SUPERSINGULAR $K 3$ SURFACE IN CHARACTERISTIC 5 COMPUTATIONAL DATA

ICHIRO SHIMADA

1. Introduction

In this note, we explain the computational data that appear in the paper
[KKS] T. Katsura, S. Kondo, I. Shimada: On the supersingular K3 surface in characteristic 5 with Artin invariant 1,
and are available from the author's web page
http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.
These computational data are divided in two parts and written in three files: the first part is the data of the generalized Borcherds' method, and the second part is the geometric data of curves on the superspecial abelian surface A in characteristic 5.

2. The data of the generalized Borcherds' method

2.1. The Néron-Severi lattice S_{X} and its embedding into L. The following data are given in the file

```
compdataB.txt.
```

We work over $\mathbb{F}_{25}=\mathbb{F}_{5}(\sqrt{2})$:

```
F25 := [0, 1, 2, 3,4, sqrt(2), 1 + sqrt(2), 2 + sqrt(2), 3 + sqrt(2), 4+ sqrt(2),
```



```
    3* sqrt(2), 1 + 3* sqrt(2), 2 + 3 * sqrt(2), 3 + 3 * sqrt(2), 4 + 3 * sqrt(2),
```


The list
FSF25
of size 126 is the list of the \mathbb{F}_{25}-rational points on the Fermat sextic curve

$$
C_{F}: x^{6}+y^{6}+z^{6}=0
$$

in characteristic 5 , sorted as in Table 4.1 of [KKS]. The 252×252 matrix
is the intersection matrix of the h_{F}-lines

$$
\begin{equation*}
l_{1}^{+}, l_{1}^{-}, l_{2}^{+}, l_{2}^{-}, l_{3}^{+}, l_{3}^{-}, \ldots, l_{125}^{+}, l_{125}^{-}, l_{126}^{+}, l_{126}^{-} . \tag{2.1}
\end{equation*}
$$

The 22×22 matrix

GramSX

is the Gram matrix of the Néron-Severi lattice S_{X} of the Fermat double sextic plane

$$
X: w^{2}=x^{6}+y^{6}+z^{6}
$$

of characteristic 5 , with respect to the basis

$$
\begin{aligned}
& \ell_{1}:=l_{1}^{+}, \quad \ell_{2}:=l_{1}^{-}, \quad \ell_{3}:=l_{2}^{+}, \quad \ell_{4}:=l_{3}^{+}, \quad \ell_{5}:=l_{4}^{+}, \quad \ell_{6}:=l_{5}^{+}, \quad \ell_{7}:=l_{7}^{+}, \quad \ell_{8}:=l_{8}^{+}, \\
& \ell_{9}:=l_{9}^{+}, \quad \ell_{10}:=l_{10}^{+}, \quad \ell_{11}:=l_{13}^{+}, \quad \ell_{12}:=l_{14}^{+}, \quad \ell_{13}:=l_{15}^{+}, \quad \ell_{14}:=l_{16}^{+}, \quad \ell_{15}:=l_{17}^{+}, \\
& \ell_{16}:=l_{19}^{+}, \quad \ell_{17}:=l_{21}^{+}, \quad \ell_{18}:=l_{22}^{+}, \quad \ell_{19}:=l_{24}^{+}, \quad \ell_{20}:=l_{25}^{+}, \quad \ell_{21}:=l_{27}^{+}, \quad \ell_{22}:=l_{34}^{+} .
\end{aligned}
$$

The vector

$$
\text { LineClass[i] } \quad(i=1, \ldots, 252)
$$

is the class of the i th h_{F}-line in (2.1) represented with respect to this basis. The 22×22 matrix

Frob

is the isometry of S_{X} induced by

$$
\left[l_{i}^{ \pm}\right] \mapsto\left[\text { the } \operatorname{Gal}\left(\mathbb{F}_{25} / \mathbb{F}_{5}\right) \text {-conjugate of } l_{i}^{ \pm}\right]
$$

(Note that we let $\mathrm{O}\left(S_{X}\right)$ act on S_{X} from the right, so that we have

$$
\text { Frob } \cdot \text { GramSX } \cdot{ }^{t} \text { Frob }=\text { GramSX },
$$

where ${ }^{t}$ Frob is the transpose of Frob.) The 22×22 matrix
Flip
is the action of the deck-transformation of $X \rightarrow \mathbb{P}^{2}$ on S_{X} :

$$
\left[l_{i}^{ \pm}\right] \mapsto\left[l_{i}^{\mp}\right] .
$$

The matrix

$$
\operatorname{discSX}:=[[2 / 5,0],[0,4 / 5]]
$$

is the Gram matrix of the discriminant form

$$
q_{S}: S_{X}^{\vee} / S_{X} \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

of S_{X} with respect to the basis

$$
\alpha_{1}:=\left[\ell_{3}\right]^{\vee} \bmod S_{X} \quad \text { and } \quad \alpha_{2}:=\left[\ell_{4}\right]^{\vee} \bmod S_{X}
$$

Using this basis of $S_{X}^{\vee} / S_{X} \cong \mathbb{F}_{5}^{2}$, we present the group

$$
\text { OqS }:=\mathrm{O}\left(q_{S}\right)=\left\{\bar{g} \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right) \mid \bar{g} \text { preserves } q_{S}\right\}
$$

of order 12 as a list of 2×2 matrices with entries in \mathbb{F}_{5}. By means of the matrices
of size 2×22 and 22×2, respectively, we can calculate the action $\bar{g} \in \mathrm{O}\left(q_{S}\right)$ on $S_{X}^{\vee} / S_{X}=\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ induced by a given isometry $g \in \mathrm{O}\left(S_{X}\right)$:

$$
\bar{g}=\text { TransAS } \cdot \text { GramSX }^{-1} \cdot g \cdot \text { GramSX } \cdot \text { TransBS } \bmod 5
$$

Then g preserves the period \mathcal{K}_{X} of X if and only if $\bar{g} \in \mathrm{O}\left(q_{S}\right)$ is one of the following six matrices:

$$
\begin{aligned}
\text { AutPeriod }:=[& {[[1,0],[0,1]], \quad[[2,1],[3,2]], \quad[[2,4],[2,2]], } \\
& {[[3,1],[3,3]],[[3,4],[2,3]],[[4,0],[0,4]]] . }
\end{aligned}
$$

The 4×4 matrix

GramR

is the Gram matrix of the lattice R with respect to the basis u_{1}, \ldots, u_{4}. We present the group

$$
\mathrm{OR}:=\mathrm{O}(R)=\left\{g \in \mathrm{GL}_{4}(\mathbb{Z}) \mid g \cdot \operatorname{GramR} \cdot{ }^{t} g=\operatorname{GramR}\right\}
$$

of order 72. (Recall again that we let $\mathrm{O}(R)$ act on R from the right.) The matrix

$$
\operatorname{discR}:=[[8 / 5,0],[0,6 / 5]]
$$

is the Gram matrix of the discriminant form

$$
q_{R}: R^{\vee} / R \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

of R with respect to the basis

$$
\beta_{1}:=\left[u_{4}\right]^{\vee} \bmod R \quad \text { and } \quad \beta_{2}:=\left[u_{2}\right]^{\vee} \bmod R .
$$

Using this basis, we present

$$
\mathrm{OqR}:=\mathrm{O}\left(q_{R}\right)=\left\{\bar{g} \in \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right) \mid \bar{g} \text { preserves } q_{R}\right\}
$$

(Since $q_{S} \cong-q_{R}$, we have $\mathrm{O}\left(q_{S}\right) \cong \mathrm{O}\left(q_{R}\right)$. We have chosen the bases α_{1}, α_{2} and β_{1}, β_{2} in such a way that 0 qS and OqR are equal sets of matrices.) By means of the matrices

> TransAR and TransBR
of size 2×4 and 4×2, respectively, we can calculate the induced action $\bar{g} \in \mathrm{O}\left(q_{R}\right)$ on $R^{\vee} / R=\left\langle\beta_{1}, \beta_{2}\right\rangle \cong \mathbb{F}_{5}^{2}$ of a given isometry $g \in \mathrm{O}(R)$:

$$
\bar{g}=\operatorname{TransAR} \cdot \operatorname{GramR}^{-1} \cdot g \cdot \operatorname{GramR} \cdot \operatorname{TransBR} \bmod 5
$$

The fact that $g \mapsto \bar{g}$ is a surjective homomorphism from $\mathrm{O}(R)$ to $\mathrm{O}\left(q_{R}\right)$ is now readily verified.

The 26×26 matrix

GramL

is the Gram matrix of the even unimodular hyperbolic lattice L of rank 26 with respect to a certain basis v_{1}, \ldots, v_{26}. (This matrix GramL and the basis v_{1}, \ldots, v_{26}
do not appear in the paper [KKS]. They play, however, a crucial role in the actual execution of the generalized Borcherds' method.) The 26×26 matrix

Emb

gives the embedding $\iota: S_{X} \oplus R \hookrightarrow L$ with respect to the basis $\left[\ell_{1}\right], \ldots,\left[\ell_{22}\right], u_{1}, \ldots, u_{4}$ and v_{1}, \ldots, v_{26}. Vectors v in $S_{X} \oplus R$ are row vectors, and ι is given by

$$
v \mapsto v \cdot \mathrm{Emb}
$$

By definition, Emb is an invertible matrix with integer entries such that

$$
\text { Emb } \cdot \text { GramL } \cdot{ }^{t} \text { Emb }=\left[\begin{array}{cc}
\text { GramSX } & O \\
O & \text { GramR }
\end{array}\right]
$$

The projections $L \rightarrow S_{X}^{\vee}$ and $L \rightarrow R^{\vee}$ are easily calculated by Emb.
2.2. The data of the induced chambers. The data of the three induced chambers $D_{i}(i=0,1,2)$ are given in the file
compdataChams.txt.

The Weyl vector w_{i} of D_{i} is given in terms of the dual basis

$$
\left[\ell_{1}\right]^{\vee}, \ldots,\left[\ell_{22}\right]^{\vee}, u_{1}^{\vee}, \ldots, u_{4}^{\vee}
$$

of $S_{X}^{\vee} \oplus R^{\vee}$:

$$
\begin{aligned}
\mathrm{w}[0] & :=[1,-2,-1,0,1]^{\vee}, \\
\mathrm{w}[1] & :=[1,2,2,1,1,2,1,2,1,2,2,1,2,1,1,2,2,2,2,2,2,2,2,1,1,0]^{\vee}, \\
\mathrm{w}[2] & :=[4,4,7,4,1,4,4,4,4,4,7,1,4,4,4,7,7,4,4,4,7,7,2,1,-1,0]^{\vee} .
\end{aligned}
$$

Hence its projection $w_{i, S}$ to S_{X}^{\vee} is obtained from w[i] by deleting the last 4 coordinates. The polarizations are given by

$$
h_{1}:=w_{1, S}, \quad h_{2}:=5 w_{2, S}, \quad h_{3}:=5 w_{3, S}
$$

Their representations by the non-dual basis $\left[\ell_{1}\right], \ldots,\left[\ell_{22}\right]$ of S_{X} are
$\mathrm{h}[0]:=\quad[1,1,0]$,
$\mathrm{h}[1]:=[14,16,-4,-6,-5,-11,12,-8,-5,0,10,8,-13,3,-3,5,-8,10,7,-2,5,-10]$,
$\mathrm{h}[2] \quad:=[14,11,3,6,21,15,-3,18,6,-6,-27,0,9,-12,3,-15,-3,-9,-18,12,0,15]$.
A primitive defining vector of a wall of an induced chamber D_{i} is a vector $v \in S_{X}^{V}$ primitive in S_{X}^{\vee} such that $(v)^{\perp}$ is a wall of D_{i} and $\langle v, x\rangle>0$ holds for a (and hence any) vector x in the interior of D_{i}. For each wall of D_{i}, there exists a unique primitive defining vector. We express each primitive defining vector in terms of the dual basis $\left[\ell_{1}\right]^{\vee}, \ldots,\left[\ell_{22}\right]^{\vee}$ of S_{X}^{\vee}. The group $\operatorname{Aut}_{X}\left(D_{i}\right) \cong \operatorname{Aut}\left(X, h_{i}\right)$ acts on the set of primitive defining vectors of walls. The list
walls[i]
is the list of orbits under the action of $A u t_{X}\left(D_{i}\right)$ on the set of primitive defining vectors of walls of D_{i}.

The list walls[0] consists of 3 lists, the first of which consists of 252 primitive vectors defining the (-2)-walls of the chamber D_{0}. If they are converted to the representations in terms of the non-dual basis $\left[\ell_{1}\right], \ldots,\left[\ell_{22}\right]$ of S_{X}, they coincide with LineClass[i] (i $=1, \ldots, 252)$.

The list walls[1] consists of 18 lists, the first of which consists of 168 primitive vectors defining the (-2)-walls of the chamber D_{1}.

The list walls[2] consists of 27 lists. The first member of walls[2] consists of 48 primitive defining vectors, and the second member also consists of 48 vectors. These 96 vectors define the (-2)-walls of the chamber D_{2}.

The group $\operatorname{Aut}_{X}\left(D_{i}\right)$ is given by the following method. For $i=0,1,2$, we fix a reference vector refv[i] $\in S_{X}$:

$$
\begin{aligned}
\operatorname{refv}[0] & :=[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0] \\
\operatorname{refv}[1] & :=[1,1,-1,0,0,0,1,0,0,0,0,0,-1,-1,0,0,0,0,0,0,1,0] \\
\operatorname{refv}[2] & :=[1,0,1,1,2,2,0,1,0,-1,-2,1,0,-1,0,-1,-1,0,-1,1,0,1]
\end{aligned}
$$

represented in terms of the non-dual basis. (This vector refv[i] is a defining vector of a (-2)-wall of D_{i}, and hence it corresponds to a (-2 -curve on X.) Then the list
SAutXD[i]
is the stabilizer subgroup of $\operatorname{refv}[\mathrm{i}]$ in $A u t_{X}\left(D_{i}\right)$, and the list
TAutXD[i]
is the list of representatives of the right coset of SAutX[i] in $A u t_{X}\left(D_{i}\right)$. Hence each element of $A u t_{X}\left(D_{i}\right)$ is uniquely written as a product

$$
\sigma \cdot \tau \quad(\sigma \in \operatorname{SAutXD}[\mathrm{i}], \quad \tau \in \operatorname{TAutXD}[\mathrm{i}]) .
$$

The lists

$$
\mathrm{SS}[0,0], \quad \mathrm{SS}[0,1], \quad \mathrm{SS}[0,2], \quad \mathrm{SS}[1,0], \quad \mathrm{SS}[1,1], \quad \mathrm{SS}[1,2]
$$

are the classes of smooth rational curves in $\mathcal{S}_{00}, \mathcal{S}_{01}, \mathcal{S}_{02}, \mathcal{S}_{10}, \mathcal{S}_{11}, \mathcal{S}_{12}$ (the decomposition of the 96 smooth rational curves corresponding to the (-2)-walls in the chamber D_{2} into the sets of disjoint 16 smooth rational curves) written in terms of the non-dual basis of S_{X}. If they are converted to the representation in terms of the dual basis of S_{X}^{\vee}, their union coincide with the union of the first and the second lists of walls[2].

The vector

$$
\mathrm{sv}[1]:=[0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,1,1,1,1,1,1]^{\vee} \in S_{X}^{\vee}
$$

is a member of the second list of walls[0], and it defines the wall separating the chambers D_{0} and D_{1}. The vector $(-1) * \operatorname{sv}[1]$ is a member of the second list of walls[1]. The vector

$$
\operatorname{sv}[2]:=[1,1,2,1,0,1,1,1,1,1,2,0,1,1,1,2,2,1,1,1,2,2]^{\vee} \in S_{X}^{\vee}
$$

is a member of the third list of walls[0], and it defines the wall separating the chambers D_{0} and D_{2}. The vector $(-1) * \operatorname{sv}[2]$ is a member of the eleventh list of walls[2].

3. The data of curves on the abelian surface A

The following data are given in the list

> compdataKm.txt.

The list F 25 of elements of $\mathbb{F}_{25}=\mathbb{F}_{5}(\sqrt{2})$ is included in this file. We put

$$
\text { omega }:=2+3 * \operatorname{sqrt}(2),
$$

which is a cubic root of unity in \mathbb{F}_{25}. We exhibit $16 \times 6=96$ smooth rational curves on the Kummer surface $\operatorname{Km}(A)$, where $A=E \times E$ is the product of the elliptic curve defined by $\operatorname{DefE}=0$, where

$$
\text { DefE }:=y^{2}+4 * x^{3}+1
$$

The addition $m: E \times E \rightarrow E$ of the elliptic curve E with the origin at $x=\infty$

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mapsto\left(x_{3}, y_{3}\right)=\left(\alpha\left(x_{1}, x_{2}\right), \tilde{\alpha}\left(x_{1}, y_{1}, x_{2}, y_{2}\right)\right)
$$

is given by the pair of rational functions

$$
\operatorname{addE}:=[\alpha, \tilde{\alpha}] .
$$

The automorphism $\gamma: E \rightarrow E$ of E is given by

$$
\operatorname{gammaE}:=[(2+3 * \operatorname{sqrt}(2)) * \mathrm{x}, 4 * \mathrm{y}],
$$

and the endomorphism $\phi_{E, 2}: E \rightarrow E$ of degree 2 is given by

$$
\text { phiE2 }:=\left[\left(2 * x^{2}+3 * x+1\right) /(x+4), 2 * \operatorname{sqrt}(2) * y *\left(x^{2}+3 * x+3\right) /(x+4)^{2}\right] .
$$

The composite $\gamma \circ \phi_{E, 2}: E \rightarrow E$ is

$$
\begin{aligned}
\text { gammaEphiE2 }:= & {[(x+3) *(x+1) *(4+\operatorname{sqrt}(2)) /(x+4),} \\
& \left.(3 *(x+3 * \operatorname{sqrt}(2)+4)) *(x+2 * \operatorname{sqrt}(2)+4) * \mathrm{y} * \operatorname{sqrt}(2) /(\mathrm{x}+4)^{2}\right] .
\end{aligned}
$$

By these data, the curves B_{1}, \ldots, B_{6} in Proposition 9.1 of $[\mathrm{KKS}]$ are obtained.

The Gram matrix of the Néron-Severi lattice S_{A} of A with respect to the basis $\left[B_{1}\right], \ldots,\left[B_{6}\right]$ is given by

GramSA.

Let A_{2} denote the kernel of the homomorphism $[2]_{A}: A \rightarrow A$. A point $\left(p_{1}, p_{2}\right) \in$ $E \times E$ of A_{2} is given by the x-coordinates of $p_{1} \in E$ and $p_{2} \in E$. They are sorted as follows:

$$
\begin{aligned}
\text { A2Pts }:=[& {[\text { infinity, infinity }],[\text { infinity, } 1], } \\
& {[\operatorname{infinity,2}+3 * \operatorname{sqrt}(2)],[\operatorname{infinity,~} 2+2 * \operatorname{sqrt}(2)], } \\
& {[1, \operatorname{infinity}],[1,1],[1,2+3 * \operatorname{sqrt}(2)],[1,2+2 * \operatorname{sqrt}(2)], } \\
& {[2+3 * \operatorname{sqrt}(2), \operatorname{infinity}],[2+3 * \operatorname{sqrt}(2), 1], } \\
& {[2+3 * \operatorname{sqrt}(2), 2+3 * \operatorname{sqrt}(2)],[2+3 * \operatorname{sqrt}(2), 2+2 * \operatorname{sqrt}(2)] } \\
& {[2+2 * \operatorname{sqrt}(2), \operatorname{infinity}],[2+2 * \operatorname{sqrt}(2), 1], } \\
& {[2+2 * \operatorname{sqrt}(2), 2+3 * \operatorname{sqrt}(2)],[2+2 * \operatorname{sqrt}(2), 2+2 * \operatorname{sqrt}(2)]] . }
\end{aligned}
$$

By the blow-up $b: \tilde{A} \rightarrow A$ at the points of A_{2}, the lattice S_{A} is embedded into the Néron-Severi lattice $S_{\tilde{A}}$ of \tilde{A}. Let E_{k} denote the exceptional curve over the k th point of A2Pts. Let B_{i}^{\prime} be the total transform of B_{i} by b. Then, with respect to the basis

$$
\left[B_{1}^{\prime}\right], \ldots,\left[B_{6}^{\prime}\right],\left[E_{1}\right], \ldots,\left[E_{16}\right]
$$

of $S_{\tilde{A}}$, the Gram matrix of $S_{\tilde{A}}$ is equal to

$$
\text { GramSAtilde }:=\left[\begin{array}{cc}
\text { GramSA } & O \\
O & -I_{16}
\end{array}\right] .
$$

The list

KmRatPts

is the list of \mathbb{F}_{25}-rational points on $\operatorname{Km}(A)$. We use the coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ for the first and the second factor of $A=E \times E$, respectively. Locally around the origin of E, we put

$$
\tilde{x}=1 / x, \quad z=y / x^{2}
$$

so that E is defined by $z^{2}=\tilde{x}-\tilde{x}^{4}$. We also use the coordinates $\left(\tilde{x}_{1}, z_{1}\right)$ and $\left(\tilde{x}_{2}, z_{2}\right)$. Note that the singular surface $A /\left\langle\iota_{A}\right\rangle$ is defined by

$$
w^{2}=\left(x_{1}^{3}-1\right)\left(x_{2}^{3}-1\right), \quad \text { where } \quad w=y_{1} y_{2}
$$

Let

$$
\rho: \operatorname{Km}(A) \rightarrow A /\left\langle\iota_{A}\right\rangle
$$

be the minimal resolution. Suppose that P is an \mathbb{F}_{25}-rational point of $\operatorname{Km}(A)$. Let [a1, a2, b] be the $\left(x_{1}, x_{2}, w\right)$-coordinates of $\rho(P)$. (When a1 $=\infty$ or a2 $=\infty$, we put $\mathrm{b}=0$.) If $\rho(P)$ is a smooth point of $A /\left\langle\iota_{A}\right\rangle$, then P is expressed in KmRatPts as [a1, a2, b]. Suppose $\rho(P)$ is a singular point of $A /\left\langle\iota_{A}\right\rangle$. Let $\tilde{P} \in A_{2}$ be the point
whose image $\varpi(\tilde{P}) \in A /\left\langle\iota_{A}\right\rangle$ is equal to $\rho(P)$, and let $T_{\tilde{P}, A}$ denote the tangent space to A at \tilde{P}. Then the (-2)-curve $\rho^{-1}(\rho(P))$ is naturally identified with the projective line $\mathbb{P}_{*}\left(T_{\tilde{P}, A}\right)$. We express P in KmRatPts as [[a1, a2], [c1, c2]], where [$c 1, c 2$] is the homogeneous coordinates of $\mathbb{P}_{*}\left(T_{\tilde{P}, A}\right)$ with respect to the following basis of the linear space $T_{\tilde{P}, A}$:

$$
\begin{array}{ll}
T_{\tilde{P}, A}=\left\langle\partial / \partial y_{1}, \partial / \partial y_{2}\right\rangle & \text { if a1 } \neq \infty \text { and } \mathrm{a} 2 \neq \infty, \\
T_{\tilde{P}, A}=\left\langle\partial / \partial y_{1}, \partial / \partial z_{2}\right\rangle & \text { if a1 } \neq \infty \text { and a2 }=\infty, \\
T_{\tilde{P}, A}=\left\langle\partial / \partial z_{1}, \partial / \partial y_{2}\right\rangle & \text { if a1 }=\infty \text { and a} 2 \neq \infty, \\
T_{\tilde{P}, A}=\left\langle\partial / \partial z_{1}, \partial / \partial z_{2}\right\rangle & \text { if a1 }=\infty \text { and } \mathrm{a} 2=\infty .
\end{array}
$$

Then KmRatPts consists of 1176 points, 760 of which are of type [a1, a2, b] and 416 of which are of type [[a1, a2], [c1, c2]].

We describe the 96 smooth rational curves on $\operatorname{Km}(A)$ divided into six sets

$$
\mathcal{S}_{00}, \mathcal{S}_{01}, \mathcal{S}_{02}, \mathcal{S}_{10}, \mathcal{S}_{11}, \mathcal{S}_{12}
$$

The 16 curves in \mathcal{S}_{00} are the exceptional curves of the minimal resolution ρ : $\operatorname{Km}(A) \rightarrow A /\left\langle\iota_{A}\right\rangle$, and hence they are in one-to-one correspondence with A_{2}. The smooth rational curves in \mathcal{S}_{00} are sorted according to the order of A2Pts. We have a finite double covering

$$
\pi: \tilde{A} \rightarrow \operatorname{Km}(A)
$$

Let $R_{00, k}$ denote the k th member of \mathcal{S}_{00}. Then we have

$$
2 E_{k}=\pi^{*}\left(R_{00, k}\right)
$$

for $k=1, \ldots, 16$. The other 80 smooth rational curves are obtained from the (hyper-)elliptic curves

$$
H=E, \quad F, \quad \text { or } G
$$

defined by defeqE $=0$, defeqF $=0$, defeqG $=0$, respectively, where

```
defeqE := v^2+4*u^3+1,
defeqF := v^2+4*u^6+1,
defeqG := v^2+4*sqrt(2)*(u^12+2*u^8+2*u^4+1).
```

Let $\iota_{H}: H \rightarrow H$ denote the involution of H over the u-line. There are 80 embeddings

$$
\eta: H \hookrightarrow A
$$

satisfying $\iota_{A} \circ \eta=\eta \circ \iota_{H}$ such that the strict transforms of $\eta(H) /\left\langle\iota_{A}\right\rangle$ by the minimal resolution $\rho: \operatorname{Km}(A) \rightarrow A /\left\langle\iota_{A}\right\rangle$ are the 80 smooth rational curves in $\mathcal{S}_{01}, \mathcal{S}_{02}, \mathcal{S}_{10}, \mathcal{S}_{11}, \mathcal{S}_{12}$. These embeddings

$$
\eta:=\left(\psi_{1}, \psi_{2}\right): H \hookrightarrow E \times E=A, \quad \text { where } \psi_{1}=\operatorname{pr}_{1} \circ \eta \text { and } \psi_{2}=\operatorname{pr}_{2} \circ \eta,
$$

are described in the following form:

$$
\operatorname{LL}[i, j, k]:=\left[\text { the name of } H, \quad\left[\left[p s i_{1 x}, p s i_{1 y}\right],\left[p s i_{2 x}, p s i_{2 y}\right]\right]\right],
$$

for $k=1, \ldots, 16$, where, for $m=1,2$, the pair

$$
\left[p s i_{\mathrm{mx}}, \mathrm{ps} i_{\mathrm{my}}\right]
$$

is the pair $\left(\psi_{m x}(u), \psi_{m y}(u, v)\right)$ of rational functions of u and v expressing the morphism $\psi_{m}: H \rightarrow E$ given by

$$
\psi_{m}:(u, v) \mapsto(x, y)=\left(\psi_{m x}(u), \psi_{m y}(u, v)\right)
$$

(The constant morphism to the origin of E is denoted by [$\infty, 0$].) The 16 embeddings LL[i, $\mathbf{j}, 1], \ldots, \operatorname{LL}[\mathrm{i}, \mathrm{j}, 16]$ yield the 16 smooth rational curves $R_{i j, 1}, \ldots, R_{i j, 16}$ in $\mathcal{S}_{i j}$; that is, LL $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ is the list of the curves $\mathcal{L}_{i j}$ in $[\mathrm{KKS}]$.

Remark 3.1. Since $\iota_{A} \circ \psi=\psi \circ \iota_{H}$, each $\psi_{m y}(u, v)$ is of the form $v \cdot \Psi_{m}(u)$, where $\Psi_{m}(u)$ is a rational function of u. If H is defined by $v^{2}=f_{H}(u)$, then we have

$$
f_{H}(u) \Psi_{m}(u)^{2}=\psi_{m x}(u)^{3}-1
$$

Remark 3.2. The embeddings $\operatorname{LL}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ are composed from the morphisms

$$
\phi_{E, 2}: E \rightarrow E, \quad \phi_{F, 2}: F \rightarrow E, \quad \phi_{F, 3}: F \rightarrow E, \phi_{G, 3}: G \rightarrow E, \quad \phi_{G, 4}: G \rightarrow E,
$$

and

$$
\gamma: E \rightarrow E, \quad h_{F}: F \rightarrow F, \quad h_{F}^{\prime}: F \rightarrow F, h_{G}: G \rightarrow G
$$

by the translation by the points in A_{2} and the automorphism $\tau:(P, Q) \mapsto\left(Q, \iota_{E}(P)\right)$ of A. These morphisms are also given in the computational data with the names

```
phiE2uv, phiF2, phiF3, phiG3, phiG4, gammaEuv, hF, hF2, hG,
```

respectively. (The morphisms gammaEuv and phiE2uv are same as gammaE and phiE2, but are written in variables u and v.) The translation of a morphism to A by the points in A_{2} can be calculated from addE and A2Pts.

The morphism $\eta: H \hookrightarrow A$ given as LL[$\mathrm{i}, \mathrm{j}, \mathrm{k}]$ induces an embedding

$$
\bar{\eta}: \mathbb{P}^{1} \rightarrow \operatorname{Km}(A)
$$

from the u-line $\mathbb{P}^{1}=H /\left\langle\iota_{H}\right\rangle$ into $\operatorname{Km}(A)$. Using $\eta:=\mathrm{LL}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$, we make the list RatPtsR[i, j, k]
of the \mathbb{F}_{25}-rational points of the k th smooth rational curve $R_{i j, k}=\operatorname{Im} \bar{\eta}$ in $\mathcal{S}_{i j}$. Let
P1F25 := [infinity, $0,1,2,3,4$,
$\operatorname{sqrt}(2), 1+\operatorname{sqrt}(2), 2+\operatorname{sqrt}(2), 3+\operatorname{sqrt}(2), 4+\operatorname{sqrt}(2)$,
$2 * \operatorname{sqrt}(2), 1+2 * \operatorname{sqrt}(2), 2+2 * \operatorname{sqrt}(2), 3+2 * \operatorname{sqrt}(2), 4+2 * \operatorname{sqrt}(2)$,
$3 * \operatorname{sqrt}(2), 1+3 * \operatorname{sqrt}(2), 2+3 * \operatorname{sqrt}(2), 3+3 * \operatorname{sqrt}(2), 4+3 * \operatorname{sqrt}(2)$,
$4 * \operatorname{sqrt}(2), 1+4 * \operatorname{sqrt}(2), 2+4 * \operatorname{sqrt}(2), 3+4 * \operatorname{sqrt}(2), 4+4 * \operatorname{sqrt}(2)]$
denote the list of \mathbb{F}_{25}-rational points of \mathbb{P}^{1}. For $\mathrm{i}=\mathrm{j} \neq 0$, the list RatPtsR $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ is sorted according to P1F25; the ν th point of P1F25 is mapped to the ν th point of RatPtsR $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ by the morphism $\bar{\eta}: \mathbb{P}^{1} \rightarrow \operatorname{Km}(A)$ induced from the $\eta=\mathrm{LL}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$. While for $i=j=0$, $\operatorname{RatPtsR}[0,0, k]$ is sorted according to P1F25 via an isomorphism

$$
\eta_{0,0, k}^{\prime}: \mathbb{P}^{1} \xrightarrow{\sim} \rho^{-1}\left(\varpi\left(P_{k}\right)\right),
$$

where P_{k} is the k th point in A2Pts, and $\varpi\left(P_{k}\right)$ is the corresponding node of $A /\left\langle\iota_{A}\right\rangle$.
We put

$$
\begin{aligned}
\mathrm{P} 6:= & {[\operatorname{infinity}, 0,1,2,3,4], } \\
\mathrm{P} 4:= & {[\operatorname{sqrt}(2), 1+2 * \operatorname{sqrt}(2), 3+3 * \operatorname{sqrt}(2), 4+4 * \operatorname{sqrt}(2)], } \\
\mathrm{P} 4 \operatorname{conj}:= & {[4 * \operatorname{sqrt}(2), 1+3 * \operatorname{sqrt}(2), 3+2 * \operatorname{sqrt}(2), 4+\operatorname{sqrt}(2)], } \\
\mathrm{P} 12:= & {[2 * \operatorname{sqrt}(2), 3 * \operatorname{sqrt}(2), 1+\operatorname{sqrt}(2), 1+4 * \operatorname{sqrt}(2),} \\
& 2+\operatorname{sqrt}(2), 2+2 * \operatorname{sqrt}(2), 2+3 * \operatorname{sqrt}(2), 2+4 * \operatorname{sqrt}(2), \\
& 3+\operatorname{sqrt}(2), 3+4 * \operatorname{sqrt}(2), 4+2 * \operatorname{sqrt}(2), 4+3 * \operatorname{sqrt}(2)] .
\end{aligned}
$$

The rational function $\varphi=\varphi_{i, j, k, j^{\prime}}=\operatorname{varphiCtoP1[i,j,k,jprime]~gives~the~isomor-~}$ phism in Corollary 1.3 from the u-line to $\mathbb{P}^{1} \otimes \mathbb{F}_{25}$ such that, letting η be the morphism LL $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ for the case $\mathrm{i}=\mathrm{j} \neq 0$, or the ismorphism $\eta_{0,0, k}^{\prime}: \mathbb{P}^{1} \xrightarrow{\sim} \rho^{-1}\left(\varpi\left(P_{k}\right)\right)$ for the case $i=j=0$, we have

$$
\begin{aligned}
\varphi^{-1}(\mathrm{P} 6) & =\left\{u \mid \text { there is a rational curve in } \mathcal{S}_{i j^{\prime}} \text { that passes through } \bar{\eta}(u)\right\}, \\
\varphi^{-1}(\mathrm{P} 4) & =\left\{u \mid \text { there is a rational curve in } \mathcal{S}_{i^{\prime} j^{\prime}} \text { that passes through } \bar{\eta}(u)\right\}, \\
\varphi^{-1}(\mathrm{P} 4 \operatorname{conj}) & =\left\{u \mid \text { there is a rational curve in } \mathcal{S}_{i^{\prime} j^{\prime \prime}} \text { that passes through } \bar{\eta}(u)\right\}, \\
\varphi^{-1}(\mathrm{P} 12) & =\left\{u \mid \text { there is a rational curve in } \mathcal{S}_{i^{\prime} j} \text { that passes through } \bar{\eta}(u)\right\},
\end{aligned}
$$

where $i \neq i^{\prime}$ and $j \neq j^{\prime} \neq j^{\prime \prime} \neq j$.
Let $\widetilde{\Gamma}_{i j, k}$ be the pull-back by the finite morphism $\pi: \tilde{A} \rightarrow \operatorname{Km}(A)$ of the k th smooth rational curve $R_{i j, k}$ in $\mathcal{S}_{i j}$; that is, $\widetilde{\Gamma}_{00, k}$ is the divisor $2 E_{k}$, while if $i j \neq 00$, the curve $\widetilde{\Gamma}_{i j, k}$ is the strict transform by $\tilde{A} \rightarrow A$ of the image $\Gamma_{i j, k}$ of the embedding $\operatorname{LL}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$. Then the class $\left[\widetilde{\Gamma}_{i j, k}\right] \in S_{\tilde{A}}$ with respect to the basis

$$
\left[B_{1}^{\prime}\right], \ldots,\left[B_{6}^{\prime}\right],\left[E_{1}\right], \ldots,\left[E_{16}\right]
$$

of the Néron-Severi lattice $S_{\tilde{A}}$ is given by

$$
\operatorname{NSClass}[i, j, k] .
$$

Since the pull-back by $\pi: \tilde{A} \rightarrow \operatorname{Km}(A)$ embeds $S_{\mathrm{Km}(A)}(2)$ into $S_{\tilde{A}}$, we can calculate the intersection numbers of $R_{i j, k}$ by GramSAtilde and NSClass $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: shimada@math.sci.hiroshima-u.ac.jp

