A NOTE ON RATIONAL NORMAL CURVES TOTALLY TANGENT TO A HERMITIAN VARIETY

ICHIRO SHIMADA

ABSTRACT. Let q be a power of a prime integer p, and let X be a Hermitian variety of degree q+1 in the n-dimensional projective space. We count the number of rational normal curves that are tangent to X at distinct q+1 points with intersection multiplicity n. This generalizes a result of B. Segre on the permutable pairs of a Hermitian curve and a smooth conic.

1. Introduction

Throughout this paper, we fix a power $q := p^{\nu}$ of a prime integer p. Let k denote the algebraic closure of the finite field \mathbb{F}_{q^2} .

Let n be an integer ≥ 2 . We say that a hypersurface X of \mathbb{P}^n defined over \mathbb{F}_{q^2} is a *Hermitian variety* if X is projectively isomorphic over \mathbb{F}_{q^2} to the Fermat variety

$$X_I := \{x_0^{q+1} + \dots + x_n^{q+1} = 0\} \subset \mathbb{P}^n$$

of degree q+1. (Strictly speaking, one should say that X is a Hermitian variety of rank n+1. Since we treat only nonsingular Hermitian varieties in this paper, we omit the term "of rank n+1".) We say that a hypersurface X of \mathbb{P}^n defined over k is a k-Hermitian variety if X is projectively isomorphic over k to X_I . By definition, the projective automorphism group $\operatorname{Aut}(X) \subset \operatorname{PGL}_{n+1}(k)$ of a k-Hermitian variety X is conjugate to $\operatorname{Aut}(X_I) = \operatorname{PGU}_{n+1}(\mathbb{F}_{q^2})$ in $\operatorname{PGL}_{n+1}(k)$.

Let X be a k-Hermitian variety in \mathbb{P}^n . A rational normal curve Γ in \mathbb{P}^n defined over k is said to be totally tangent to X if Γ is tangent

²⁰⁰⁰ Mathematics Subject Classification. 51E20, 14M99.

Partially supported by JSPS Grants-in-Aid for Scientific Research (B) No.20340002.

to X at distinct q+1 points and the intersection multiplicity at each intersection point is n.

A subset S of a rational normal curve Γ is called a *Baer subset* if there exists a coordinate $t:\Gamma \cong \mathbb{P}^1$ on Γ such that S is the inverse image by t of the set $\mathbb{P}^1(\mathbb{F}_q) = \mathbb{F}_q \cup \{\infty\}$ of \mathbb{F}_q -rational points of \mathbb{P}^1 .

The purpose of this paper is to prove the following:

Theorem 1. Suppose that $n \not\equiv 0 \pmod{p}$ and $2n \leq q$. Let X be a k-Hermitian variety in \mathbb{P}^n .

(1) The set R_X of rational normal curves totally tangent to X is nonempty, and $\operatorname{Aut}(X)$ acts on R_X transitively with the stabilizer subgroup isomorphic to $\operatorname{PGL}_2(\mathbb{F}_q)$. In particular, we have

$$|R_X| = |\operatorname{PGU}_{n+1}(\mathbb{F}_{q^2})|/|\operatorname{PGL}_2(\mathbb{F}_q)|.$$

- (2) For any $\Gamma \in R_X$, the points in $\Gamma \cap X$ form a Baer subset of Γ .
- (3) If X is a Hermitian variety, then every $\Gamma \in R_X$ is defined over \mathbb{F}_{q^2} and every point of $\Gamma \cap X$ is \mathbb{F}_{q^2} -rational.

The study of Hermitian varieties was initiated by B. Segre in [5]. Since then, Hermitian varieties have been intensively studied mainly from combinatorial point of view in finite geometry. (See, for example, Chapter 23 of [3]). B. Segre obtained Theorem 1 for the case n=2 in the investigation of commutative pairs of polarities [5, n. 81]. We give a simple proof of the higher-dimensional analogue (Theorem 1) of his result using arguments of projective geometry over k.

Notation. (1) For simplicity, we put

$$\widetilde{G} := \operatorname{GL}_{n+1}(k)$$
 and $G := \operatorname{PGL}_{n+1}(k)$.

We let G act on \mathbb{P}^n from right. For $T \in \widetilde{G}$, we denote by $[T] \in G$ the image of T by the natural homomorphism $\widetilde{G} \to G$. The entries $a_{i,j}$ of a matrix $A = (a_{i,j}) \in \widetilde{G}$ are indexed by

$$N := \{ (i, j) \in \mathbb{Z}^2 \mid 0 \le i \le n, \ 0 \le j \le n \}.$$

(2) Let M be a matrix with entries in k. We denote by tM the transpose of M, and by \overline{M} the matrix obtained from M by applying $a \mapsto a^q$ to the entries.

2. Proof of Theorem 1

The following well-known proposition is the main tool of the proof.

Proposition 2. The map $\lambda : \widetilde{G} \to \widetilde{G}$ defined by $\lambda(T) := T^t \overline{T}$ is surjective. The image of $\operatorname{GL}_{n+1}(\mathbb{F}_{q^2}) \subset \widetilde{G}$ by λ is equal to the set

$$\mathcal{H} := \{ H \in \mathrm{GL}_{n+1}(\mathbb{F}_{q^2}) \mid H = {}^t\overline{H} \}$$

of Hermitian matrices over \mathbb{F}_{q^2} .

Proof. The first part is a variant of Lang's theorem [4], and can be proved by means of differentials (see [7] or [1, 16.4]). The second part is due to B. Segre [5, n. 3]. See also [6, Section 1].

For a matrix $A = (a_{i,j}) \in \widetilde{G}$, we define a homogeneous polynomial f_A of degree q + 1 by

$$f_A := \sum_{(i,j)\in N} a_{i,j} x_i x_j^q.$$

If $g = [T] \in G$, then the image X_I^g of the Fermat hypersurface X_I by g is defined by $f_{\lambda(T^{-1})} = 0$. Hence we obtain the following:

Corollary 3. A hypersurface X of \mathbb{P}^n is a k-Hermitian variety if and only if there exists a matrix $A \in \widetilde{G}$ such that X is defined by $f_A = 0$. A hypersurface X is a Hermitian variety if and only if there exists a Hermitian matrix $H \in \mathcal{H}$ over \mathbb{F}_{q^2} such that X is defined by $f_H = 0$.

Let \mathcal{V} denote the set of all k-Hermitian varieties in \mathbb{P}^n . For $A \in \widetilde{G}$, let $X_A \in \mathcal{V}$ denote the hypersurface defined by $f_A = 0$. (The Fermat hypersurface X_I is defined by $f_I = 0$, where $I \in \widetilde{G}$ is the identity matrix.) Remark that G acts on \mathcal{V} transitively.

Let \mathcal{R} denote the set of all rational normal curves in \mathbb{P}^n , and let \mathcal{P} be the set of pairs

$$[\Gamma, (Q_0, Q_1, Q_\infty)],$$

where $\Gamma \in \mathcal{R}$, and Q_0, Q_1, Q_{∞} are ordered three distinct points of Γ . Let $\Gamma_0 \in \mathcal{R}$ be the image of the morphism $\phi_0 : \mathbb{P}^1 \hookrightarrow \mathbb{P}^n$ given by

$$\phi_0(t) := [1:t:\cdots:t^n] \in \mathbb{P}^n.$$

We put

$$P_0 := \phi_0(0), \quad P_1 := \phi_0(1), \quad P_\infty := \phi_0(\infty).$$

Then we have $[\Gamma_0, (P_0, P_1, P_\infty)] \in \mathcal{P}$.

Lemma 4. The action of G on \mathcal{P} is simply transitive.

Proof. The action of G on \mathcal{R} is transitive by the definition of rational normal curves. Let $\Sigma_0 \subset G$ denote the stabilizer subgroup of $\Gamma_0 \in \mathcal{R}$. Then we have a natural homomorphism

$$\psi: \Sigma_0 \to \operatorname{Aut}(\Gamma_0) \cong \operatorname{PGL}_2(k).$$

Note that $\operatorname{Aut}(\Gamma_0)$ acts on the set of ordered three distinct points of Γ_0 simple-transitively. Hence it is enough to show that ψ is an isomorphism. Since Γ_0 contains n+2 points such that any n+1 of them are linearly independent in \mathbb{P}^n , ψ is injective. Since $\operatorname{PGL}_2(k)$ is generated by the linear transformations

$$t \mapsto at + b$$
 and $t \mapsto 1/(t-c)$, where $a \in k^{\times}$ and $b, c \in k$,

it is enough to find matrices $M_{a,b} \in \widetilde{G}$ and $N_c \in \widetilde{G}$ such that

$$[1, at + b, \dots, (at + b)^n] = [1, t, \dots, t^n] M_{a,b}$$
 and $[(t - c)^n, (t - c)^{n-1}, \dots, 1] = [1, t, \dots, t^n] N_c$

hold for any $a \in k^{\times}$ and $b, c \in k$. This is immediate.

We denote by $\mathcal{I} \subset \mathcal{V} \times \mathcal{P}$ the set of all triples $[X, \Gamma, (Q_0, Q_1, Q_\infty)]$ such that

- (1) $X \in \mathcal{V}$ and $[\Gamma, (Q_0, Q_1, Q_\infty)] \in \mathcal{P}$,
- (2) Γ is totally tangent to X, and
- (3) Q_0, Q_1, Q_∞ are contained in $\Gamma \cap X$.

We then consider the incidence diagram

$$egin{array}{ccc} \mathcal{I} & \stackrel{p_1}{\longrightarrow} & \mathcal{V} \\ & & & & & \\ \mathcal{P}. & & & & \end{array}$$

Note that G acts on \mathcal{I} , and that the projections p_1 and p_{23} are G-equivariant.

We consider the Hermitian matrix $B = (b_{i,j}) \in \mathcal{H}$, where

$$b_{i,j} := \begin{cases} \binom{n}{i}(-1)^i & \text{if } i+j=n, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$\phi_0^* f_B = \sum_{i=0}^n \binom{n}{i} (-1)^i t^i t^{q(n-i)} = (t^q - t)^n,$$

and hence $[X_B, \Gamma_0, (P_0, P_1, P_\infty)]$ is a point of \mathcal{I} . Since $\mathcal{I} \neq \emptyset$ and the action of G on \mathcal{V} is transitive, the G-equivariant map p_1 is surjective. Thus $R_X \neq \emptyset$ holds for any $X \in \mathcal{V}$.

The following proposition is proved in the next section.

Proposition 5. Suppose that $n \not\equiv 0 \pmod{p}$ and $n \leq 2q$. Then the fiber of p_{23} over $[\Gamma_0, (P_0, P_1, P_\infty)] \in \mathcal{P}$ consists of a single point $[X_B, \Gamma_0, (P_0, P_1, P_\infty)] \in \mathcal{I}$. In particular, p_{23} is a bijection.

Theorem 1 follows from Proposition 5 as follows. First note that, for any $X \in \mathcal{V}$, the map $[X, \Gamma, (Q_0, Q_1, Q_\infty)] \mapsto \Gamma$ gives a surjection

$$\rho_X : p_1^{-1}(X) \to R_X.$$

Proposition 5 implies that G acts on \mathcal{I} simple-transitively. If $S \subset \Gamma$ is a Baer subset of $\Gamma \in \mathcal{R}$, then $S^g \subset \Gamma^g$ is a Baer subset of Γ^g for any $g \in G$. Since $\Gamma_0 \cap X_B$ is a Baer subset of Γ_0 , we see that $\Gamma \cap X$ is a Baer subset of Γ for any $[X, \Gamma, (Q_0, Q_1, Q_\infty)] \in \mathcal{I}$. Therefore the assertion (2) follows. Since p_1 is G-equivariant, the stabilizer subgroup $\operatorname{Aut}(X)$ of X in G acts on the fiber $p_1^{-1}(X)$ simple-transitively for any $X \in \mathcal{V}$. Note that ρ_X is $\operatorname{Aut}(X)$ -equivariant. Hence the stabilizer subgroup $\operatorname{Stab}(\Gamma)$ of $\Gamma \in R_X$ in $\operatorname{Aut}(X)$ acts on the fiber $\rho_X^{-1}(\Gamma)$ simple-transitively. Moreover, since Γ contains n+2 points such that any n+1 of them are linearly independent, $\operatorname{Stab}(\Gamma)$ is embedded into $\operatorname{Aut}(\Gamma) \cong \operatorname{PGL}_2(k)$. Since $\rho_X^{-1}(\Gamma)$ is the set of ordered three distinct points of the Baer subset $\Gamma \cap X$ of Γ , we see that $\operatorname{Stab}(\Gamma)$ is conjugate to $\operatorname{PGL}_2(\mathbb{F}_q)$ as a subgroup of $\operatorname{Aut}(\Gamma) \cong \operatorname{PGL}_2(k)$. Thus the assertion (1) follows. The assertion (3) is immediate from the facts that X_B is Hermitian, that Γ_0 is defined over \mathbb{F}_{q^2} , and that every points of $\Gamma_0 \cap X_B$ is \mathbb{F}_{q^2} -rational. \square

3. Proof of Proposition 5

Suppose that $A = (a_{i,j}) \in \widetilde{G}$ satisfies $[X_A, \Gamma_0, (P_0, P_1, P_\infty)] \in \mathcal{I}$. We will show that A = c B for some $c \in k^\times$.

By the definition of \mathcal{I} , there exists a polynomial $h \in k[t]$ such that the polynomial

$$\phi_0^* f_A = \sum_{(i,j)\in N} a_{i,j} t^{i+qj}$$

is equal to h^n , and that, regarded as a polynomial of degree q+1, h has distinct q+1 roots including 0, 1 and ∞ . In particular, we have $\deg h = q$ and h(0) = 0. Thus we can set

$$h = \sum_{\nu=1}^{q} b_{\nu} t^{\nu}.$$

Since deg h = q and since t = 0 is a simple root of h = 0, we have

$$b_q \neq 0$$
 and $b_1 \neq 0$.

Let c_m denote the coefficient of t^m in $\phi_0^* f_A$. We have $c_m = 0$ if no $(i,j) \in N$ satisfy i + qj = m. By the assumption $2n \leq q$, we have

(3.1)
$$c_m = 0$$
 if $n < m < q$ or $n + q(n-1) < m < qn$.

We will show that

$$(3.2) b_{\mu} = 0 if n < \mu < q.$$

Let l be the largest integer such that l < q and $b_l \neq 0$. Since $n \not\equiv 0 \pmod{p}$ and $b_q \neq 0$, the coefficient $n \, b_q^{n-1} b_l$ of $t^{l+q(n-1)}$ in h^n is non-zero. Therefore $c_{l+q(n-1)} \neq 0$ follows from $\phi_0^* f_A = h^n$. By (3.1) and l < q, we have $l \leq n$. Hence (3.2) holds. In the same way, we will show that

(3.3)
$$b_{\mu} = 0 \text{ if } 1 < \mu < q - n + 1.$$

Let l be the smallest integer such that l > 1 and $b_l \neq 0$. Since $n \not\equiv 0$ (mod p) and $b_1 \neq 0$, the coefficient $n b_1^{n-1} b_l$ of t^{n-1+l} in h^n is non-zero. Therefore $c_{n-1+l} \neq 0$ follows from $\phi_0^* f_A = h^n$. By (3.1) and l > 1, we have $n - 1 + l \geq q$. Hence (3.3) holds.

Combining (3.2), (3.3) with the assumption $2n \le q$, we see that h is of the form $b_q t^q + b_1 t$. Since h(1) = 0, we have

$$h = b(t^q - t)$$
 for some $b \in k^{\times}$.

From $\phi_0^* f_A = h^n$, we see that $A = b^n B$.

Remark 6. In [2], another generalization of B. Segre's result [5, n. 81] is obtained.

References

- [1] Armand Borel. *Linear algebraic groups*, volume 126 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1991.
- [2] Giorgio Donati and Nicola Durante. On the intersection of a Hermitian curve with a conic. *Des. Codes Cryptogr.*, 57(3):347–360, 2010.
- [3] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications.
- [4] Serge Lang. Algebraic groups over finite fields. Amer. J. Math., 78:555–563, 1956.
- [5] Beniamino Segre. Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. (4), 70:1–201, 1965.
- [6] Ichiro Shimada. Lattices of algebraic cycles on Fermat varieties in positive characteristics. *Proc. London Math. Soc.* (3), 82(1):131–172, 2001.
- [7] Robert Steinberg. On theorems of Lie-Kolchin, Borel, and Lang. In Contributions to algebra (collection of papers dedicated to Ellis Kolchin), pages 349–354. Academic Press, New York, 1977.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN *E-mail address*: shimada@math.sci.hiroshima-u.ac.jp