COMPUTATIONAL DATA OF THE PAPER "THE AUTOMORPHISM GROUP OF A SUPERSINGULAR K3 SURFACE WITH ARTIN VARIANT 1 IN CHARACTERISTIC 3"

ICHIRO SHIMADA

We present the computational data that are used for the study in the paper

[KS] Shigeyuki Kondo and Ichiro Shimada. The automorphism group of a supersingular K3 surface with Artin variant 1 in characteristic 3. preprint, 2012.

This paper [KS] is available from

http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints.html

The folder containing this document includes the following files:

- compdataAutFQChar3.txt (file size: 1.1 MB),
- FQprojaut.txt (file size: 636 MB),
- FQprojautS.txt (file size: 870 MB).

The two big files FQprojaut.txt and FQprojautS.txt are compressed to

• FQprojautfolder.tar.gz (file size: 274 MB).

1. Summary of the paper [KS]

Let $X \subset \mathbb{P}^3$ be the Fermat quartic surface in characteristic 3, that is

$$X = \{w^4 + x^4 + y^4 + 1 = 0\},\$$

where w, x, y are the affine coordinates of \mathbb{P}^3 . We denote by

$$X \xrightarrow{\psi_i} Y_i \xrightarrow{\pi_i} \mathbb{P}^2$$

the Stein factorization of the morphism $\phi_i : X \to \mathbb{P}^2$ defined in Proposition 1.1 of the paper [KS]. The involution $g_i : X \to X$ is obtained as the deck-transformation of $\pi_i : Y_i \to \mathbb{P}^2$. The birational morphism $\psi_i : X \to Y_i$ is given by the rational map

$$(w, x, y) \mapsto [u : x_0 : x_1 : x_2] = [G_i : F_{i0} : F_{i1} : F_{i2}]$$

to the weighted projective space $\mathbb{P}(3, 1, 1, 1)$, where G and H_{ij} are polynomials in w, x, y with coefficients in \mathbb{F}_9 . The normal K3 surface Y_i is defined in $\mathbb{P}(3, 1, 1, 1)$ by

$$u^2 + f_i(x_0, x_1, x_2) = 0$$

2010 Mathematics Subject Classification. 14J28, 14G17, 11H06.

where f_i is the homogeneous polynomial of degree 6 given in Proposition 1.2. The involution $g_i: X \to X$ is given by the rational map

$$(w, x, y) \mapsto [H_{i0} : H_{i1} : H_{i2} : H_{i3}]$$

to P^3 , where H_{ij} are polynomials in w, x, y with coefficients in \mathbb{F}_9 .

The Fermat quartic surface X contains 112 lines ℓ_{ν} . The Néron-Severi lattice S of X is spanned by the classes of these lines. In particular, the classes of the lines in (3.1) of the paper [KS] form a basis of S. We use this basis or its dual to indicate elements of $S \otimes \mathbb{Q}$. Let $h_0 \in S$ denote the class of the hyperplane section of X. Let T be a negative-definite root lattice of type $2A_2$. The positive cone \mathcal{P}_S of $S \otimes \mathbb{R}$ containing h_0 is decomposed into \mathcal{R}_S -chambers by the embedding $S \hookrightarrow L$ and the Weyl vector $w_0 \in L$, where L is an even unimodular overlattice of $S \oplus T$ obtained by adding vectors $a_1, a_2 \in S^{\vee} \oplus T^{\vee}$ to $S \oplus T$. The \mathcal{R}_S -chamber $D_{S0} \subset \mathcal{P}_S$ containing h_0 is bounded by 112 + 648 + 5184 walls. Each wall is defined as the hyperplane $(r_S)^{\perp} \subset S \otimes \mathbb{R}$ perpendicular to r_S , where $r \in L$ is a Leech root with respect to w_0 such that its projection r_S to S^{\vee} satisfies $(r_S, r_S)_S < 0$. The projective automorphism group $\operatorname{Aut}(X, h_0) = \operatorname{PGU}(4, \mathbb{F}_9)$ of order 13,063,680 acts on D_{S0} and hence on the set of the vectors

$$\mathcal{W}(D_{S0}) := \{ r_S \mid (r_S)^{\perp} \text{ bounds } D_{S0} \}.$$

This action decomposes $\widetilde{\mathcal{W}}(D_{S0})$ into three orbits $\widetilde{\mathcal{W}}_{112}$, $\widetilde{\mathcal{W}}_{648}$, $\widetilde{\mathcal{W}}_{5184}$. The set $\widetilde{\mathcal{W}}_{112}$ coincides with the set of the classes of the lines ℓ_{ν} on X. The vector b_1 is an element of $\widetilde{\mathcal{W}}_{648}$, and the vector b_2 is an element of $\widetilde{\mathcal{W}}_{5184}$.

For i = 1 and 2, the morphism $\phi_i : X \to \mathbb{P}^2$ is given by the polarization $m_i \in S$ of degree 2, which is located on the wall $(b_i)_S^{\perp}$ of D_{S0} . Using the expression (5.2), (5.3) of m_i , we can regard F_{i0}, F_{i1}, F_{i2} as global sections of the line bundle corresponding to m_i .

The morphism $g_i: X \to X$ is given by the polarization $h_i \in S$ of degree 4. Using the expression (7.1), (7.2) of h_i , we can regard $H_{i0}, H_{i1}, H_{i2}, H_{i3}$ as global sections of the line bundle corresponding to h_i .

The action g_{i*} of g_i on S is given by $v \mapsto vA_i$, so that we have $h_i = h_0A_i$. The key point of the proof of the main result

$$\operatorname{Aut}(X) = \langle \operatorname{Aut}(X, h_0), g_1, g_2 \rangle$$

is that

$$h_0 A_1 = h_0 + 3 b_1$$
 and $h_0 A_2 = h_0 + 9 b_2$

holds. The matrix A_i is calculated by the following two methods, which are independent of each other:

COMPUTATIONAL DATA

- (1) The eigenspace of A_i in $S \otimes \mathbb{Q}$ with eigenvalue 1 is spanned by m_i and the vectors $\gamma + \gamma'$, where $\{\gamma, \gamma'\}$ is a pair of the classes of (-2)-curves contracted by ϕ_i that are interchanged by g_i .
- (2) The image of a line ℓ_{ν} by g_i is calculated by the parametric representation ρ_{ν} of ℓ_{ν} and the polynomials $H_{i0}, H_{i1}, H_{i2}, H_{i3}$, provided that ℓ_{ν} is not contained in the common zero of $H_{i0}, H_{i1}, H_{i2}, H_{i3}$. Hence the images $[\ell_{\nu}]^{g_i}$ of classes $[\ell_{\nu}]$ that span $S \otimes \mathbb{Q}$ are calculated.

2. FILE compdataAutFQChar3.txt

In the file "compdataAutFQChar3.txt", the following data are given.

• The elements of the finite field \mathbb{F}_9 are written as

$$\begin{split} \texttt{F9} := [\texttt{0},\texttt{sqrt}(2),\texttt{2}*\texttt{sqrt}(2),\texttt{1},\texttt{1}+\texttt{sqrt}(2),\\ \texttt{1}+\texttt{2}*\texttt{sqrt}(2),\texttt{2},\texttt{2}+\texttt{sqrt}(2),\texttt{2}+\texttt{2}*\texttt{sqrt}(2)] \end{split}$$

• The data FQpsi[i] is the list of 4 polynomials $G_i, F_{i0}, F_{i1}, F_{i2}$ such that the rational map

$$(w, x, y) \mapsto [u : x_0 : x_1 : x_2] = [G_i : F_{i0} : F_{i1}F_{i2}]$$

induces ψ_i . Thus the polynomials in Table 1.1 are the 2nd, 3rd and the 4th polynomials of FQpsi[i], while the first polynomial of FQpsi[i] is the polynomial G_i in the proof of Proposition 1.2 in Section 5.

- The polynomial FQdefeqB[i] is the defining equation f_i (with homogeneous coordinates [X : Y : Z]) of the branch curve B_i ⊂ P² of π_i : Y_i → P².
- The data FQmorphg[i] is the list of 4 polynomials $H_{i0}, H_{i1}, H_{i2}, H_{i3}$ such that the rational map

$$(w, x, y) \mapsto [H_{i0} : H_{i1} : H_{i2} : H_{i3}]$$

from X to \mathbb{P}^3 induces the involution g_i of X.

- The data FQlines is the list of affine defining ideals of the lines on X. The ν th entry of FQlines is the defining ideal of ℓ_{ν} . Each member of FQlines is a set of two linear (inhomogeneous) polynomials of w, x, y.
- $\bullet\,$ The data FQ paralines is the list of parametric representations

$$\rho_{\nu}: \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$$

of lines ℓ_{ν} . The ν th entry of FQparalines is a list of 4 linear homogeneous polynomials of U and V that gives the parametric representation ρ_{ν} , where [U:V] is homogeneous coordinates of \mathbb{P}^1 .

• In the list FQF9pts, the 280 rational points of X over \mathbb{F}_9 are given. All points are written in terms of the homogeneous coordinates of \mathbb{P}^3 such that the first non-zero entry is 1.

ICHIRO SHIMADA

- The list FQincidenceptline is the list of [a, b] such that the ath rational point in FQF9pts is contained in the bth line in FQlines.
- The data FQNSbasis is the list of indices of the lines in (3.1), whose classes form a basis of the Néron-Severi lattice S of X.

By the (non-dual) basis, we mean the basis of S given by FQNSbasis. By the dual basis, we mean the basis of S^{\vee} dual to the (non-dual) basis.

- The matrix FQGramS is the Gram matrix of S with respect to the (non-dual) basis.
- The data FQlineclasses is the list of classes $[\ell_{\nu}]$ of the lines on X. The ν th member of FQlineclasses is $[\ell_{\nu}]$ written in terms of the (non-dual) basis.
- The vector FQh0 is h_0 written in terms of the (non-dual) basis.
- The matrix FQGramT is the Gram matrix of T.
- The vectors FQa1 and FQa2 are the vectors a_1 and a_2 that are added to $S \oplus T$ so that

$$L = (S \oplus T) + \langle a_1 \rangle + \langle a_2 \rangle$$

is even and unimodular. They are written in terms of the (non-dual) basis of $S \oplus T$.

- The vector FQw0 is the Weyl vector w_0 in terms of the (non-dual) basis of $S \oplus T$, while FQw0dual is the Weyl vector w_0 in terms of the *dual* basis of $S^{\vee} \oplus T^{\vee}$.
- The vector FQw1dual is the vector w'_0 in the proof of Proposition 4.2 written in terms of the *dual* basis.
- The data FQlambdasdual is a basis $\lambda_1, \ldots, \lambda_{24}$ of $U^{\perp} = \langle w_0, w'_0 \rangle^{\perp}$ in the proof of Proposition 4.2 written in terms of the *dual* basis.
- The data FQLRw0 is the list LR(w₀, S). Each vector is written in terms of the dual basis of S[∨] ⊕ T[∨].
- The data FQWW112, FQWW648 and FQWW5184 are \widetilde{W}_{112} , \widetilde{W}_{648} and \widetilde{W}_{5184} , respectively. Each vector is written in terms of the *dual* basis of S^{\vee} .
- The vector FQb[i] is the vector b_i in Proposition 4.5 written in terms of the dual basis of S[∨].
- The vector FQm[i] is the polarization m_i of degree 2 in Proposition 5.1 written in terms of (non-dual) basis of S.
- The data FQmm[i] is the expressions (5.2) and (5.3) of m_i . The first entry of FQmm[i] is the coefficient of h_0 and the members [k, a] of the second entry indicate the term $-a [\ell_k]$.
- The matrix FQA[i] is the matrix A_i that represents the action of the involution g_i on S with respect to the (non-dual) basis of S.
- The data FQhh[i] is the expressions (7.1) and (7.2) of $h_i = h_0 A_i$.

4

• The data FQcontract[i] is the list of the lines contracted by $\phi_i : X \to \mathbb{P}^2$. A member

$$[[k_1,\ldots,k_r],[a_0,a_1,a_2]]$$

of FQcontrct[i] indicates that the set of lines contracted to the singular point $[a_0 : a_1 : a_2]$ of B_i is $\{\ell_{k_1}, \ldots, \ell_{k_r}\}$, and that $\ell_{k_1}, \ldots, \ell_{k_r}$ form an A_r -chain of (-2)-curves in this order.

• The data FQlinegs[i] indicates the parametric representations

$$g_i \circ \rho_\nu : \mathbb{P}^1 \hookrightarrow \mathbb{P}^3$$

of the image $\ell_{\nu}^{g_i}$ of the line ℓ_{ν} by the involution g_i of X. If the line ℓ_{ν} appears in the right hand side of (7.1) when i = 1 or (7.2) when i = 2, then the ν th entry of FQlinegs[i] is not_calculated.

• The data FQlinepsis[i] indicates the parametric representations

$$\psi_i \circ \rho_{\nu} : \mathbb{P}^1 \hookrightarrow \mathbb{P}(3, 1, 1, 1)$$

of the image $\ell_{\nu}^{\psi_i}$ of the line ℓ_{ν} by the morphism $\psi_i : X \to Y_i$. If the line ℓ_{ν} appears in the right hand side of (5.2) when i = 1 or (5.3) when i = 2, then the ν th entry of FQlinepsis[i] is not_calculated.

- The matrix FQAF is the matrix A_F that represents the Frobenius action of $\mathbb{F}_9/\mathbb{F}_3$ on S.
- The list FQperm280[i] indicates the permutation on $X(\mathbb{F}_9)$ induced by the involution g_i . The ν th point in FQF9pts is mapped by g_i to the ν 'th point in FQF9pts, where ν' is the ν th entry of the list FQperm280[i].
- The list FQF9ptpsis[i] indicates the images of the \mathbb{F}_9 -rational points of X by $\psi_i : X \to Y_i$. The ν th point in FQF9pts is mapped by ψ_i to ν th point in FQF9ptpsis[i], which is written in terms of the weighted homogeneous coordinates of $\mathbb{P}(3, 1, 1, 1)$.

3. FILE FQprojaut.txt

In the file "FQprojaut.txt", the list FQprojaut of the elements of the projective automorphism group $\operatorname{Aut}(X, h_0) = \operatorname{PGU}_4(\mathbb{F}_9)$ of order 13,063,680 is presented in the following way. The list FQprojaut consists of 13,063,680 integer vectors of length 16. An element

$$\alpha := a + b\sqrt{2} \in \mathbb{F}_9$$

with $0 \le a < 3$ and $0 \le b < 3$ is expressed by a single integer

$$\tilde{\alpha} := a + 3 b.$$

If an element $\tau \in \mathrm{PGU}_4(\mathbb{F}_9)$ is represented by a matrix

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \in \mathrm{GU}_4(\mathbb{F}_9),$$

then τ is expressed by

$$[\tilde{\alpha}_{11}, \tilde{\alpha}_{12}, \tilde{\alpha}_{13}, \tilde{\alpha}_{14}, \tilde{\alpha}_{21}, \tilde{\alpha}_{22}, \tilde{\alpha}_{23}, \tilde{\alpha}_{24}, \tilde{\alpha}_{31}, \tilde{\alpha}_{32}, \tilde{\alpha}_{33}, \tilde{\alpha}_{34}, \tilde{\alpha}_{41}, \tilde{\alpha}_{42}, \tilde{\alpha}_{43}, \tilde{\alpha}_{44}].$$

4. FILE FQprojautS.txt

In the file "FQprojautS.txt", the representation

 $\tau \mapsto T_{\tau}$

of $\operatorname{Aut}(X, h_0) = \operatorname{PGU}_4(\mathbb{F}_9)$ on the lattice S is given in the list FQprojautS of 13,063,680 vectors of length 22. Suppose that $\tau \in \operatorname{PGU}_4(\mathbb{F}_9)$ is given as the *i*th element of FQprojaut. Then the *i*th element of FQprojautS is the list of 22 indices $[k_1, \ldots, k_{22}]$ such that

$$\ell^{\tau}_{[\nu]} = \ell_{k_{\nu}},$$

where $\ell_{[\nu]}$ is the ν th line in (3.1). Therefore $T_{\tau} \in O^+(S)$ is the matrix whose ν th row vector is the k_{ν} th vector in the list FQlineclasses.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

 $E\text{-}mail\ address:\ \texttt{shimada@math.sci.hiroshima-u.ac.jp}$