f}$ coincides with $\mathbb{Z}[F]$, we see that $\mathbb{Z}[F]^{\perp} / \mathbb{Z}[F]$ is isomorphic to W_{f}.

2.7. Datum of extremal elliptic $K 3$ surfaces.

Proposition 2.8. A triple $(\Sigma, M W, T)$ consisting of a root type Σ, a finite abelian group $M W$ and a positive definite even lattice T of rank 2 is a data of an extremal elliptic K3 surface if and only if the following hold:
$(D 1)$ length $(M W) \leq 2, \operatorname{rank}(L(\Sigma))=18$ and $e u(\Sigma) \leq 24$.
(D2) There exists an overlattice M of $L(\Sigma)$ satisfying the following:
$(D 2-a) M / L(\Sigma) \cong M W$,
($D 2-b$) there exists an isomorphism $\gamma: D_{M} \xrightarrow{\sim} D_{T}$ of abelian groups such that $\gamma^{*} q_{T}=-q_{M}$, and
$(D 2-c) \operatorname{root}(L(\Sigma))=\operatorname{root}(M)$.
Proof. Suppose that there exists an extremal elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with data equal to $(\Sigma, M W, T)$. It is obvious that Σ and $M W$ satisfies the condition ($D 1$). Via the isomorphism $S_{f} \cong L(\Sigma)$, the overlattice W_{f} of S_{f} corresponds to an overlattice M of $L(\Sigma)$, which satisfies the conditions $(D 2-a)-(D 2-c)$ by Lemma 2.5 and Corollary 2.6. Conversely, suppose that $(\Sigma, M W, T)$ satisfies the conditions $(D 1)$ and $(D 2)$. By Lemma 2.4, the condition $(D 2-b)$ and $D_{H}=0$ imply that there exists an even unimodular overlattice of $M \oplus H \oplus T$ into which $M \oplus H$ and T are primitively embedded. By the theorem of Milnor (see, for example, Serre[15]) on the classification of even unimodular lattices, any even unimodular lattice of
signature $(3,19)$ is isomorphic to the $K 3$ lattice Λ. Then Lemma 2.7 implies that there exists an elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ satisfying $W_{f} \cong M$ and $T_{X} \cong T$. The condition $\left(D 2-c\right.$) implies $M_{\text {root }}=L(\Sigma)$. Combining this with Lemma 2.5, we see that $S_{f} \cong L(\Sigma)$. Then (2.2) implies that $\Sigma_{f}=\Sigma$. Using Lemma 2.5 and the condition $(D 2-a)$, we see that $M W_{f} \cong M W$. Thus the data of $f: X \rightarrow \mathbb{P}^{1}$ coincides with $(\Sigma, M W, T)$.

Remark 2.9. In the light of Lemma 2.3, the condition $(D 2)$ is equivalent to the following:
(D3) There exists an isotropic subgroup A of $\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)$ satisfying the following: ($D 3-a) A$ is isomorphic to $M W$,
$(D 3-b)$ there exists an isomorphism $\gamma: A^{\perp} / A \xrightarrow{\sim} D_{T}$ of abelian groups such that $\gamma^{*} q_{T}=-\left.q_{L(\Sigma)}\right|_{A^{\perp} / A}$, and
$(D 3-c) \operatorname{root}\left(\phi_{L(\Sigma)}^{-1}(A)\right)$ is equal to $\operatorname{root}(L(\Sigma))$, where $\phi_{L(\Sigma)}: L(\Sigma)^{\vee} \rightarrow D_{L(\Sigma)}$ is the natural projection.

Remark 2.10. We did not use the conditions length $(M W) \leq 2$ and $e u(\Sigma) \leq 24$ in the proof of the "if" part of Proposition 2.8. It follows that, if $(\Sigma, M W, T)$ satisfies $\operatorname{rank}(L(\Sigma))=18$ and the condition $(D 2)$, then length $(M W) \leq 2$ and $e u(\Sigma) \leq 24$ follow automatically. This fact can be used when we check the computer program described in the next section.

3. Making the list

First we list up all root types Σ satisfying $\operatorname{rank}(L(\Sigma))=18$ and $e u(\Sigma) \leq 24$. This list \mathcal{L} consists of 712 elements.

Next we run a program that takes an element Σ of the list \mathcal{L} as an input and proceeds as follows.

Step 1. The program calculates the intersection matrix of $L(\Sigma)^{\vee}$. Using this matrix, it calculates the discriminant form of $L(\Sigma)$, and decomposes it into p-parts;

$$
\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)=\bigoplus_{p}\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)_{p}
$$

where p runs through the set $\left\{p_{1}, \ldots, p_{k}\right\}$ of prime divisors of the discriminant $\left|D_{L(\Sigma)}\right|$ of $L(\Sigma)$. We write the p_{i}-part of $\left(D_{L(\Sigma)}, q_{L(\Sigma)}\right)$ by $\left(D_{L(\Sigma), i}, q_{L(\Sigma), i}\right)$.

Step 2. For each p_{i}, it calculates the set $I\left(p_{i}\right)$ of all pairs $\left(A, A^{\perp}\right)$ of an isotropic sub$\operatorname{group} A$ of $\left(D_{L(\Sigma), i}, q_{L(\Sigma), i}\right)$ and its orthogonal complement A^{\perp} such that length $(A) \leq$ 2.

Step 3. For each element

$$
\mathcal{A}:=\left(\left(A_{1}, A_{1}^{\perp}\right), \ldots,\left(A_{k}, A_{k}^{\perp}\right)\right) \in I\left(p_{1}\right) \times \cdots \times I\left(p_{k}\right),
$$

it calculates the $\mathbb{Q} / 2 \mathbb{Z}$-valued quadratic form

$$
q_{\mathcal{A}}:=\left.q_{L(\Sigma), 1}\right|_{A_{1}^{\perp} / A_{1}} \times \cdots \times\left. q_{L(\Sigma), k}\right|_{A_{k}^{\perp} / A_{k}}
$$

on the finite abelian group

$$
D_{\mathcal{A}}:=A_{1}^{\perp} / A_{1} \times \cdots \times A_{k}^{\perp} / A_{k} .
$$

Let $d(\mathcal{A})$ be the order of $D_{\mathcal{A}}$.

Step 4. It generates the list $\mathcal{T}(d(\mathcal{A}))$ of positive definite even lattices of rank 2 with discriminant equal to $d(\mathcal{A})$. For each $T \in \mathcal{T}(d(\mathcal{A}))$, it calculates the discriminant form of T and decomposes it into p-parts. If D_{T} is isomorphic to $D_{\mathcal{A}}$ and q_{T} is isomorphic to $-q_{\mathcal{A}}$, then it proceeds to the next step. Note that the automorphism group of a finite abelian p-group of length ≤ 2 is easily calculated, and hence it is an easy task to check whether two given quadratic forms on the finite abelian p-group of length ≤ 2 are isomorphic or not.
Step 5. It calculates the Gram matrix of the sublattice $\widetilde{L}(\mathcal{A})$ of $L(\Sigma)^{\vee}$ generated by $L(\Sigma) \subset L(\Sigma)^{\vee}$ and the pull-backs of generators of the subgroups $A_{i} \subset D_{L(\Sigma), i}$ by the projection $L(\Sigma)^{\vee} \rightarrow D_{L(\Sigma)} \rightarrow D_{L(\Sigma), i}$. Then it calculates $\operatorname{root}(\widetilde{L}(\mathcal{A}))$ by the method described in the subsection 2.2. If $\operatorname{root}(\widetilde{L}(\mathcal{A}))$ is equal to $\operatorname{root}(L(\Sigma))$ calculated by (2.2), then it puts out the pair of the finite abelian group

$$
M W:=A_{1} \times \cdots \times A_{k}
$$

and the lattice T.
Then $(\Sigma, M W, T)$ satisfies the conditions $(D 1)$ and $(D 3)$, and all triples $(\Sigma, M W, T)$ satisfying ($D 1$) and ($D 3$) are obtained by this program.

4. Fundamental groups of open $K 3$ surfaces

A simple normal crossing divisor Δ on a $K 3$ surface X is said to be an $A D E$ configuration of smooth rational curves if each irreducible component of Δ is a smooth rational curve and the intersection matrix of the irreducible components of Δ is a direct sum of the Cartan matrices of type A_{l}, D_{m} or E_{n} multiplied by -1 . It is known that Δ is an $A D E$-configuration of smooth rational curves if and only if each connected component of Δ can be contracted to a rational double point. We consider the following quite plausible hypothesis. Let Δ be an $A D E$-configuration of smooth rational curves on a $K 3$ surface X.
Hypothesis. If $\pi_{1}^{a l g}(X \backslash \Delta)$ is trivial, then so is $\pi_{1}(X \backslash \Delta)$.
Here $\pi_{1}^{a l g}(X \backslash \Delta)$ is the algebraic fundamental group of $X \backslash \Delta$, which is the pro-finite completion of the topological fundamental group $\pi_{1}(X \backslash \Delta)$.

Proposition 4.1. Suppose that Hypothesis is true for any ADE-configuration of smooth rational curves on an arbitrary $K 3$ surface. Let Δ be an ADE-configuration of smooth rational curves on a K3 surface X. Then $\pi_{1}(X \backslash \Delta)$ satisfies one of the following:
(i) $\pi_{1}(X \backslash \Delta)$ is trivial.
(ii) There exist a complex torus T of dimension 2 and a finite automorphism group G of T such that T / G is birational to X and that $\pi_{1}(X \backslash \Delta)$ fits in the exact sequence

$$
1 \longrightarrow \pi_{1}(T) \longrightarrow \pi_{1}(X \backslash \Delta) \longrightarrow G \longrightarrow 1
$$

(iii) $\pi_{1}(X \backslash \Delta)$ is isomorphic to a symplectic automorphism group of a K3 surface.

Remark 4.2. Fujiki[4] classified the automorphism groups of complex tori of dimension 2. In particular, the G in (ii) is either one of $\mathbb{Z} /(n)(n=2,3,4,6), Q_{8}$ (Quaternion of order 8), D_{12} (Dihedral of order 12) and T_{24} (Tetrahedral of order 24), whence the $\pi_{1}(X \backslash \Delta)$ in (ii) is a soluble group. Mukai[9] presented the complete list of symplectic automorphism groups of $K 3$ surfaces. (See also Kondō[6]
and Xiao[18].) Under Hypothesis, therefore, we know what groups can appear as $\pi_{1}(X \backslash \Delta)$.

Proof of Proposition 4.1. Suppose that $\pi_{1}(X \backslash \Delta)$ is non-trivial. By Hypothesis, $\pi_{1}^{a l g}(X \backslash \Delta)$ is also non-trivial. For a surjective homomorphism $\phi: \pi_{1}(X \backslash \Delta) \rightarrow G$ from $\pi_{1}(X \backslash \Delta)$ to a finite group G, we denote by

$$
\psi_{\phi}: \widetilde{Y}_{\phi} \longrightarrow X
$$

the finite Galois cover of X corresponding to ϕ, which is étale over $X \backslash \Delta$ and whose Galois group is canonically isomorphic to G. Let $\rho: \widetilde{Y}_{\phi}^{\prime} \rightarrow \widetilde{Y}_{\phi}$ be the resolution of singularities, and $\gamma: \widetilde{Y}_{\phi}^{\prime} \rightarrow Y_{\phi}$ the contraction of (-1)-curves. We denote by Δ_{ϕ} the union of one-dimensional irreducible components of $\gamma\left(\rho^{-1}\left(\psi_{\phi}^{-1}(\Delta)\right)\right)$. Then it is easy to see that Y_{ϕ} is either a $K 3$ surface or a complex torus of dimension 2, and that the Galois group G of ψ_{ϕ} acts on Y_{ϕ} symplectically. Moreover, Δ_{ϕ} is an empty set or an $A D E$-configuration of smooth rational curves. We have an exact sequence

$$
1 \longrightarrow \pi_{1}\left(Y_{\phi} \backslash \Delta_{\phi}\right) \longrightarrow \pi_{1}(X \backslash \Delta) \longrightarrow G \longrightarrow 1
$$

because $\pi_{1}\left(\widetilde{Y}_{\phi} \backslash \psi_{\phi}^{-1}(\Delta)\right)$ is isomorphic to $\pi_{1}\left(Y_{\phi} \backslash \Delta_{\phi}\right)$. Suppose that there exists a homomorphism $\phi: \pi_{1}(X \backslash \Delta) \rightarrow G$ such that Y_{ϕ} is a complex torus of dimension 2. Then Δ_{ϕ} is empty, and hence (ii) occurs. Suppose that no complex tori of dimension 2 appear as a finite Galois cover of X branched in Δ. Then any finite quotient group of $\pi_{1}(X \backslash \Delta)$ must appear in Mukai's list of symplectic automorphism groups of $K 3$ surfaces. Because this list consists of finite number of isomorphism classes of finite groups, there exists a maximal finite quotient $\phi_{\max }: \pi_{1}(X \backslash \Delta) \rightarrow G_{\max }$ of $\pi_{1}(X \backslash \Delta)$. Then $\pi_{1}\left(Y_{\phi_{\max }} \backslash \Delta_{\phi_{\max }}\right)$ has no non-trivial finite quotient group, and hence it is trivial by Hypothesis. Thus (iii) occurs.

For an $A D E$-configuration Δ of smooth rational curves on a $K 3$ surface X, we denote by $\mathbb{Z}[\Delta]$ the sublattice of $H^{2}(X ; \mathbb{Z})$ generated by the cohomology classes of the irreducible components of Δ, which is isomorphic to a negative definite root lattice of type $A D E$. We denote by Σ_{Δ} the root type such that $\mathbb{Z}[\Delta]$ is isomorphic to $L\left(\Sigma_{\Delta}\right)$. Using the list of extremal elliptic $K 3$ surfaces, we prove the following theorem. We consider the following conditions on a root type Σ.
(N1) $\operatorname{rank}(L(\Sigma)) \leq 18$, and
(N2) length $\left(D_{L(\Sigma)}\right) \leq \min \{\operatorname{rank}(L(\Sigma)), 20-\operatorname{rank}(L(\Sigma))\}$.
Theorem 4.3. Suppose that a root type Σ_{Δ} satisfies the conditions (N1) and (N2). If $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$ then $\pi_{1}(X \backslash \Delta)$ is trivial.
By virtue of Lemma 4.6 below, we can easily derive the following:
Corollary 4.4. Suppose that Σ satisfies the conditions (N1) and (N2). Then Hypothesis is true for any (X, Δ) with $\Sigma_{\Delta}=\Sigma$.

Remark 4.5. The conditions ($N 1$) and ($N 2$) come from Nikulin[11, Theorem 1.14.1] (see also Morrison[8, Theorem 2.8]), which gives a sufficient condition for the uniqueness of the primitive embedding of $L(\Sigma)$ into the $K 3$ lattice Λ.

First we prepare some lemmas. Let $\overline{\mathbb{Z}[\Delta]}$ be the primitive closure of $\mathbb{Z}[\Delta]$ in $H^{2}(X ; \mathbb{Z})$.

Lemma 4.6 (Xiao[18] Lemma 2). The dual of the abelianisation of $\pi_{1}(X \backslash \Delta)$ is canonically isomorphic to $\overline{\mathbb{Z}[\Delta]} / \mathbb{Z}[\Delta]$. In particular, if $\pi_{1}^{\text {alg }}(X \backslash \Delta)$ is trivial, then $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$.

Let Γ_{1} and Γ_{2} be graphs with the set of vertices denoted by $\operatorname{Vert}\left(\Gamma_{1}\right)$ and $\operatorname{Vert}\left(\Gamma_{2}\right)$, respectively. An embedding of Γ_{1} into Γ_{2} is, by definition, an injection $f: \operatorname{Vert}\left(\Gamma_{1}\right) \rightarrow \operatorname{Vert}\left(\Gamma_{2}\right)$ such that, for any $u, v \in \operatorname{Vert}\left(\Gamma_{1}\right), f(u)$ and $f(v)$ are connected by an edge of Γ_{2} if and only if u and v are connected by an edge of Γ_{1}.

Let $\Gamma(\Sigma)$ denote the Dynkin graph of Σ.
Lemma 4.7. Suppose that Σ satisfies the conditions (N1) and (N2). Then there exists Σ^{\prime} satisfying $\operatorname{rank}\left(L\left(\Sigma^{\prime}\right)\right)=18$ and the condition $(N 2)$ such that $\Gamma(\Sigma)$ can be embedded in $\Gamma\left(\Sigma^{\prime}\right)$.

Proof. This is checked by listing up all Σ satisfying the conditions ($N 1$) and ($N 2$) using computer.
Lemma 4.8. Let $f: X \rightarrow \mathbb{P}^{1}$ be an elliptic surface with the zero section O. Suppose that a fiber $f^{-1}(v)$ over $v \in \mathbb{P}^{1}$ is a singular fiber of type III or IV. Let Ξ be a union of some irreducible components of $f^{-1}(v)$ that does not coincide with the whole fiber $f^{-1}(v)$. If U is a small open disk on \mathbb{P}^{1} with the center v, then $f^{-1}(U) \backslash\left(\Xi \cup\left(f^{-1}(U) \cap O\right)\right)$ has an abelian fundamental group.

Proof. This can be proved easily by the van-Kampen theorem.
Lemma 4.9. Let Σ be satisfying the conditions (N1) and (N2). Suppose that (X, Δ) and $\left(X^{\prime}, \Delta^{\prime}\right)$ satisfy the following:
(a) $\Sigma_{\Delta}=\Sigma_{\Delta^{\prime}}=\Sigma$,
(b) $\overline{\mathbb{Z}[\Delta]}=\mathbb{Z}[\Delta]$ and $\overline{\mathbb{Z}\left[\Delta^{\prime}\right]}=\mathbb{Z}\left[\Delta^{\prime}\right]$.

Then there exists a connected continuous family $\left(X_{t}, \Delta_{t}\right)$ parameterized by $t \in$ $[0,1]$ such that $\left(X_{0}, \Delta_{0}\right)=(X, \Delta),\left(X_{1}, \Delta_{1}\right)=\left(X^{\prime}, \Delta^{\prime}\right)$ and that $\left(X_{t}, \Delta_{t}\right)$ are diffeomorphic to one another. In particular, $\pi_{1}(X \backslash \Delta)$ is isomorphic to $\pi_{1}\left(X^{\prime} \backslash \Delta^{\prime}\right)$.

Proof. By Nikulin[11, Theorem 1.14.1], the primitive embedding of $L(\Sigma)$ into the $K 3$ lattice Λ is unique up to $\operatorname{Aut}(\Lambda)$. Hence the assertion follows from Nikulin's connectedness theorem[10, Theorem 2.10].

Proof of Theorem 4.3. Let us consider the following:
Claim 1. Suppose that Σ satisfies $\operatorname{rank}(L(\Sigma))=18$ and the condition (N2). Then there exists an $A D E$-configuration of smooth rational curves Δ_{Σ} on a $K 3$ surface X_{Σ} such that $\Sigma_{\Delta_{\Sigma}}=\Sigma$ and $\pi_{1}\left(X_{\Sigma} \backslash \Delta_{\Sigma}\right)=\{1\}$.

We deduce Theorem 4.3 from Claim 1. Suppose that Δ is an $A D E$-configuration of smooth rational curves on a $K 3$ surface X such that Σ_{Δ} satisfies the conditions $(N 1)$ and $(N 2)$, and that $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$. By Lemma 4.7, there exists Σ_{1} satisfying $\operatorname{rank}\left(L\left(\Sigma_{1}\right)\right)=18$ and the condition (N2) such that $\Gamma\left(\Sigma_{\Delta}\right)$ is embedded into $\Gamma\left(\Sigma_{1}\right)$. By Claim 1, we have (X_{1}, Δ_{1}) such that $\Sigma_{\Delta_{1}}=\Sigma_{1}$ and $\pi_{1}\left(X_{1} \backslash \Delta_{1}\right)=\{1\}$. Let $\Delta^{\prime} \subset \Delta_{1}$ be the sub-configuration of smooth rational curves on X_{1} which corresponds to the subgraph $\Gamma\left(\Sigma_{\Delta}\right) \hookrightarrow \Gamma\left(\Sigma_{1}\right)=\Gamma\left(\Sigma_{\Delta_{1}}\right)$. There is a surjection from $\pi_{1}\left(X_{1} \backslash \Delta_{1}\right)$ to $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$, and hence $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$ is trivial. In particular, $\mathbb{Z}\left[\Delta^{\prime}\right]$ is primitive in $H^{2}\left(X_{1} ; \mathbb{Z}\right)$. Since $\Sigma_{\Delta^{\prime}}=\Sigma_{\Delta}$, Lemma 4.9 implies that $\pi_{1}(X \backslash \Delta)$ is isomorphic to $\pi_{1}\left(X_{1} \backslash \Delta^{\prime}\right)$. Thus $\pi_{1}(X \backslash \Delta)$ is trivial.

Let $f: X \rightarrow \mathbb{P}^{1}$ be an extremal elliptic $K 3$ surface. For a point $v \in R_{f}$, we denote the total fiber of f over v by

$$
\sum_{i=1}^{r_{v}} m_{v, i} C_{v, i},
$$

where $m_{v, i}$ is the multiplicity of the irreducible component $C_{v, i}$ of $f^{-1}(v)$. We denote by Γ_{f} the union of the zero section and all irreducible fibers $f^{-1}(v)\left(v \in R_{f}\right)$.
Claim 2. Suppose that $M W_{f}=(0)$. Suppose that a sub-configuration Δ of Γ_{f} satisfies the following two conditions.
(Z1) The number of $v \in R_{f}$ such that $m_{v, i}=1 \Longrightarrow$ The number of $C_{v, i} \subset \Delta$ is at most one.
(Z2) Either one of the following holds:
($Z 2-a$) The configuration Δ does not contain the zero section,
$(Z 2-b)$ there is a point $v_{1} \in R_{f}$ such that the type $\tau\left(S_{f, v_{1}}\right)$ is A_{1} and that $F_{1}:=f^{-1}\left(v_{1}\right)$ and Δ have no common irreducible components, or
$(Z 2-c) e u\left(\Sigma_{f}\right) \leq 23$.
Then $\pi_{1}(X \backslash \Delta)$ is trivial.
Proof of Claim 2. By Lemma 2.5, the assumption $M W_{f}=(0)$ implies that the cohomology classes $[O]$ and $\left[C_{v, i}\right]\left(v \in R_{f}, i=1, \ldots, r_{v}\right)$ of the irreducible components of Γ_{f} span $N S_{X}$. The relations among these generators are generated by

$$
\sum_{i=1}^{r_{v}} m_{v, i} C_{v, i}=\sum_{i=1}^{r_{v^{\prime}}} m_{v^{\prime}, i} C_{v^{\prime}, i} \quad\left(v, v^{\prime} \in R_{f}\right) .
$$

Therefore the condition (Z1) implies that the cohomology classes of the irreducible components of Δ constitute a subset of a \mathbb{Z}-basis of $N S_{X}$. Hence $\mathbb{Z}[\Delta]$ is primitive in $H^{2}(X ; \mathbb{Z})$. In particular, $\pi_{1}(X \backslash \Delta)$ is a perfect group by Lemma 4.6. On the other hand, the condition $(Z 1)$ implies that there exists a point $v_{0} \in \mathbb{P}^{1}$ such that every fiber of the restriction

$$
\left.f\right|_{X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right)}: X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right) \longrightarrow \mathbb{P}^{1} \backslash\left\{v_{0}\right\}
$$

of f has a reduced irreducible component. Then, by Nori's lemma[13, Lemma 1.5 (C)], if U is a non-empty connected classically open subset of $\mathbb{P}^{1} \backslash\left\{v_{0}\right\}$, then the inclusion of $\left.f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)\right)$ into $X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right)$ induces a surjection on the fundamental groups. The inclusion of $X \backslash\left(\Delta \cup f^{-1}\left(v_{0}\right)\right)$ into $X \backslash \Delta$ also induces a surjection on the fundamental groups. We shall show that there exists a small open disk U on $\mathbb{P}^{1} \backslash\left\{v_{0}\right\}$ such that

$$
G_{U}:=\pi_{1}\left(f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)\right)
$$

is abelian. When $(Z 2-a)$ occurs, we take a small open disk disjoint from R_{f} as U. Then G_{U} is abelian, because of $f^{-1}(U) \cap \Delta=\emptyset$. Suppose that $(Z 2-b)$ occurs. We can take v_{0} from $\mathbb{P}^{1} \backslash\left\{v_{1}\right\}$, because F_{1} has no irreducible components of multiplicity ≥ 2. We choose a small open disk U with the center v_{1}. There is a contraction from $f^{-1}(U) \backslash\left(f^{-1}(U) \cap \Delta\right)$ to $F_{1} \backslash\left(F_{1} \cap \Delta\right)$. Because $\pi_{1}\left(F_{1} \backslash\left(F_{1} \cap \Delta\right)\right)$ is abelian, so is G_{U}. Suppose that ($Z 2-c$) occurs. By Lemma 2.2, there exists a singular fiber $F_{2}:=f^{-1}\left(v_{2}\right)$ of type I_{1}, II, III or IV. Because F_{2} has no irreducible components of multiplicity ≥ 2, we can choose v_{0} from $\mathbb{P}^{1} \backslash\left\{v_{2}\right\}$. If F_{2} is of type I_{1} or II, then $F_{2} \cap \Delta$ consists of a nonsingular point of F_{2}, and $\pi_{1}\left(F_{2} \backslash\left(F_{2} \cap \Delta\right)\right)$ is abelian. Hence
G_{U} is also abelian. If F_{2} is of type III or IV, then $F_{2} \cap \Delta$ cannot coincide with the whole fiber F_{2}. Hence Lemma 4.8 implies that G_{U} is abelian. Therefore we see that $\pi_{1}(X \backslash \Delta)$ is abelian. Being both perfect and abelian, $\pi_{1}(X \backslash \Delta)$ is trivial.

Now we proceed to the proof of Claim 1. We list up all Σ satisfying the condition $(N 2)$ and $\operatorname{rank}(L(\Sigma))=18$. It consists of 297 elements. Among them, 199 elements can be the type Σ_{f} of singular fibers of some extremal elliptic $K 3$ surface $f: X \rightarrow \mathbb{P}^{1}$ with $M W_{f}=0$. For these configurations, $\pi_{1}(X \backslash \Delta)$ is trivial by Claim 2. The remaining 98 configurations are listed in the second column of Table 1 below. Each of them is a sub-configuration of Γ_{f} satisfying the conditions $(Z 1)$ and $(Z 2)$, where $f: X \rightarrow \mathbb{P}^{1}$ is the extremal elliptic $K 3$ surface with $M W_{f}=0$ whose number in Table 2 is given in the third column of Table 1. The fourth and fifth columns of Table 1 indicate Σ_{f} and $e u\left(\Sigma_{f}\right)$, respectively. In the case nos. 20, 28, 39, 41 and 85 in Table 1, we can choose the embedding of Δ into Γ_{f} in such a way that $(Z 2-b)$ holds. In the case nos. 30, 37, 57 and 63 in Table 1, we can choose the embedding of Δ into Γ_{f} in such a way that $(Z 2-a)$ holds. By Claim 2 again, $\pi_{1}(X \backslash \Delta)$ is trivial for these 98 configurations Δ.

Remark 4.10. The graph $\Gamma\left(A_{19}\right)$ (resp. $\left.\Gamma\left(D_{19}\right)\right)$ can be embedded into Γ_{f} in such a way that $(Z 1)$ and $(Z 2)$ are satisfied, where $f: X \rightarrow \mathbb{P}^{1}$ is the extremal elliptic $K 3$ surfaces whose number in Table 2 is 312 (resp. 320). Therefore, if $\Gamma(\Delta)$ is embedded in $\Gamma\left(A_{19}\right)$ or $\Gamma\left(D_{19}\right)$, then $\Gamma(\Delta)$ can be embedded in Γ_{f} in such a way that $(Z 1)$ and $(Z 2)$ are satisfied.

Table 1. List of embedding of Δ in Γ_{f}

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
1	$A_{2}+A_{3}+2 A_{4}+A_{5}$	19	$A_{2}+2 A_{3}+A_{4}+A_{6}$	23
2	$A_{1}+A_{2}+A_{3}+2 A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
3	$2 A_{1}+A_{4}+2 A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
4	$2 A_{2}+2 A_{4}+A_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
5	$A_{1}+A_{5}+2 A_{6}$	40	$A_{1}+A_{4}+A_{6}+A_{7}$	22
6	$A_{4}+2 A_{7}$	52	$A_{4}+A_{6}+A_{8}$	21
7	$A_{1}+A_{2}+2 A_{4}+A_{7}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
8	$A_{3}+2 A_{4}+A_{7}$	24	$A_{3}+A_{4}+A_{5}+A_{6}$	22
9	$A_{2}+2 A_{4}+A_{8}$	36	$A_{2}+A_{4}+A_{5}+A_{7}$	22
10	$2 A_{3}+A_{4}+A_{8}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
11	$A_{3}+A_{7}+A_{8}$	53	$A_{1}+A_{2}+A_{7}+A_{8}$	22
12	$A_{1}+2 A_{2}+A_{4}+A_{9}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
13	$A_{2}+A_{3}+A_{4}+A_{9}$	71	$2 A_{2}+A_{4}+A_{10}$	22
14	$A_{3}+A_{4}+A_{11}$	93	$A_{2}+A_{4}+A_{12}$	21
15	$A_{7}+A_{11}$	312	$A_{10}+E_{8}$	21
16	$2 A_{3}+A_{12}$	93	$A_{2}+A_{4}+A_{12}$	21
17	$A_{3}+A_{15}$	312	$A_{10}+E_{8}$	21
18	$A_{2}+2 A_{6}+D_{4}$	99	$A_{2}+A_{3}+A_{13}$	21
19	$2 A_{4}+A_{6}+D_{4}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
20	$2 A_{2}+A_{4}+A_{6}+D_{4}$	20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	24
21	$A_{2}+A_{4}+A_{8}+D_{4}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
22	$A_{6}+A_{8}+D_{4}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
23	$2 A_{2}+A_{10}+D_{4}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
24	$A_{4}+A_{10}+D_{4}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
25	$A_{2}+A_{12}+D_{4}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
26	$A_{14}+D_{4}$	320	$D_{10}+E_{8}$	22
27	$2 A_{2}+A_{4}+2 D_{5}$	210	$2 A_{2}+D_{14}$	22
28	$A_{1}+2 A_{2}+2 A_{4}+D_{5}$	157	$A_{1}+A_{2}+2 A_{4}+D_{7}$	24
29	$A_{2}+A_{3}+2 A_{4}+D_{5}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
30	$A_{2}+A_{6}+2 D_{5}$	193	$A_{2}+A_{6}+D_{10}$	22
31	$A_{3}+A_{4}+A_{6}+D_{5}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
32	$A_{2}+A_{4}+A_{7}+D_{5}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
33	$A_{6}+A_{7}+D_{5}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
34	$A_{2}+A_{3}+A_{8}+D_{5}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
35	$A_{3}+A_{10}+D_{5}$	69	$A_{1}+2 A_{2}+A_{3}+A_{10}$	23
36	$A_{2}+A_{11}+D_{5}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
37	$A_{4}+2 D_{7}$	213	$A_{4}+D_{14}$	21
38	$A_{3}+2 A_{4}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
39	$2 A_{2}+A_{3}+A_{4}+D_{7}$	20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	24
40	$A_{2}+A_{4}+A_{5}+D_{7}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
41	$A_{1}+2 A_{2}+A_{6}+D_{7}$	14	$2 A_{1}+2 A_{2}+2 A_{6}$	24

Table 1. List of embedding of Δ in Γ_{f}

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
42	$2 A_{2}+A_{7}+D_{7}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
43	$A_{4}+A_{7}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
44	$A_{1}+A_{2}+A_{8}+D_{7}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
45	$A_{3}+A_{8}+D_{7}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
46	$A_{11}+D_{7}$	320	$D_{10}+E_{8}$	22
47	$A_{2}+A_{4}+D_{5}+D_{7}$	200	$A_{2}+A_{5}+D_{11}$	22
48	$A_{6}+D_{5}+D_{7}$	186	$A_{9}+D_{9}$	21
49	$A_{2}+2 A_{4}+D_{8}$	66	$A_{2}+A_{7}+A_{9}$	21
50	$A_{4}+A_{6}+D_{8}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
51	$A_{2}+A_{8}+D_{8}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
52	$A_{10}+D_{8}$	320	$D_{10}+E_{8}$	22
53	$A_{1}+2 A_{4}+D_{9}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
54	$A_{2}+A_{3}+A_{4}+D_{9}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
55	$A_{3}+A_{6}+D_{9}$	76	$2 A_{1}+A_{6}+A_{10}$	22
56	$A_{2}+A_{7}+D_{9}$	50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	23
57	$2 A_{2}+D_{5}+D_{9}$	210	$2 A_{2}+D_{14}$	22
58	$A_{2}+D_{7}+D_{9}$	186	$A_{9}+D_{9}$	21
59	$2 A_{2}+A_{4}+D_{10}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
60	$A_{3}+A_{4}+D_{11}$	44	$2 A_{1}+2 A_{4}+A_{8}$	23
61	$A_{7}+D_{11}$	320	$D_{10}+E_{8}$	22
62	$A_{2}+D_{5}+D_{11}$	186	$A_{9}+D_{9}$	21
63	$D_{7}+D_{11}$	218	D_{18}	20
64	$A_{2}+A_{4}+D_{12}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
65	$A_{6}+D_{12}$	320	$D_{10}+E_{8}$	22
66	$A_{1}+2 A_{2}+D_{13}$	90	$2 A_{1}+2 A_{2}+A_{12}$	23
67	$A_{2}+A_{3}+D_{13}$	72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	23
68	$A_{3}+D_{15}$	320	$D_{10}+E_{8}$	22
69	$A_{2}+D_{16}$	320	$D_{10}+E_{8}$	22
70	$2 A_{1}+A_{4}+2 E_{6}$	303	$A_{1}+A_{4}+A_{5}+E_{8}$	23
71	$2 A_{1}+A_{2}+2 A_{4}+E_{6}$	23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	23
72	$A_{2}+2 A_{3}+A_{4}+E_{6}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
73	$2 A_{6}+E_{6}$	37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	23
74	$2 A_{3}+A_{6}+E_{6}$	41	$A_{5}+A_{6}+A_{7}$	21
75	$A_{2}+A_{3}+A_{7}+E_{6}$	37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	23
76	$2 A_{4}+D_{4}+E_{6}$	182	$A_{4}+A_{5}+D_{9}$	22
77	$A_{2}+A_{6}+D_{4}+E_{6}$	183	$A_{1}+A_{2}+A_{6}+D_{9}$	23
78	$A_{8}+D_{4}+E_{6}$	186	$A_{9}+D_{9}$	21
79	$A_{1}+D_{5}+2 E_{6}$	320	$D_{10}+E_{8}$	22
80	$A_{2}+2 D_{5}+E_{6}$	320	$D_{10}+E_{8}$	22
81	$A_{1}+A_{2}+A_{4}+D_{5}+E_{6}$	193	$A_{2}+A_{6}+D_{10}$	22
82	$A_{2}+A_{3}+D_{7}+E_{6}$	200	$A_{2}+A_{5}+D_{11}$	22

Table 1. List of embedding of Δ in Γ_{f}

no	Δ	No	Σ_{f}	$e u\left(\Sigma_{f}\right)$
83	$A_{5}+D_{7}+E_{6}$	320	$D_{10}+E_{8}$	22
84	$A_{2}+D_{10}+E_{6}$	193	$A_{2}+A_{6}+D_{10}$	22
85	$A_{1}+A_{2}+2 A_{4}+E_{7}$	17	$2 A_{1}+A_{2}+2 A_{4}+A_{6}$	24
86	$A_{3}+2 A_{4}+E_{7}$	18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	23
87	$2 A_{2}+D_{7}+E_{7}$	210	$2 A_{2}+D_{14}$	22
88	$A_{2}+2 A_{4}+E_{8}$	36	$A_{2}+A_{4}+A_{5}+A_{7}$	22
89	$2 A_{1}+2 A_{2}+A_{4}+E_{8}$	30	$2 A_{2}+A_{3}+A_{4}+A_{7}$	23
90	$2 A_{3}+A_{4}+E_{8}$	24	$A_{3}+A_{4}+A_{5}+A_{6}$	22
91	$A_{3}+A_{7}+E_{8}$	46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	23
92	$A_{2}+A_{4}+D_{4}+E_{8}$	182	$A_{4}+A_{5}+D_{9}$	22
93	$A_{6}+D_{4}+E_{8}$	186	$A_{9}+D_{9}$	21
94	$A_{1}+2 A_{2}+D_{5}+E_{8}$	210	$2 A_{2}+D_{14}$	22
95	$A_{2}+A_{3}+D_{5}+E_{8}$	198	$2 A_{2}+A_{3}+D_{11}$	23
96	$A_{3}+D_{7}+E_{8}$	213	$A_{4}+D_{14}$	21
97	$A_{2}+D_{8}+E_{8}$	210	$2 A_{2}+D_{14}$	22
98	$2 A_{1}+A_{2}+E_{6}+E_{8}$	320	$D_{10}+E_{8}$	22

Table 2. List of extremal elliptic K3 surfaces

No	Σ	$M W$	a	b	c
1	$6 A_{3}$	$\mathbb{Z} /(4) \times \mathbb{Z} /(4)$	4	0	4
2	$2 A_{1}+4 A_{4}$	$\mathbb{Z} /(5)$	10	0	10
3	$2 A_{2}+2 A_{3}+2 A_{4}$	(0)	60	0	60
4	$3 A_{1}+3 A_{5}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(6)$	2	0	6
5	$4 A_{2}+2 A_{5}$	$\mathbb{Z} /(3) \times \mathbb{Z} /(3)$	6	0	6
6	$A_{3}+3 A_{5}$	$\mathbb{Z} /(6)$	4	0	6
7	$2 A_{1}+2 A_{3}+2 A_{5}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	12	0	12
8	$A_{1}+2 A_{2}+A_{3}+2 A_{5}$	$\mathbb{Z} /(6)$	6	0	12
9	$2 A_{4}+2 A_{5}$	(0)	30	0	30
10	$2 A_{2}+A_{4}+2 A_{5}$	$\mathbb{Z} /(3)$	6	0	30
11	$A_{1}+A_{3}+A_{4}+2 A_{5}$	$\mathbb{Z} /(2)$	12	0	30
12	$A_{1}+A_{2}+2 A_{3}+A_{4}+A_{5}$	$\mathbb{Z} /(2)$	24	12	36
13	$3 A_{6}$	$\mathbb{Z} /(7)$	2	1	4
14	$2 A_{1}+2 A_{2}+2 A_{6}$	(0)	42	0	42
15	$2 A_{3}+2 A_{6}$	(0)	28	0	28
16	$A_{2}+A_{4}+2 A_{6}$	(0)	28	7	28
17	$2 A_{1}+A_{2}+2 A_{4}+A_{6}$	(0)	50	20	50
18	$A_{1}+A_{3}+2 A_{4}+A_{6}$	(0)	10	0	140
		20	0	70	
19	$A_{2}+2 A_{3}+A_{4}+A_{6}$	(0)	24	12	76
20	$A_{1}+2 A_{2}+A_{3}+A_{4}+A_{6}$	(0)	30	0	84
21	$2 A_{1}+2 A_{5}+A_{6}$	$\mathbb{Z} /(2)$	12	6	24
22	$A_{1}+2 A_{3}+A_{5}+A_{6}$	$\mathbb{Z} /(2)$	4	0	84
23	$A_{1}+A_{2}+A_{4}+A_{5}+A_{6}$	(0)	30	0	42
			18	6	72
24	$A_{3}+A_{4}+A_{5}+A_{6}$	(0)	12	0	70
25	$4 A_{1}+2 A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(4)$	4	0	4
26	$2 A_{2}+2 A_{7}$	(0)	24	0	24
		$\mathbb{Z} /(2)$	12	0	12
27	$A_{1}+A_{3}+2 A_{7}$	$\mathbb{Z} /(8)$	2	0	4
28	$2 A_{1}+3 A_{3}+A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z / (4)}$	4	0	8
29	$A_{2}+3 A_{3}+A_{7}$	$\mathbb{Z} /(4)$	4	0	24
30	$2 A_{2}+A_{3}+A_{4}+A_{7}$	(0)	12	0	120
31	$2 A_{1}+A_{2}+A_{3}+A_{4}+A_{7}$	$\mathbb{Z} /(2)$	20	0	24
32	$A_{1}+2 A_{5}+A_{7}$	$\mathbb{Z} /(2)$	6	0	24
33	$3 A_{1}+A_{3}+A_{5}+A_{7}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	8	0	12

Table 2. List of extremal elliptic K3 surfaces

No	Σ	MW	a	b	c
34	$A_{1}+A_{2}+A_{3}+A_{5}+A_{7}$	$\mathbb{Z} /(2)$	12	0	24
35	$2 A_{1}+A_{4}+A_{5}+A_{7}$	$\mathbb{Z} /(2)$	2	0	120
36	$A_{2}+A_{4}+A_{5}+A_{7}$	(0)	6	0	120
			24	0	30
37	$A_{1}+2 A_{2}+A_{6}+A_{7}$	(0)	24	0	42
38	$2 A_{1}+A_{3}+A_{6}+A_{7}$	$\mathbb{Z} /(2)$	12	4	20
39	$A_{2}+A_{3}+A_{6}+A_{7}$	(0)	4	0	168
40	$A_{1}+A_{4}+A_{6}+A_{7}$	(0)	2	0	280
			18	4	32
41	$A_{5}+A_{6}+A_{7}$	(0)	16	4	22
42	$2 A_{1}+2 A_{8}$	(0)	18	0	18
		$\mathbb{Z} /(3)$	4	2	10
43	$A_{1}+3 A_{2}+A_{3}+A_{8}$	$\mathbb{Z} /(3)$	12	0	18
44	$2 A_{1}+2 A_{4}+A_{8}$	(0)	20	10	50
45	$3 A_{2}+A_{4}+A_{8}$	$\mathbb{Z} /(3)$	12	3	12
46	$A_{1}+A_{2}+A_{3}+A_{4}+A_{8}$	(0)	6	0	180
47	$A_{1}+2 A_{2}+A_{5}+A_{8}$	$\mathbb{Z} /(3)$	6	0	18
48	$A_{2}+A_{3}+A_{5}+A_{8}$	$\mathbb{Z} /(3)$	4	0	18
49	$A_{1}+A_{4}+A_{5}+A_{8}$	(0)	18	0	30
50	$2 A_{1}+A_{2}+A_{6}+A_{8}$	(0)	18	0	42
51	$A_{1}+A_{3}+A_{6}+A_{8}$	(0)	10	4	52
52	$A_{4}+A_{6}+A_{8}$	(0)	18	9	22
53	$A_{1}+A_{2}+A_{7}+A_{8}$	(0)	18	0	24
54	$2 A_{9}$	(0)	10	0	10
		$\mathbb{Z} /(5)$	2	0	2
55	$A_{1}+A_{2}+2 A_{3}+A_{9}$	$\mathbb{Z} /(2)$	4	0	60
56	$2 A_{1}+2 A_{2}+A_{3}+A_{9}$	$\mathbb{Z} /(2)$	6	0	60
57	$A_{1}+2 A_{4}+A_{9}$	$\mathbb{Z} /(5)$	2	0	10
58	$3 A_{1}+A_{2}+A_{4}+A_{9}$	$\mathbb{Z} /(2)$	20	10	20
59	$2 A_{1}+A_{3}+A_{4}+A_{9}$	$\mathbb{Z} /(2)$	10	0	20
60	$2 A_{1}+A_{2}+A_{5}+A_{9}$	$\mathbb{Z} /(2)$	12	6	18
61	$A_{1}+A_{3}+A_{5}+A_{9}$	$\mathbb{Z} /(2)$	10	0	12
62	$A_{4}+A_{5}+A_{9}$	(0)	10	0	30
		$\mathbb{Z} /(2)$	10	5	10
63	$3 A_{1}+A_{6}+A_{9}$	$\mathbb{Z} /(2)$	4	2	36
64	$A_{1}+A_{2}+A_{6}+A_{9}$	(0)	10	0	42

Table 2. List of extremal elliptic $K 3$ surfaces

No	Σ	$M W$	a	b	c
65	$A_{3}+A_{6}+A_{9}$	(0)	2	0	140
66	$A_{2}+A_{7}+A_{9}$	(0)	10	0	24
67	$A_{1}+A_{8}+A_{9}$	(0)	10	0	18
68	$A_{2}+2 A_{3}+A_{10}$	(0)	24	12	28
69	$A_{1}+2 A_{2}+A_{3}+A_{10}$	(0)	12	0	66
70	$2 A_{4}+A_{10}$	(0)	10	5	30
71	$2 A_{2}+A_{4}+A_{10}$	(0)	6	3	84
			24	9	24
72	$2 A_{1}+A_{2}+A_{4}+A_{10}$	(0)	2	0	330
73	$A_{1}+A_{3}+A_{4}+A_{10}$	(0)	20	0	22
			12	4	38
74	$A_{1}+A_{2}+A_{5}+A_{10}$	(0)	6	0	66
			18	6	24
75	$A_{3}+A_{5}+A_{10}$	(0)	4	0	66
			12	0	22
76	$2 A_{1}+A_{6}+A_{10}$	(0)	12	2	26
77	$A_{2}+A_{6}+A_{10}$	(0)	4	1	58
			16	5	16
78	$A_{1}+A_{7}+A_{10}$	(0)	2	0	88
			10	2	18
79	$A_{8}+A_{10}$	(0)	10	1	10
80	$A_{1}+3 A_{2}+A_{11}$	$\mathbb{Z} /(3)$	6	0	12
81	$3 A_{1}+2 A_{2}+A_{11}$	$\mathbb{Z} /(6)$	2	0	12
82	$A_{1}+2 A_{3}+A_{11}$	$\mathbb{Z} /(4)$	4	0	6
83	$2 A_{2}+A_{3}+A_{11}$	$\mathbb{Z} /(3)$	4	0	12
		$\mathbb{Z} /(6)$	4	2	4
84	$2 A_{1}+A_{2}+A_{3}+A_{11}$	$\mathbb{Z} /(4)$	6	0	6
		$\mathbb{Z} /(2)$	12	0	12
85	$3 A_{1}+A_{4}+A_{11}$	$\mathbb{Z} /(2)$	6	0	20
86	$A_{1}+A_{2}+A_{4}+A_{11}$	(0)	12	0	30
87	$2 A_{1}+A_{5}+A_{11}$	$\mathbb{Z} /(2)$	6	0	12
		$\mathbb{Z} /(6)$	2	0	4
88	$A_{2}+A_{5}+A_{11}$	$\mathbb{Z} /(3)$	4	0	6
89	$A_{1}+A_{6}+A_{11}$	(0)	4	0	42
90	$2 A_{1}+2 A_{2}+A_{12}$	(0)	12	6	42
91	$A_{1}+A_{2}+A_{3}+A_{12}$	(0)	6	0	52
7					

Table 2. List of extremal elliptic $K 3$ surfaces

No	Σ	$M W$	a	b	c
92	$2 A_{1}+A_{4}+A_{12}$	(0)	2	0	130
			18	8	18
93	$A_{2}+A_{4}+A_{12}$	(0)	6	3	34
94	$A_{1}+A_{5}+A_{12}$	(0)	10	2	16
95	$A_{6}+A_{12}$	(0)	2	1	46
96	$A_{1}+2 A_{2}+A_{13}$	(0)	6	0	42
		$\mathbb{Z} /(2)$	6	3	12
97	$3 A_{1}+A_{2}+A_{13}$	$\mathbb{Z} /(2)$	2	0	42
98	$2 A_{1}+A_{3}+A_{13}$	$\mathbb{Z} /(2)$	6	2	10
99	$A_{2}+A_{3}+A_{13}$	(0)	4	0	42
100	$A_{1}+A_{4}+A_{13}$	(0)	2	0	70
			8	2	18
		$\mathbb{Z} /(2)$	2	1	18
101	$A_{5}+A_{13}$	(0)	4	2	22
102	$2 A_{2}+A_{14}$	$\mathbb{Z} /(3)$	4	1	4
103	$2 A_{1}+A_{2}+A_{14}$	(0)	12	6	18
		$\mathbb{Z} /(3)$	2	0	10
104	$A_{1}+A_{3}+A_{14}$	(0)	10	0	12
105	$A_{4}+A_{14}$	(0)	10	5	10
106	$3 A_{1}+A_{15}$	$\mathbb{Z} /(4)$	2	0	4
107	$A_{1}+A_{2}+A_{15}$	(0)	10	2	10
		$\mathbb{Z} /(2)$	4	0	6
108	$A_{3}+A_{15}$	$\mathbb{Z} /(4)$	2	0	2
109	$2 A_{1}+A_{16}$	(0)	2	0	34
			4	2	18
110	$A_{2}+A_{16}$	(0)	6	3	10
111	$A_{1}+A_{17}$	(0)	4	2	10
		$\mathbb{Z} /(3)$	2	0	2
112	A_{18}	(0)	2	1	10
113	$2 A_{4}+2 D_{5}$	(0)	20	0	20
114	$A_{3}+2 A_{5}+D_{5}$	$\mathbb{Z} /(2)$	12	0	12
115	$2 A_{4}+A_{5}+D_{5}$	(0)	20	0	30
116	$A_{1}+A_{3}+A_{4}+A_{5}+D_{5}$	$\mathbb{Z} /(2)$	12	0	20
117	$A_{1}+2 A_{6}+D_{5}$	(0)	14	0	28
118	$2 A_{2}+A_{3}+A_{6}+D_{5}$	(0)	12	0	84
119	$A_{1}+A_{2}+A_{4}+A_{6}+D_{5}$	(0)	20	0	42

Table 2. List of extremal elliptic $K 3$ surfaces

No	Σ	MW	a	b	c
120	$A_{2}+A_{5}+A_{6}+D_{5}$	(0)	6	0	84
			12	0	42
121	$A_{1}+A_{7}+2 D_{5}$	$\mathbb{Z} /(4)$	2	0	8
122	$A_{1}+A_{2}+A_{3}+A_{7}+D_{5}$	$\mathbb{Z} /(4)$	6	0	8
123	$2 A_{1}+A_{4}+A_{7}+D_{5}$	$\mathbb{Z} /(2)$	8	0	20
124	$A_{8}+2 D_{5}$	(0)	8	4	20
125	$A_{1}+A_{4}+A_{8}+D_{5}$	(0)	2	0	180
			18	0	20
126	$A_{5}+A_{8}+D_{5}$	(0)	12	0	18
127	$2 A_{2}+A_{9}+D_{5}$	(0)	6	0	60
128	$2 A_{1}+A_{2}+A_{9}+D_{5}$	$\mathbb{Z} /(2)$	2	0	60
129	$A_{1}+A_{3}+A_{9}+D_{5}$	$\mathbb{Z} /(2)$	8	4	12
130	$A_{4}+A_{9}+D_{5}$	(0)	10	0	20
131	$A_{1}+A_{2}+A_{10}+D_{5}$	(0)	14	4	20
132	$2 A_{1}+A_{11}+D_{5}$	$\mathbb{Z} /(4)$	2	0	6
133	$A_{2}+A_{11}+D_{5}$	$\mathbb{Z} /(2)$	6	0	6
134	$A_{1}+A_{12}+D_{5}$	(0)	2	0	52
			6	2	18
135	$A_{13}+D_{5}$	(0)	6	2	10
136	$3 D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	2
137	$2 A_{3}+2 D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	4
138	$2 A_{2}+2 A_{4}+D_{6}$	(0)	30	0	30
139	$2 A_{1}+2 A_{5}+D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	6	0	6
140	$A_{1}+2 A_{3}+A_{5}+D_{6}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	12
141	$A_{3}+A_{4}+A_{5}+D_{6}$	$\mathbb{Z} /(2)$	4	0	30
142	$2 A_{6}+D_{6}$	(0)	14	0	14
143	$A_{2}+A_{4}+A_{6}+D_{6}$	(0)	6	0	70
144	$A_{1}+2 A_{2}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	6	0	24
145	$A_{2}+A_{3}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	4	0	24
146	$A_{1}+A_{4}+A_{7}+D_{6}$	$\mathbb{Z} /(2)$	6	2	14
147	$A_{4}+A_{8}+D_{6}$	(0)	4	2	46
148	$A_{1}+A_{2}+A_{9}+D_{6}$	$\mathbb{Z} /(2)$	6	0	10
		$\mathbb{Z} /(2)$	4	2	16
149	$A_{3}+A_{9}+D_{6}$	$\mathbb{Z} /(2)$	4	0	10
150	$A_{2}+A_{10}+D_{6}$	(0)	6	0	22
151	$A_{1}+A_{11}+D_{6}$	$\mathbb{Z} /(2)$	4	0	6

Table 2. List of extremal elliptic K3 surfaces

No	Σ	$M W$	a	b	c
152	$A_{12}+D_{6}$	(0)	4	2	14
153	$A_{2}+A_{5}+D_{5}+D_{6}$	$\mathbb{Z} /(2)$	6	0	12
154	$A_{7}+D_{5}+D_{6}$	$\mathbb{Z} /(2)$	4	0	8
155	$2 A_{2}+2 D_{7}$	(0)	12	0	12
156	$A_{2}+3 A_{3}+D_{7}$	$\mathbb{Z} /(4)$	8	4	8
157	$A_{1}+A_{2}+2 A_{4}+D_{7}$	(0)	10	0	60
158	$A_{2}+A_{3}+A_{6}+D_{7}$	(0)	8	4	44
159	$A_{1}+A_{4}+A_{6}+D_{7}$	(0)	4	0	70
160	$A_{5}+A_{6}+D_{7}$	(0)	2	0	84
161	$2 A_{1}+A_{2}+A_{7}+D_{7}$	$\mathbb{Z} /(2)$	4	0	24
162	$A_{1}+A_{3}+A_{7}+D_{7}$	$\mathbb{Z} /(4)$	2	0	8
163	$2 A_{1}+A_{9}+D_{7}$	$\mathbb{Z} /(2)$	4	0	10
164	$A_{2}+A_{9}+D_{7}$	(0)	2	0	60
165	$A_{1}+A_{10}+D_{7}$	(0)	4	0	22
166	$A_{11}+D_{7}$	$\mathbb{Z} /(4)$	2	1	2
167	$A_{1}+A_{5}+D_{5}+D_{7}$	$\mathbb{Z} /(2)$	4	0	12
168	$A_{5}+D_{6}+D_{7}$	$\mathbb{Z} /(2)$	2	0	12
169	$2 A_{1}+2 D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	2
170	$2 A_{2}+2 A_{3}+D_{8}$	$\mathbb{Z} /(2)$	12	0	12
171	$2 A_{5}+D_{8}$	$\mathbb{Z} /(2)$	6	0	6
172	$2 A_{1}+A_{3}+A_{5}+D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	12
173	$A_{1}+A_{4}+A_{5}+D_{8}$	$\mathbb{Z} /(2)$	2	0	30
174	$2 A_{2}+A_{6}+D_{8}$	(0)	12	6	24
175	$A_{1}+A_{2}+A_{7}+D_{8}$	$\mathbb{Z} /(2)$	2	0	24
176	$A_{1}+A_{9}+D_{8}$	$\mathbb{Z} /(2)$	2	0	10
177	$2 D_{5}+D_{8}$	$\mathbb{Z} /(2)$	4	0	4
178	$A_{1}+A_{3}+D_{6}+D_{8}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	2	0	4
179	$2 D_{9}$	(0)	4	0	4
180	$A_{1}+2 A_{2}+A_{4}+D_{9}$	(0)	12	0	30
181	$A_{1}+A_{3}+A_{5}+D_{9}$	$\mathbb{Z} /(2)$	4	0	12
182	$A_{4}+A_{5}+D_{9}$	(0)	4	0	30
183	$A_{1}+A_{2}+A_{6}+D_{9}$	(0)	4	0	42
184	$2 A_{1}+A_{7}+D_{9}$	$\mathbb{Z} /(2)$	4	0	8
185	$A_{1}+A_{8}+D_{9}$	(0)	4	0	18
186	$A_{9}+D_{9}$	(0)	4	0	10
187	$A_{4}+D_{5}+D_{9}$	(0)	20		

Table 2. List of extremal elliptic K3 surfaces

No	Σ	$M W$	a	b	c
188	$2 A_{1}+2 A_{3}+D_{10}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	0	4
189	$2 A_{4}+D_{10}$	(0)	10	0	10
190	$A_{1}+A_{3}+A_{4}+D_{10}$	$\mathbb{Z} /(2)$	2	0	20
191	$3 A_{1}+A_{5}+D_{10}$	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$	4	2	4
192	$A_{3}+A_{5}+D_{10}$	$\mathbb{Z} /(2)$	2	0	12
193	$A_{2}+A_{6}+D_{10}$	(0)	2	0	42
194	$A_{8}+D_{10}$	(0)	2	0	18
195	$A_{1}+A_{2}+D_{5}+D_{10}$	$\mathbb{Z} /(2)$	4	0	6
196	$A_{2}+D_{6}+D_{10}$	$\mathbb{Z} /(2)$	2	0	6
197	$A_{1}+D_{7}+D_{10}$	$\mathbb{Z} /(2)$	2	0	4
198	$2 A_{2}+A_{3}+D_{11}$	(0)	12	0	12
199	$A_{1}+A_{2}+A_{4}+D_{11}$	(0)	6	0	20
200	$A_{2}+A_{5}+D_{11}$	(0)	6	0	12
201	$A_{1}+A_{6}+D_{11}$	(0)	6	2	10
202	$2 A_{1}+2 A_{2}+D_{12}$	$\mathbb{Z} /(2)$	6	0	6
203	$A_{1}+A_{2}+A_{3}+D_{12}$	$\mathbb{Z} /(2)$	4	0	6
204	$2 A_{1}+A_{4}+D_{12}$	$\mathbb{Z} /(2)$	4	2	6
205	$A_{1}+D_{5}+D_{12}$	$\mathbb{Z} /(2)$	2	0	4
206	$D_{6}+D_{12}$	$\mathbb{Z} /(2)$	2	0	2
207	$A_{1}+A_{4}+D_{13}$	(0)	2	0	20
208	$A_{5}+D_{13}$	(0)	2	0	12
209	$D_{5}+D_{13}$	(0)	4	0	4
210	$2 A_{2}+D_{14}$	(0)	6	0	6
211	$2 A_{1}+A_{2}+D_{14}$	$\mathbb{Z} /(2)$	2	0	6
212	$A_{1}+A_{3}+D_{14}$	$\mathbb{Z} /(2)$	2	0	4
213	$A_{4}+D_{14}$	(0)	4	2	6
214	$A_{1}+A_{2}+D_{15}$	(0)	4	0	6
215	$2 A_{1}+D_{16}$	$\mathbb{Z} /(2)$	2	0	2
216	$A_{2}+D_{16}$	$\mathbb{Z} /(2)$	2	1	2
217	$A_{1}+D_{17}$	(0)	2	0	4
218	D_{18}	(0)	2	0	2
219	$3 E_{6}$	$\mathbb{Z} /(3)$	2	1	2
220	$2 A_{3}+2 E_{6}$	(0)	12	0	12
221	$A_{1}+A_{3}+2 A_{4}+E_{6}$	(0)	20	0	30
222	$A_{1}+A_{5}+2 E_{6}$	$\mathbb{Z} /(3)$	2	0	6
223	$A_{2}+2 A_{5}+E_{6}$	$\mathbb{Z} /(3)$	6		
10					

Table 2. List of extremal elliptic $K 3$ surfaces

No	Σ	$M W$	a	b	c
224	$2 A_{2}+A_{3}+A_{5}+E_{6}$	$\mathbb{Z} /(3)$	6	0	12
225	$A_{3}+A_{4}+A_{5}+E_{6}$	(0)	12	0	30
226	$A_{6}+2 E_{6}$	(0)	6	3	12
227	$A_{1}+A_{2}+A_{3}+A_{6}+E_{6}$	(0)	6	0	84
		12	0	42	
228	$2 A_{1}+A_{4}+A_{6}+E_{6}$	(0)	20	10	26
229	$A_{2}+A_{4}+A_{6}+E_{6}$	(0)	18	3	18
230	$A_{1}+A_{5}+A_{6}+E_{6}$	(0)	6	0	42
231	$A_{1}+A_{4}+A_{7}+E_{6}$	(0)	2	0	120
232	$A_{5}+A_{7}+E_{6}$	(0)	6	0	24
233	$2 A_{2}+A_{8}+E_{6}$	$\mathbb{Z} /(3)$	6	3	6
234	$2 A_{1}+A_{2}+A_{8}+E_{6}$	$\mathbb{Z} /(3)$	2	0	18
235	$A_{1}+A_{3}+A_{8}+E_{6}$	(0)	12	0	18
236	$A_{4}+A_{8}+E_{6}$	(0)	12	3	12
237	$A_{1}+A_{2}+A_{9}+E_{6}$	(0)	12	6	18
238	$A_{3}+A_{9}+E_{6}$	(0)	10	0	12
239	$2 A_{1}+A_{10}+E_{6}$	(0)	2	0	66
240	$A_{2}+A_{10}+E_{6}$	(0)	6	3	18
241	$A_{1}+A_{11}+E_{6}$	(0)	6	0	12
		$\mathbb{Z / (3)}$	2	0	4
242	$A_{12}+E_{6}$	(0)	4	1	10
243	$A_{3}+A_{4}+D_{5}+E_{6}$	(0)	12	0	20
244	$A_{1}+A_{6}+D_{5}+E_{6}$	(0)	2	0	84
245	$A_{7}+D_{5}+E_{6}$	(0)	8	0	12
246	$D_{6}+2 E_{6}$	(0)	6	0	6
247	$A_{2}+A_{4}+D_{6}+E_{6}$	(0)	6	0	30
248	$A_{6}+D_{6}+E_{6}$	(0)	4	2	22
249	$A_{1+A_{4}+D_{7}+E_{6}}$	(0)	4	0	30
250	$D_{5}+D_{7}+E_{6}$	(0)	4	0	12
251	$A_{4}+D_{8}+E_{6}$	(0)	8	2	8
252	$A_{1}+A_{2}+D_{9}+E_{6}$	(0)	6	0	12
253	$A_{3}+D_{9}+E_{6}$	(0)	4	0	12
254	$A_{1}+D_{11}+E_{6}$	(0)	2	0	12
255	$D_{12}+E_{6}$	(0)	4	2	4
256	$2 A_{2}+2 E_{7}$	(0)	6	0	6
257	$A_{1}+A_{3}+2 E_{7}$	2	0	4	
		$\mathbb{Z} /(2)$			
2					

Table 2. List of extremal elliptic K3 surfaces

No	Σ	MW	a	b	c
258	$A_{4}+2 E_{7}$	(0)	4	2	6
259	$A_{1}+2 A_{3}+A_{4}+E_{7}$	$\mathbb{Z} /(2)$	4	0	20
260	$2 A_{2}+A_{3}+A_{4}+E_{7}$	(0)	12	0	30
261	$2 A_{3}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	4	0	12
262	$A_{1}+A_{2}+A_{3}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	6	0	12
263	$2 A_{1}+A_{4}+A_{5}+E_{7}$	$\mathbb{Z} /(2)$	8	2	8
264	$A_{2}+A_{4}+A_{5}+E_{7}$	(0)	6	0	30
265	$A_{1}+2 A_{2}+A_{6}+E_{7}$	(0)	6	0	42
266	$A_{2}+A_{3}+A_{6}+E_{7}$	(0)	4	0	42
267	$A_{1}+A_{4}+A_{6}+E_{7}$	(0)	2	0	70
			8	2	18
268	$A_{5}+A_{6}+E_{7}$	(0)	4	2	22
269	$2 A_{2}+A_{7}+E_{7}$	(0)	6	0	24
270	$2 A_{1}+A_{2}+A_{7}+E_{7}$	$\mathbb{Z} /(2)$	2	0	24
271	$A_{1}+A_{3}+A_{7}+E_{7}$	$\mathbb{Z} /(2)$	4	0	8
272	$A_{4}+A_{7}+E_{7}$	(0)	6	2	14
273	$A_{1}+A_{2}+A_{8}+E_{7}$	(0)	6	0	18
274	$A_{3}+A_{8}+E_{7}$	(0)	4	0	18
275	$2 A_{1}+A_{9}+E_{7}$	$\mathbb{Z} /(2)$	2	0	10
276	$A_{2}+A_{9}+E_{7}$	(0)	6	0	10
		$\mathbb{Z} /(2)$	4	1	4
277	$A_{1}+A_{10}+E_{7}$	(0)	2	0	22
			6	2	8
278	$A_{11}+E_{7}$	(0)	4	0	6
279	$D_{4}+2 E_{7}$	$\mathbb{Z} /(2)$	2	0	2
280	$A_{2}+A_{4}+D_{5}+E_{7}$	(0)	6	0	20
281	$A_{1}+A_{5}+D_{5}+E_{7}$	$\mathbb{Z} /(2)$	2	0	12
282	$A_{6}+D_{5}+E_{7}$	(0)	6	2	10
283	$A_{2}+A_{3}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	4	0	6
284	$A_{5}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	4	2	4
285	$D_{5}+D_{6}+E_{7}$	$\mathbb{Z} /(2)$	2	0	4
286	$A_{1}+A_{3}+D_{7}+E_{7}$	$\mathbb{Z} /(2)$	4	0	4
287	$A_{4}+D_{7}+E_{7}$	(0)	2	0	20
288	$A_{1}+A_{2}+D_{8}+E_{7}$	$\mathbb{Z} /(2)$	2	0	6
289	$A_{2}+D_{9}+E_{7}$	(0)	4	0	6
290	$A_{1}+D_{10}+E_{7}$	$\mathbb{Z} /(2)$	2	0	2

Table 2. List of extremal elliptic K3 surfaces

No	Σ	$M W$	a	b	c
291	$D_{11}+E_{7}$	(0)	2	0	4
292	$A_{2}+A_{3}+E_{6}+E_{7}$	(0)	6	0	12
293	$A_{1}+A_{4}+E_{6}+E_{7}$	(0)	2	0	30
294	$A_{5}+E_{6}+E_{7}$	(0)	6	0	6
295	$D_{5}+E_{6}+E_{7}$	(0)	2	0	12
296	$2 A_{1}+2 E_{8}$	(0)	2	0	2
297	$A_{2}+2 E_{8}$	(0)	2	1	2
298	$2 A_{2}+2 A_{3}+E_{8}$	(0)	12	0	12
299	$2 A_{1}+2 A_{4}+E_{8}$	(0)	10	0	10
300	$A_{1}+A_{2}+A_{3}+A_{4}+E_{8}$	(0)	6	0	20
301	$2 A_{5}+E_{8}$	(0)	6	0	6
302	$A_{2}+A_{3}+A_{5}+E_{8}$	(0)	6	0	12
303	$A_{1}+A_{4}+A_{5}+E_{8}$	(0)	2	0	30
304	$2 A_{2}+A_{6}+E_{8}$	(0)	6	3	12
305	$2 A_{1}+A_{2}+A_{6}+E_{8}$	(0)	2	0	42
306	$A_{1}+A_{3}+A_{6}+E_{8}$	(0)	6	2	10
307	$A_{4}+A_{6}+E_{8}$	(0)	2	1	18
308	$A_{1}+A_{2}+A_{7}+E_{8}$	(0)	2	0	24
309	$2 A_{1}+A_{8}+E_{8}$	(0)	2	0	18
310	$A_{2}+A_{8}+E_{8}$	(0)	6	3	6
311	$A_{1}+A_{9}+E_{8}$	(0)	2	0	10
312	$A_{10}+E_{8}$	(0)	2	1	6
313	$2 D_{5}+E_{8}$	(0)	4	0	4
314	$A_{1}+A_{4}+D_{5}+E_{8}$	(0)	2	0	20
315	$A_{5}+D_{5}+E_{8}$	(0)	2	0	12
316	$2 A_{2}+D_{6}+E_{8}$	(0)	6	0	6
317	$A_{4}+D_{6}+E_{8}$	(0)	4	2	6
318	$A_{1}+A_{2}+D_{7}+E_{8}$	(0)	4	0	6
319	$A_{1}+D_{9}+E_{8}$	(0)	2	0	4
320	$D_{10}+E_{8}$	(0)	2	0	2
321	$A_{1}+A_{3}+E_{6}+E_{8}$	(0)	2	0	12
322	$A_{4}+E_{6}+E_{8}$	(0)	2	1	8
323	$D_{4}+E_{6}+E_{8}$	(0)	4	2	4
324	$A_{1}+A_{2}+E_{7}+E_{8}$	(0)	2	0	6
325	$A_{3}+E_{7}+E_{8}$	(0)	2	0	4

References

1. E. Artal-Bartolo, H. Tokunaga and D. Q. Zhang. Miranda-Persson's problem on extremal elliptic K3 surfaces. preprint. http://xxx.lanl.gov/list/math.AG, 9809065.
2. N. Bourbaki. Éléments de mathématique. Groupes et algèbres de Lie. Chapitre IV-VI. Hermann, Paris, 1968.
3. J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups. Second edition. Grundlehren der Mathematischen Wissenschaften, 290, Springer, New York, 1993.
4. A. Fujiki. Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math. Sci. 24 (1988), no. 1, 1-97.
5. S. Kondō. Automorphisms of algebraic K3 surfaces which act trivially on Picard groups. J. Math. Soc. Japan 44 (1992), no. 1, 75-98.
6. S. Kondō. Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces. With an appendix by Shigeru Mukai. Duke Math. J. 92 (1998), no. 3, 593-603.
7. R. Miranda and U. Persson. Mordell-Weil groups of extremal elliptic K3 surfaces. Problems in the theory of surfaces and their classification (Cortona, 1988), Sympos. Math., XXXII, Academic Press, London, 1991, pp. 167-192.
8. D. R. Morrison. On K3 surfaces with large Picard number. Invent. Math. 75 (1984), no. 1, 105-121.
9. S. Mukai. Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94 (1988), no. 1, 183-221.
10. V. V. Nikulin. Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. (1980), Issue 2, pp. 71-135.
11. V. V. Nikulin. Integer symmetric bilinear forms and some of their applications. Math. USSR Izvestija 14 (1980), no. 1, 103-167.
12. K. Nishiyama. The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups. Japan. J. Math. (N.S.) 22 (1996), no. 2, 293-347.
13. M. V. Nori. Zariski's conjecture and related problems. Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305-344.
14. I. Piateskii-Shapiro and I. R. Shafarevich. A Torelli theorem for algebraic surfaces of type K3. Math. USSR Izv. 35 (1971), 530-572.
15. J.-P. Serre. A course in arithmetic. Graduate Texts in Mathematics, 7, Springer, New York, 1973.
16. T. Shioda and H. Inose. On singular K3 surfaces. Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119-136.
17. A. N. Todorov. Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces. Invent. Math. 61 (1980), no. 3, 251-265.
18. G. Xiao. Galois covers between K3 surfaces. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 73-88.
19. Q. Ye. On extremal elliptic K3 surfaces. preprint. http://xxx.lanl.gov/abs/math.AG, 9901081

Department of Mathematics, Faculty of Science, Sapporo, JAPAN 061-0081
E-mail address: shimada@math.sci.hokudai.ac.jp
Department of Mathematics, National University of Singapore, Lower KentRidge Road, SINGAPORE 119260

E-mail address: matzdq@math.nus.edu.sg

[^0]: 1991 Mathematics Subject Classification. 14J28.

