THE GRAPHS OF HOFFMAN-SINGLETON, HIGMAN-SIMS, AND MCLAUGHLIN, AND THE HERMITIAN CURVE OF DEGREE 6 IN CHARACTERISTIC 5: COMPUTATIONAL DATA

ICHIRO SHIMADA

This note is an explanation of the computational data in the web page http://www.math.sci.hiroshima-u.ac.jp/~shimada/HSgraphs.html

These data are used in the proof of the main results in the paper
"The graphs of Hoffman-Singleton, Higman-Sims, and McLaughlin, and the Hermitian curve of degree 6 in characteristic 5 ", which will be referred as $[\mathrm{P}]$ in the sequel. In the following, we use the same notation as in $[\mathrm{P}]$.

1. Geometric construction

The following are used to verify the results in Section 1.1 of [P].

- The list P is the list of Weierstrass points of Γ_{5}; that is the list of $\mathbb{F}_{25^{-}}$ rational points of Γ_{5}. We have $|\mathrm{P}|=126$. A member $[a, b, c]$ of P is the point $(a: b: c) \in \mathbb{P}^{2}$, where $a, b, c \in \mathbb{F}_{25}=\mathbb{F}_{5}(\alpha)$ and $\alpha:=\sqrt{2}$. Let p_{i} denote the i th point in P .
- The list S is the list of collinear six points in P; that is, the list of special secant lines \mathcal{S}_{5} of Γ_{5}. We have $|\mathrm{S}|=525$. A member $\left[i_{1}, \ldots, i_{6}\right]$ of S indicates the set of collinear six points $\left\{p_{i_{1}}, \ldots, p_{i_{6}}\right\}$. We denote by L_{j} the special secant line corresponding to the j th member $\left[i_{1}, \ldots, i_{6}\right]$ of S . We have

$$
L_{j} \cap \Gamma_{5}=\left\{p_{i_{1}}, \ldots, p_{i_{6}}\right\} .
$$

- The list Q is the list of co-conical set of six points in P ; that is, the list \mathcal{Q}_{5} of conics totally tangent to Γ_{5}. We have $|\mathrm{Q}|=3150$. A member $\left[i_{1}, \ldots, i_{6}\right]$ of Q indicates the set of co-conical set of six points $\left\{p_{i_{1}}, \ldots, p_{i_{6}}\right\}$. We denote by Q_{ν} the conic in \mathcal{Q}_{5} corresponding to the ν th member $\left[i_{1}, \ldots, i_{6}\right]$ of \mathbf{Q}. We have

$$
Q_{\nu} \cap \Gamma_{5}=\left\{p_{i_{1}}, \ldots, p_{i_{6}}\right\} .
$$

- The list SQ is the list of special secant lines of conics in \mathcal{Q}_{5}. If the ν th member of SQ is $\left[j_{1}, \ldots, j_{15}\right]$, then we have

$$
\mathcal{S}\left(Q_{\nu}\right)=\left\{L_{j_{1}}, \ldots, L_{j_{15}}\right\} .
$$

- The list EQ is the list of defining equations of conics in \mathcal{Q}_{5}. If the ν th member of EQ is $[a, b, c, d, e, f]$, then Q_{ν} is defined by

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e y z+f z x=0
$$

where $a, b, \ldots, f \in \mathbb{F}_{25}$.

- The matrix MO is the 3150×3150 matrix whose (i, j) entry is equal to $\left|Q_{i} \cap Q_{j} \cap \Gamma_{5}\right|$.
- The matrix M1 is the 3150×3150 matrix whose (i, j) entry is equal to $\left|\mathcal{S}\left(Q_{i}\right) \cap \mathcal{S}\left(Q_{j}\right)\right|$.
- The matrix M2 is the 3150×3150 matrix whose (i, j) entry is

$$
\begin{cases}1 & \text { if }\left|Q_{i} \cap Q_{j}\right|=4 \\ 0 & \text { otherwise }\end{cases}
$$

- The matrix AG is the 3150×3150 matrix whose (i, j) entry is

$$
\begin{cases}1 & \text { if } Q_{i} \text { and } Q_{j} \text { are adjacent in } G, \\ 0 & \text { otherwise. }\end{cases}
$$

- The list D is the list of connected components of G. We have $|\mathrm{D}|=150$. A member $\left[\nu_{1}, \ldots, \nu_{21}\right]$ of D indicates the connected component of G whose set of vertices is

$$
\left\{Q_{\nu_{1}}, \ldots, Q_{\nu_{21}}\right\}
$$

Let D_{k} denote the connected component of G corresponding to the k th member of the list D.

- The matrix tmat is the 3150×150 matrix whose (ν, k) entry is

$$
\begin{cases}0 & \text { if } Q_{\nu} \in D_{k} \\ \text { aa } & \text { if } t\left(Q_{\nu}, D_{k}\right)=\alpha, \\ \text { bb } & \text { if } t\left(Q_{\nu}, D_{k}\right)=\beta \\ \text { cc } & \text { if } t\left(Q_{\nu}, D_{k}\right)=\gamma\end{cases}
$$

- The matrix TT is the 150×150 matrix whose (j, k) entry is

$$
\begin{cases}0 & \text { if } j=k, \\ \text { bb21 } & \text { if } T\left(D_{j}, D_{k}\right)=\beta^{21}, \\ \operatorname{cc} 21 & \text { if } T\left(D_{j}, D_{k}\right)=\gamma^{21}, \\ \text { aa15cc6 } & \text { if } T\left(D_{j}, D_{k}\right)=\alpha^{15} \gamma^{6}, \\ \text { aa3cc18 } & \text { if } T\left(D_{j}, D_{k}\right)=\alpha^{3} \gamma^{18}\end{cases}
$$

- The matrix AH is the 150×150 matrix whose (j, k) entry is

$$
\begin{cases}1 & \text { if } D_{j} \text { and } D_{k} \text { are adjacent in } H, \\ 0 & \text { otherwise. }\end{cases}
$$

- The list C is the list $\left[\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}\right]$ of the lists of vertices of connected components of H. The ν th member $\left[k_{1}, \ldots, k_{50}\right]$ of C indicates

$$
\mathcal{C}_{\nu}=\left\{D_{k_{1}}, \ldots, D_{k_{50}}\right\} .
$$

- The list AHfSg is the adjacency matrices of the three graphs $H\left|\mathcal{C}_{1}, H\right| \mathcal{C}_{2}$, $H \mid \mathcal{C}_{3}$. If the ν th member of C is $\left[k_{1}, \ldots, k_{50}\right]$, then the ν th member of AHfSg is the 50×50 matrix whose (i, j) entry is
$\begin{cases}1 & \text { if } D_{k_{i}} \text { and } D_{k_{j}} \text { are adjacent in } H \mid \mathcal{C}_{\nu}, \\ 0 & \text { otherwise }\end{cases}$
- The matrix AHH is the 150×150 matrix whose (j, k) entry is

$$
\begin{cases}1 & \text { if } D_{j} \text { and } D_{k} \text { are adjacent in } H^{\prime} \\ 0 & \text { otherwise. }\end{cases}
$$

- The list AHgSm is the adjacency matrices of the three graphs $H \mid\left(\mathcal{C}_{2} \cup \mathcal{C}_{3}\right)$, $H\left|\left(\mathcal{C}_{3} \cup \mathcal{C}_{1}\right), H\right|\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)$. Let $\left[\nu_{1}, \nu_{2}\right]$ be one of $[2,3],[3,1],[1,2]$, and let μ be the element of $\{1,2,3\}$ such that $\mu \neq \nu_{1}$ and $\mu \neq \nu_{2}$. Suppose that the ν_{1} th member of C is $\left[k_{1}, \ldots, k_{50}\right]$ and the ν_{2} th member of C is $\left[k_{50+1}, \ldots, k_{50+50}\right]$. Then the μ th member of AHgSm is the 100×100 matrix whose (i, j) entry is

$$
\begin{cases}1 & \text { if } D_{k_{i}} \text { and } D_{k_{j}} \text { are adjacent in } H^{\prime} \mid\left(\mathcal{C}_{\nu_{1}} \cup \mathcal{C}_{\nu_{2}}\right), \\ 0 & \text { otherwise. }\end{cases}
$$

- The list gg is the list of three maps g_{1}, g_{2}, g_{3} defined in Proposition 1.11 of $[\mathrm{P}]$. Let $\left[\nu_{1}, \nu_{2}\right]$ be one of $[2,3],[3,1],[1,2]$, and let μ be the element of $\{1,2,3\}$ such that $\mu \neq \nu_{1}$ and $\mu \neq \nu_{2}$. Suppose that the ν_{1} th member of C is $\left[k_{1}, \ldots, k_{50}\right.$] and the ν_{2} th member of C is $\left[k_{50+1}, \ldots, k_{50+50}\right]$. Then the μ th member of gg is the list

$$
\left[g_{\mu}\left(D_{k_{1}}\right), \ldots, g_{\mu}\left(D_{k_{50+50}}\right)\right]
$$

of 100 members, each of which indicates a 15 -coclique in H. The i th member $\left[j_{1}, \ldots, j_{15}\right]$ of the μ th member of gg indicates that

$$
g_{\mu}\left(D_{k_{i}}\right)=\left\{D_{j_{1}}, \ldots, D_{j_{15}}\right\}
$$

- The list E1 is the list of edges of $H \mid \mathcal{C}_{1}$. We have $|\mathrm{E} 1|=175$. A member [$j, k]$ of E1 indicates the edge $\left\{D_{j}, D_{k}\right\}$ of $H \mid \mathcal{C}_{1}$.
- The matrix AE1 is the adjacency matrix of $\left(\mathcal{E}_{1}, \sim\right)$. The vertices \mathcal{E}_{1} are sorted by the list E1.
- The matrix AMcL is the adjacency matrix of $H^{\prime \prime}$. Let C2 and C3 be the second and the third member of C. Suppose that

$$
\begin{aligned}
\mathrm{E} 1 & =\left[\left[j_{1}, k_{1}\right], \ldots,\left[j_{175}, k_{175}\right]\right], \\
\mathrm{C} 2 & =\left[i_{1}, \ldots \ldots, ., i_{50}\right], \\
\mathrm{C} 3 & =\left[i_{50+1}, \ldots, i_{50+50}\right] .
\end{aligned}
$$

Then the vertices of $H^{\prime \prime}$ are sorted as

$$
\left\{D_{j_{1}}, D_{k_{1}}\right\}, \ldots,\left\{D_{j_{175}}, D_{k_{175}}\right\}, D_{i_{1}}, \ldots, D_{i_{100}}
$$

and AMcL is constructed according to this order of vertices of $H^{\prime \prime}$.
The following are data defined in Section 2 of $[\mathrm{P}]$.

- The list K is the list of 6 -cliques in G. We have $|\mathrm{K}|=1050$, and a member $\left[\nu_{1}, \ldots, \nu_{6}\right]$ of K indicates $\left\{Q_{\nu_{1}}, \ldots, Q_{\nu_{6}}\right\}$.
- The list KD is the list of the lists of 6 -cliques in each connected component of G. If the k th member of KD is

$$
\left[\left[\nu_{1}^{(1)}, \ldots, \nu_{6}^{(1)}\right], \ldots,\left[\nu_{1}^{(7)}, \ldots, \nu_{6}^{(7)}\right]\right]
$$

then the seven 6 -cliques in the k th connected component D_{k} is

$$
\left\{Q_{\nu_{1}^{(1)}}, \ldots, Q_{\nu_{6}^{(1)}}\right\}, \ldots, \quad\left\{Q_{\nu_{1}^{(7)}}, \ldots, Q_{\nu_{6}^{(7)}}\right\} .
$$

- The list PK is the list $\mathcal{P K}$. Each member $\left[\left[i_{1}, \ldots, i_{6}\right],\left[j_{1}, \ldots, j_{6}\right]\right]$ indicates a pair $\left\{K, K^{\prime}\right\}$ such that

$$
K=\left\{Q_{i_{1}}, \ldots, Q_{i_{6}}\right\}, \quad K^{\prime}=\left\{Q_{j_{1}}, \ldots, Q_{j_{6}}\right\} .
$$

- The list SD is the list of \mathcal{S}_{D}. The j th member $\left[i_{1}, \ldots, i_{105}\right]$ of SD indicates

$$
\mathcal{S}_{D_{j}}=\left\{L_{i_{1}}, \ldots, L_{i_{105}}\right\} .
$$

- The list CC is the list $\left[\widetilde{\mathcal{C}}_{1}, \widetilde{\mathcal{C}}_{2}, \widetilde{\mathcal{C}}_{3}\right]$. A member $\left[\nu_{1}, \ldots, \nu_{1050}\right]$ of CC indicates the subset $\left\{Q_{\nu_{1}}, \ldots, Q_{\nu_{1050}}\right\}$ of \mathcal{Q}_{5}.
- The list RQ is the list of $\mathcal{R}\left(Q_{\nu}\right)$. The ν th member $\left[i_{1}, \ldots, i_{45}\right]$ of RQ indicates

$$
\mathcal{R}\left(Q_{\nu}\right)=\left\{Q_{i_{1}}, \ldots, Q_{i_{45}}\right\} .
$$

- The list RD is the list of \mathcal{R}_{D}. The j th member $\left[i_{1}, \ldots, i_{735}\right]$ of RD indicates

$$
\mathcal{R}_{D_{j}}=\left\{Q_{i_{1}}, \ldots, Q_{i_{735}}\right\}
$$

- The list ff is the list of all $[j, k, \mu, \nu]$, where $T\left(D_{j}, D_{k}\right)=\beta^{21}, Q_{\mu} \in D_{j}$, $Q_{\nu} \in D_{k}$ and $f_{D_{j}, D_{k}}\left(Q_{\mu}\right)=Q_{\nu}$.
- The list nn is the list of vectors $n\left(Q_{i}\right)$ in Table 4.3 of [P]. The first member $n\left(Q_{1}\right)$ is $[\infty, \infty, \infty, \infty]$.

2. Group-theoretic construction

We express each element of $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$ as a 3×3 matrix with components in \mathbb{F}_{25} acting on \mathbb{P}^{2} by the left multiplication. Since $\left|\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)\right|$ is large, we present $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$ in the following way. Note that $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$ acts on the set P transitively.

- We denote by GS the stabilizer of the first member $p_{1}:=[0,1,2]$ of P :

$$
\mathrm{GS}:=\left\{g \in \mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right) \mid g\left(p_{1}\right)=p_{1}\right\}
$$

- We denote by GT the list of representatives of the cosets $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right) / \mathrm{GS}$ such that the i th element of GT maps p_{1} to the i th point of P .
Hence each element of $\operatorname{PGU}_{3}\left(\mathbb{F}_{25}\right)$ is uniquely written as $\tau \sigma$, where $\sigma \in \mathrm{GS}$ and $\tau \in \mathrm{GT}$. By $[\mathrm{i}, \mathrm{j}]$, we denote the element $\tau_{j} \sigma_{i}$ of $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$, where σ_{i} is the i th member of GS and τ_{j} is the j th member of GT. A permutation on the list P is written as

$$
\left[\nu_{1}, \ldots, \nu_{126}\right],
$$

which indicates the permutation
the k th point of $\mathrm{P} \mapsto$ the ν_{k} th point of P .
Each permutation on Q or D is expressed in the same way by a list of 3150 or 150 indices, respectively.

- GSonP is the list of permutations on P induced by the elements of GS. The i th member of GSonP is the permutation induced by the i th element of GS.
- GTonP is the list of permutations on P induced by the elements of GT.
- GSonQ is the list of permutations on Q induced by the elements of GS.
- GTonQ is the list of permutations on Q induced by the elements of GT.
- GSonD is the list of permutations on D induced by the elements of GS.
- GTonD is the list of permutations on D induced by the elements of GT.
- stabQ1 is the stabilizer subgroup $\operatorname{stab}\left(Q_{1}\right)$ of the first member Q_{1} of \mathbf{Q} written as the list of $[i, j]$'s.
- stabD1 is the stabilizer subgroup $\operatorname{stab}\left(D_{1}\right)$ of the first member D_{1} of D written as the list of $[i, j]$'s.
- stabQ1Qs is the list of $\operatorname{stab}\left(Q_{1}, Q_{\nu}\right)$ for $Q_{\nu} \in \mathbf{Q}$. The ν th member of stabQ1Qs is $\left[i_{1}, \ldots, i_{N}\right]$ if $\operatorname{stab}\left(Q_{1}, Q_{\nu}\right)$ consists of the i_{k} th elements $(k=$ $1, \ldots, N)$ of the list stabQ1.
- stabD1Ds is the list of $\operatorname{stab}\left(D_{1}, D_{\mu}\right)$ for $D_{\mu} \in \mathrm{D}$. The μ th member of stabD1Ds is $\left[j_{1}, \ldots, j_{M}\right]$ if $\operatorname{stab}\left(D_{1}, D_{\mu}\right)$ consists of the j_{k} th elements $(k=$ $1, \ldots, M)$ of the list stabD1.
- stabQ1onP is the permutation representation of $\operatorname{stab}\left(Q_{1}\right)$ on P . The i th member of stabQ1onP is the permutation on P induced by the i th member of stabQ1. Using stabQ1Qs and stabQ1onP, we can determine the isomorphism classes of the groups $\operatorname{stab}\left(Q_{1}, Q_{\nu}\right)$.
- stabQ1Qsgr is the list of isomorphism classes of the groups $\operatorname{stab}\left(Q_{1}, Q_{\nu}\right)$, where
0 : the trivial group, $\quad \mathrm{C} 2:=\mathbb{Z} / 2 \mathbb{Z}, \quad \mathrm{C} 3:=\mathbb{Z} / 3 \mathbb{Z}, \quad \mathrm{C} 22:=(\mathbb{Z} / 2 \mathbb{Z})^{2}$,
D8 $:=\mathfrak{D}_{8}, \quad$ D10 $:=\mathfrak{D}_{10}, \quad$ D12 $:=\mathfrak{D}_{12}$,
A4 $:=\mathfrak{A}_{4}, \quad$ S5 $:=\mathfrak{S}_{5} \quad($ only when $\nu=1)$.
- Qdatas is the the list of $\left(a\left(Q_{\nu}\right), s\left(Q_{\nu}\right), n\left(Q_{\nu}\right), \operatorname{stab}\left(Q_{1}, Q_{\nu}\right)\right)$. This is produced from the first row of M0, the first row of M1, the list of vectors nn and stabQ1Qsgr.
- stabQ1onQ is the permutation representation of $\operatorname{stab}\left(Q_{1}\right)$ on Q . The i th member of stabQ1on \mathbb{Q} is the permutation on Q induced by the i th member of stabQ1.
- Qreps is the list of representatives of the cosets $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right) /$ stabQ1 (written as the list of $[\mathrm{i}, \mathrm{j}]$'s) such that the i th element of Qreps maps Q_{1} to the i th conic of Q. Using stabQ1onQ and Qreps, we can calculate stab $\left(Q_{i}\right)$ for any $Q_{i} \in \mathrm{Q}$.
- orbsQ is the list of orbits of the action of $\operatorname{stab}\left(Q_{1}\right)$ on \mathbb{Q}. An orbit $\left\{Q_{i_{1}}, \ldots, Q_{i_{N}}\right\}$ is written as $\left[i_{1}, \ldots, i_{N}\right]$.
The triangular graph $T(7)$ is defined as the graph whose set of vertices is the set of unordered pairs of distinct elements of $\{1,2,3,4,5,6,7\}$ and whose set of edges is the set of pairs $\left\{\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}\right\}$ such that $\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset$.
- The first member of D is

$$
\begin{aligned}
\mathrm{D} 1= & {[1,309,434,1454,1535,1628,2063,2120,2187,2445,} \\
& 2489,2511,2556,2592,2615,2708,2790,3082,3086,3116,3122] .
\end{aligned}
$$

- The list
kappa $=[[1,2],[1,3],[2,3],[4,5],[3,4],[3,5],[6,7],[3,6],[3,7],[5,7]$,

$$
[4,6],[1,5],[2,6],[2,7],[1,4],[5,6],[4,7],[2,4],[2,5],[1,6],[1,7]]
$$

indicates the isomorphism of the graphs $\kappa: D_{1} \rightarrow T(7)$ such that the vertex $Q_{i_{\nu}}$ of D_{1} corresponding to the ν th index i_{ν} of D1 is mapped to the ν th pair of kappa by κ.

- A7 is the list of elements of \mathfrak{A}_{7}. Each member is written as $\left[i_{1}, \ldots, i_{7}\right]$, which is the permutation that maps ν to i_{ν} for $\nu=1, \ldots, 7$.
- SGa, SGb, SGb2, SGc, SGd are the lists of elements of the subgroups Σ_{a}, Σ_{b}, $\Sigma_{b}^{\prime}, \Sigma_{c}$ and Σ_{d} of \mathfrak{A}_{7} defined in Section 1.2 of [P].
- The list

$$
\begin{aligned}
\text { total0 }= & {[[[1,2],[3,4],[5,6]],[[1,3],[2,5],[4,6]],[[1,4],[2,6],[3,5]],} \\
& {[[1,5],[2,4],[3,6]],[[1,6],[2,3],[4,5]]]] }
\end{aligned}
$$

is the total t_{0} used in the definition of Σ_{d}.

- stabD1onD1 is the permutation representation of $\operatorname{stab}\left(D_{1}\right)$ on D1. The i th member $\left[j_{1}, \ldots, j_{21}\right]$ of stabD1onD1 is the permutation
the k th member of D1 \mapsto the j_{k} th member of D1 $\quad(k=1, \ldots, 21)$ induced by the i th element of stabD1.
- stabD1on7 is the permutation representation of $\operatorname{stab}\left(D_{1}\right)$ on $\{1, \ldots, 7\}$ via kappa. The i th member of stabD1on7 is the permutation of $\{1, \ldots, 7\}$ induced by the i th element of stabD1. Using stabD1Ds and stabD1on7, we can determine the image of $\operatorname{stab}\left(D_{1}, D_{\nu}\right)$ in A7.
- conjstabD1Ds is the list of $\left[\gamma_{\nu}\right.$, group_name $]$ for $\nu=1, \ldots, 150$ such that γ_{ν} is an element of A7 satisfying

$$
\gamma_{\nu}^{-1} \cdot \operatorname{stab}\left(D_{1}, D_{\nu}\right) \cdot \gamma_{\nu}=\text { SG_group_name },
$$

where group_name is Aseven (only when $\nu=1$), $\mathrm{a}, \mathrm{b}, \mathrm{b} 2$, c or d .

- genMs is the list of the matrices g_{2}, \ldots, g_{6} given at the last section of $[\mathrm{P}]$.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp

