A NOTE ON CONFIGURATIONS OF (-2)-VECTORS ON ENRIQUES SURFACES

ICHIRO SHIMADA

1. Introduction

This note is a supplement of the joint paper [3] with S. Brandhorst.
It was established by Nikulin [7], Kondo [5], and Martin [6] that Enriques surfaces in characteristic $\neq 2$ with finite automorphism group are divided into seven classes I, II, . . . , VII. The configurations of smooth rational curves on these Enriques surfaces are depicted in Kondo [5] by beautiful but complicated graphs.

A lattice of rank n is hyperbolic if the signature is $(1, n-1)$. A positive cone of a hyperbolic lattice L is a connected component of $\{x \in L \otimes \mathbb{R} \mid\langle x, x\rangle>0\}$. For a positive integer n with $n \equiv 2 \bmod 8$, let L_{n} denote the even unimodular hyperbolic lattice of rank n, which is unique up to isomorphism. Borcherds' method $[1,2]$ is a method to calculate the automorphism group of an even hyperbolic lattice S by embedding S into L_{26} primitively and using the tessellation of a positive cone of L_{26} by Conway chambers. (See Chapter 27 of [4]. See [3] for the definition of Conway chambers.) This method has been applied to lattices S_{X} of numerical equivalence classes of divisors of various $K 3$ surfaces X, and the automorphism group of these $K 3$ surfaces are calculated.

The lattice S_{Y} of numerical equivalence classes of divisors of an Enriques surface Y is isomorphic to L_{10}. The universal covering $X \rightarrow Y$ of Y by a $K 3$ surface X induces a primitive embedding $S_{Y}(2) \hookrightarrow S_{X}$, where $S_{Y}(2)$ is the lattice obtained from S_{Y} by multiplying the intersection form \langle,$\rangle by 2$. If S_{X} is embedded primitively into L_{26} in Borcherds' method, then $S_{Y}(2)$ is also embedded primitively into L_{26}. In [3], hoping to apply Borcherds' method to Enriques surfaces systematically, we have classified all primitive embeddings of $L_{10}(2)$ into L_{26}. It turns out that there exist exactly 17 primitive embeddings

$$
12 \mathrm{~A}, 12 \mathrm{~B}, 20 \mathrm{~A}, \ldots, 20 \mathrm{~F}, 40 \mathrm{~A}, \ldots, 40 \mathrm{E}, 96 \mathrm{~A}, 96 \mathrm{~B}, 96 \mathrm{C}, \text { infty }
$$

up to the action of the orthogonal groups of L_{10} and L_{26}. Let \mathcal{P}_{10} be a positive cone of L_{10}. For each of these primitive embeddings except for the type infty, we obtain a finite polyhedral cone in \mathcal{P}_{10} bounded by hyperplanes perpendicular to (-2)-vectors in L_{10} such that \mathcal{P}_{10} is tessellated by the image of reflections of this finite polyhedral cone with respect to the walls. The set of walls of this finite polyhedral cone defines a configuration of (-2)-vectors of L_{10}. The 7 configurations I, II, ... , VII of Nikulin-Kondo appear among these 16 configurations.

In this note, we give a combinatorial description for each of these configurations. The result includes new descriptions of the Nikulin-Kondo configurations, which we hope are handier than the picturesque graphs of [5] in some situations.

[^0]An explicit computational data is available at [10]. We used GAP [11] for the calculation.

Conventions. (1) A configuration is a pair (Γ, μ) of a finite set Γ and a mapping $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ such that $\mu(x, y)=\mu(y, x)$ for all $x, y \in \Gamma$. In this note, we always assume that

$$
\begin{equation*}
\mu(x, x)=-2 \quad \text { for all } \quad x \in \Gamma \tag{1.1}
\end{equation*}
$$

The automorphism group of a configuration (Γ, μ) is the group of permutations of Γ that preserve μ. The size of a configuration (Γ, μ) is $|\Gamma|$.
(2) The cyclic group of order n is denoted by C_{n}. The symmetric group of degree n is denoted by \mathfrak{S}_{n}, and the alternating group of degree n is denoted by \mathfrak{A}_{n}. Let I_{n} denote the identity matrix of size n. Let $\mathbf{1}_{n}$ and $\mathbf{0}_{n}$ be the square matrix of size n whose components are all 1 and all 0 , respectively.

2. Combinatorial descriptions

2.1. 12A. The configuration of type 12 A is the configuration of Nikulin-Kondo type I (Fig. 1.4 of [5]). The automorphism group is isomorphic to $C_{2} \times C_{2}$.
2.2. 12B. The configuration of type 12B is the configuration of Nikulin-Kondo type II (Fig. 2.4 of [5]). The automorphism group is isomorphic to $C_{2} \times \mathfrak{S}_{4}$.
2.3. 20A. The configuration of type 20 A is isomorphic to the configuration of NikulinKondo type V (Fig. 5.5 of [5]).

Let A be the set $\{1,2,3,4\}$, and B the set of subsets $\{i, j\}$ of A with size 2 . Let A_{1} and A_{2} be two copies of A with the natural bijection to A denoted by $a \mapsto \bar{a}$. Let B_{1} and B_{2} be two copies of B with the natural bijection to B denoted by $b \mapsto \bar{b}$. We then put

$$
\Gamma:=A_{1} \sqcup A_{2} \sqcup B_{1} \sqcup B_{2},
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $a, a^{\prime} \in A_{1}$ with $a \neq a^{\prime}$. Then $\mu\left(a, a^{\prime}\right)=0$.
- Suppose that $a \in A_{1}$ and $a^{\prime} \in A_{2}$. Then

$$
\mu\left(a, a^{\prime}\right)= \begin{cases}2 & \text { if } \bar{a}=\bar{a}^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $a, a^{\prime} \in A_{2}$ with $a \neq a^{\prime}$. Then $\mu\left(a, a^{\prime}\right)=2$.
- Suppose that $a \in A_{1}$ and $b \in B_{1}$. Then $\mu(a, b)=0$.
- Suppose that $a \in A_{1}$ and $b \in B_{2}$. Then

$$
\mu(a, b)= \begin{cases}1 & \text { if } \bar{a} \in \bar{b} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $a \in A_{2}$ and $b \in B_{1}$. Then

$$
\mu(a, b)= \begin{cases}2 & \text { if } \bar{a} \in \bar{b} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $a \in A_{2}$ and $b \in B_{2}$. Then $\mu(a, b)=0$.
- Suppose that $b, b^{\prime} \in B_{1}$ with $b \neq b^{\prime}$. Then

$$
\mu(a, b)= \begin{cases}2 & \text { if } \bar{b} \cap \overline{b^{\prime}}=\emptyset \\ 1 & \text { otherwise }\end{cases}
$$

- Suppose that $b \in B_{1}$ and $b^{\prime} \in B_{2}$. Then

$$
\mu(a, b)= \begin{cases}2 & \text { if } \bar{b} \cap \overline{b^{\prime}}=\emptyset, \\ 0 & \text { otherwise } .\end{cases}
$$

- Suppose that $b, b^{\prime} \in B_{2}$ with $b \neq b^{\prime}$. Then $\mu\left(b, b^{\prime}\right)=0$.

Then (Γ, μ) defines the configuration of type 20A.
Remark 2.1. The automorphism group of (Γ, μ) is isomorphic to \mathfrak{S}_{4}, acting naturally on A.
2.4. 20B. The configuration of type 20B is isomorphic to the configuration of NikulinKondo type III (Fig. 3.5 of [5]).

We put $P:=\{1,2,3,4\}$. Let Q_{1} and Q_{2} be quadrangles. For $i=1,2$, let $V Q_{i}$ be the set of vertices of Q_{i}, and let $E Q_{i}$ be the set of edges of Q_{i}. Let $E Q_{i}=\left\{a_{i}, a_{i}^{\prime}\right\} \cup\left\{b_{i}, b_{i}^{\prime}\right\}$ be the decomposition such that a_{i} and a_{i}^{\prime} (resp. b_{i} and b_{i}^{\prime}) have no common vertex. We then put

$$
\Gamma:=P \sqcup V Q_{1} \sqcup V Q_{2} \sqcup E Q_{1} \sqcup E Q_{2},
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $p_{1}, p_{2} \in P$ with $p_{1} \neq p_{2}$. Then $\mu\left(p_{1}, p_{2}\right)=0$.
- Suppose that $p \in P$ and $v \in V Q_{1} \sqcup V Q_{2}$. Then $\mu(p, v)=0$.
- Suppose that $p \in P$ and $e_{1} \in E Q_{1}$. Then
$\mu\left(p, e_{1}\right)= \begin{cases}1 & \text { if }\left(p \in\{1,2\} \text { and } e_{1} \in\left\{a_{1}, a_{1}^{\prime}\right\}\right) \text { or }\left(p \in\{3,4\} \text { and } e_{1} \in\left\{b_{1}, b_{1}^{\prime}\right\}\right), \\ 0 & \text { otherwise. }\end{cases}$
- Suppose that $p \in P$ and $e_{2} \in E Q_{2}$. Then
$\mu\left(p, e_{2}\right)= \begin{cases}1 & \text { if }\left(p \in\{1,3\} \text { and } e_{2} \in\left\{a_{2}, a_{2}^{\prime}\right\}\right) \text { or }\left(p \in\{2,4\} \text { and } e_{2} \in\left\{b_{2}, b_{2}^{\prime}\right\}\right), \\ 0 & \text { otherwise } .\end{cases}$
- Suppose that $v_{1}, v_{2} \in V Q_{1} \sqcup V Q_{2}$ with $v_{1} \neq v_{2}$. Then

$$
\mu\left(v_{1}, v_{2}\right)= \begin{cases}0 & \text { if } v_{1} \text { and } v_{2} \text { are the end-points of an edge }, \\ 2 & \text { otherwise }\end{cases}
$$

- Suppose that $v \in V Q_{1} \sqcup V Q_{2}$ and $e \in E Q_{1} \sqcup E Q_{2}$. Then

$$
\mu(v, e)= \begin{cases}2 & \text { if } v \text { is an end-point of } e, \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $e_{1}, e_{2} \in E Q_{1} \sqcup E Q_{2}$ with $e_{1} \neq e_{2}$. Then $\mu\left(e_{1}, e_{2}\right)=0$.

Then (Γ, μ) defines the configuration of type 20B.
Remark 2.2. The automorphism group of (Γ, μ) is the group of the automorphism of the disjoint union $Q_{1} \sqcup Q_{2}$ of two quadrangles, that is, $D_{8}^{2} \rtimes C_{2}$.
2.5. 20C and 20D. The configurations of type 20C and of type 20D are isomorphic, and they are isomorphic to the configuration of Nikulin-Kondo type VII (Fig. 7.7 of [5]).

Let A be $\{1, \ldots, 5\}$, and let B be the set of non-ordered pairs $\{(i j),(k l)\}$ of disjoint subsets $(i j)=\{i, j\}$ and $(k l)=\{k, l\}$ of A with size 2. For $b=\{(i j),(k l)\} \in$ B, let $\bar{b} \in A$ denote the unique element of A that is not contained in $(i j) \cup(k l)$. We then put

$$
\Gamma:=A \sqcup B
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $a, a^{\prime} \in A$ with $a \neq a^{\prime}$. Then we have $\mu\left(a, a^{\prime}\right)=2$.
- Suppose that $a \in A$ and $b \in B$. Then we have

$$
\mu(a, b):= \begin{cases}2 & \text { if } a=\bar{b} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $b, b^{\prime} \in B$ with $b \neq b^{\prime}$. Then we have

$$
\mu\left(b, b^{\prime}\right):= \begin{cases}1 & \text { if } b \cap b^{\prime} \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Then (Γ, μ) defines the configurations of type 20C and type 20D.
Remark 2.3. The automorphism group of (Γ, μ) is isomorphic to \mathfrak{S}_{5}.
2.6. 20E. The configuration of type 20 E is isomorphic to the configuration of NikulinKondo type VI (Fig. 6.4 of [5]). The description below of this configuration was obtained in [9].

Let A be the set of subsets of $\{1, \ldots, 5\}$ with size 3 . Let A_{1} and A_{2} be two copies of A with the natural bijection to A denoted by $a \mapsto \bar{a}$. We then put

$$
\Gamma:=A_{1} \sqcup A_{2}
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $a, a^{\prime} \in A_{1}$ with $a \neq a^{\prime}$. Then

$$
\mu\left(a, a^{\prime}\right)= \begin{cases}1 & \text { if }\left|a \cap a^{\prime}\right|=1 \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $a, a^{\prime} \in A_{2}$ with $a \neq a^{\prime}$. Then

$$
\mu\left(a, a^{\prime}\right)= \begin{cases}1 & \text { if }\left|a \cap a^{\prime}\right|=2 \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $a \in A_{1}$ and $a^{\prime} \in A_{2}$. Then

$$
\mu\left(a, a^{\prime}\right)= \begin{cases}2 & \text { if } \bar{a}=\bar{a}^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Then (Γ, μ) defines the configuration of type 20E.
Remark 2.4. The sub-configuration $\left(A_{1}, \mu \mid A_{1}\right)$ is isomorphic to the Petersen graph, and the sub-configuration $\left(A_{2}, \mu \mid A_{2}\right)$ is isomorphic to the complement of the Pe tersen graph. The automorphism group of (Γ, μ) is equal to the automorphism group of the Petersen graph, which is isomorphic to \mathfrak{S}_{5}.

Figure 2.1. Graph for Nikulin-Kondo type VI
2.7. 20F. The configuration of type 20 F is isomorphic to the configuration of NikulinKondo type IV (Fig. 4.4 of [5]). The description below of this configuration was obtained in [8].

Let $\bar{\Gamma}$ be the set of vertices of the Petersen graph P, and let Γ be the set with 20 vertices with a map $\rho: \Gamma \rightarrow \bar{\Gamma}$ such that $\left|\rho^{-1}(\bar{v})\right|=2$ for every $\bar{v} \in \bar{\Gamma}$. We fix a numbering v_{1}, v_{2} of the elements in each fiber $\rho^{-1}(\bar{v})=\left\{v_{1}, v_{2}\right\}$ of ρ. We then define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- We have $\mu\left(v, v^{\prime}\right)=0$ if $\rho(v)=\rho\left(v^{\prime}\right)$.
- We have $\mu\left(v, v^{\prime}\right)=0$ if $\rho(v)$ and $\rho\left(v^{\prime}\right)$ are not connected in P.
- We have $\mu\left(v, v^{\prime}\right)=1$ if $\rho(v)$ and $\rho\left(v^{\prime}\right)$ are connected by a thin line in Figure 2.1.
- Suppose that \bar{v} and \bar{v}^{\prime} are connected by a thick line in Figure 2.1. Let $\rho^{-1}(\bar{v})=\left\{v_{1}, v_{2}\right\}$ and $\rho^{-1}\left(\bar{v}^{\prime}\right)=\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$ be the fibers with the fixed numberings. Then

$$
\mu\left(v_{i}, v_{j}^{\prime}\right)= \begin{cases}2 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Then the isomorphism class of the configuration (Γ, μ) does not depend on the choice of numberings of two elements in fibers of ρ, and (Γ, μ) defines the configuration of type 20 F .

Remark 2.5. The group $\operatorname{Aut}(\Gamma, \mu)$ is of order 640 . The action of $\operatorname{Aut}(\Gamma, \mu)$ on Γ preserves the fibers of $\rho: \Gamma \rightarrow \bar{\Gamma}$, and we have a natural homomorphism from $\operatorname{Aut}(\Gamma, \mu)$ to the automorphism group $\operatorname{Aut}(P)$ of the Petersen graph, which is isomorphic to \mathfrak{S}_{5}. Thus we obtain an exact sequence

$$
\begin{equation*}
0 \longrightarrow C_{2}^{5} \longrightarrow \operatorname{Aut}(\Gamma, \mu) \longrightarrow G_{20} \longrightarrow 1 \tag{2.1}
\end{equation*}
$$

where G_{20} is the subgroup of $\operatorname{Aut}(P) \cong \mathfrak{S}_{5}$ consisting of elements that preserve the thick edges in Figure 2.1. As a subgroup of \mathfrak{S}_{5}, the group G_{20} is conjugate to the subgroup generated by (12345) and (2354).
2.8. 40A. Let \mathcal{C}_{+}and \mathcal{C}_{-}be two copies of the cubes $I^{3} \subset \mathbb{R}^{3}$, where $I \subset \mathbb{R}$ is the unit interval. Let ε be + or - . A vertex of $\mathcal{C}_{\varepsilon}$ is written as $\left(\left(a_{x}, a_{y}, a_{z}\right), \varepsilon\right)$, where $a_{x}, a_{y}, a_{z} \in\{0,1\}$, and a face of $\mathcal{C}_{\varepsilon}$ is written as $(w=a, \varepsilon)$, where $w \in\{x, y, z\}$ and $a \in\{0,1\}$. Let V be the set of vertices of $\mathcal{C}_{ \pm}$, and let F be the set of faces of $\mathcal{C}_{ \pm}$.

Let P be the set of pairs of a face $f_{+}=\left(w=a_{+}\right)$of \mathcal{C}_{+}and a face $f_{-}=\left(w=a_{-}\right)$ of \mathcal{C}_{-}that are parallel. Each element of P is written as $\left(w=a_{+}, w=a_{-}\right)$, where $w \in\{x, y, z\}$ and $a_{ \pm} \in\{0,1\}$. We have $|V|=16,|F|=12,|P|=12$. We put

$$
\Gamma:=V \sqcup F \sqcup P
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $v_{1}, v_{2} \in V$ with $v_{1} \neq v_{2}$. Then

$$
\mu\left(v_{1}, v_{2}\right)= \begin{cases}0 & \text { if } v_{1} v_{2} \text { is an edge of } \mathcal{C}_{+} \text {or } \mathcal{C}_{-} \\ 4 & \text { if } v_{1} v_{2} \text { is a diagonal of } \mathcal{C}_{+} \text {or } \mathcal{C}_{-} \\ 2 & \text { otherwise }\end{cases}
$$

- Suppose that $v \in V$ and $f \in F$. Then

$$
\mu(v, f)= \begin{cases}2 & \text { if } v \in f \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $v \in V$ and $p=\left(f_{+}, f_{-}\right) \in P$. Then

$$
\mu(v, p)= \begin{cases}2 & \text { if } v \in f_{+} \cup f_{-} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $f_{1}, f_{2} \in F$ with $f_{1} \neq f_{2}$. Let f_{i} be $\left(w_{i}=a_{i}, \varepsilon_{i}\right)$, where $w_{i} \in\{x, y, z\}, a_{i} \in\{0,1\}$, and $\varepsilon_{i} \in\{+,-\}$. Then

$$
\mu\left(f_{1}, f_{2}\right)= \begin{cases}1 & \text { if } \varepsilon_{1} \neq \varepsilon_{2} \text { and } w_{1} \neq w_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $f=(w=a, \varepsilon) \in F$ and $p=\left(f_{+}^{\prime}, f_{-}^{\prime}\right) \in P$. Let \bar{f} be the unique face of $\mathcal{C}_{\varepsilon}$ that is disjoint from f. Then

$$
\mu(f, p)= \begin{cases}2 & \text { if } \bar{f}=f_{+}^{\prime} \text { or } \bar{f}=f_{-}^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $p_{1}, p_{2} \in P$ with $p_{1} \neq p_{2}$. Let faces $\left(p_{i}\right)$ denote the set of 2 faces contained in p_{i}, and let $\operatorname{verts}\left(p_{i}\right)$ denote the set of 8 vertices contained in the two faces of p_{i}.

$$
\mu\left(p_{1}, p_{2}\right)= \begin{cases}2 & \text { if } \operatorname{verts}\left(p_{1}\right) \cap \operatorname{verts}\left(p_{2}\right)=\emptyset \\ 0 & \text { if faces }\left(p_{1}\right) \cap \operatorname{faces}\left(p_{2}\right) \neq \emptyset \\ 1 & \text { otherwise }\end{cases}
$$

Then (Γ, μ) defines the configuration of type 40A.
Remark 2.6. The automorphism group $\operatorname{Aut}(\Gamma, \mu)$ is of order 768 , and V, F, P are the orbits of the action on Γ. Let V_{+}and V_{-}be the set of vertices of \mathcal{C}_{+}and \mathcal{C}_{-}, regarded as graphs with edges being the edges of the cubes. The automorphism group of the graph V_{+}is of order 48. The stabilizer subgroup $\operatorname{Stab}\left(V_{+}\right)$of V_{+}in $\operatorname{Aut}(\Gamma, \mu)$ is of index 2, the natural homomorphism $\operatorname{Stab}\left(V_{+}\right) \rightarrow \operatorname{Aut}\left(V_{+}\right)$is surjective, and its kernel is isomorphic to C_{2}^{3} acting on V_{-}as $\left(\left(a_{x}, a_{y}, a_{z}\right),-\right) \mapsto\left(\left(\pm a_{x}, \pm a_{y}, \pm a_{z}\right),-\right)$.
2.9. 40B and 40C. The configurations of type 40B and of 40C are isomorphic.

We put $F:=\{1,2,3,4\}$. Let P be the set $F \times F$ with the projections $\mathrm{pr}_{1}: P \rightarrow F$ and $\operatorname{pr}_{2}: P \rightarrow F$. Let B be the set of bijections $f: F \rightarrow F$. We put

$$
\Gamma:=P \sqcup B
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $p, p^{\prime} \in P$ with $p \neq p^{\prime}$. Then

$$
\mu\left(p, p^{\prime}\right)= \begin{cases}1 & \text { if } \operatorname{pr}_{1}(p)=\operatorname{pr}_{1}\left(p^{\prime}\right) \text { or } \operatorname{pr}_{2}(p)=\operatorname{pr}_{2}\left(p^{\prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $p \in P$ and $f \in B$. Then

$$
\mu(p, f)= \begin{cases}2 & \text { if } f\left(\operatorname{pr}_{1}(p)\right)=\operatorname{pr}_{2}(p) \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $f, f^{\prime} \in B$ with $f \neq f^{\prime}$. Then $\gamma:=f f^{\prime-1}$ is a permutation of F. Let $\tau(\gamma)$ denote the lengths of cycles in the cycle decomposition of $\gamma \in \mathfrak{S}_{4}$. Then

$$
\mu\left(f, f^{\prime}\right)= \begin{cases}2 & \text { if } \tau(\gamma)=4 \\ 2 & \text { if } \tau(\gamma)=2+2 \\ 1 & \text { if } \tau(\gamma)=3+1 \\ 0 & \text { if } \tau(\gamma)=2+1+1\end{cases}
$$

Then (Γ, μ) defines the configurations of type 40B and 40C.
Remark 2.7. The group $\operatorname{Aut}(\Gamma, \mu)$ is isomorphic to $\left(\mathfrak{S}_{4} \times \mathfrak{S}_{4}\right) \rtimes C_{2}$, which acts on P in the natural way.
2.10. 40D and 40E. The configurations of type 40D and of 40E are isomorphic.

A subset $(i j):=\{i, j\}$ of size 2 of $\{1, \ldots, 6\}$ is called a duad, and a subset $(i j k):=$ $\{i, j, k\}$ of size 3 of $\{1, \ldots, 6\}$ is called a trio. A syntheme is a non-ordered set $(i j)(k l)(m n):=\{(i j),(k l),(m n)\}$ of 3 duads such that $\{i, j, k, l, m, n\}=\{1, \ldots, 6\}$. A double trio is a non-ordered pair $(i j k)(l m n):=\{(i j k),(l m n)\}$ of complementary trios. Let D, S and T be the set of duads, synthemes, and double trios, respectively. We have $|D|=15,|S|=15$, and $|T|=10$. We then put

$$
\Gamma:=D \sqcup S \sqcup T
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $\delta_{1}, \delta_{2} \in D$ with $\delta_{1} \neq \delta_{2}$. Then

$$
\mu\left(\delta_{1}, \delta_{2}\right)= \begin{cases}1 & \text { if }\left|\delta_{1} \cap \delta_{2}\right|=1 \\ 0 & \text { if }\left|\delta_{1} \cap \delta_{2}\right|=0\end{cases}
$$

- Suppose that $\delta \in D$ ans $\sigma \in S$. Then

$$
\mu(\delta, \sigma)= \begin{cases}2 & \text { if } \delta \in \sigma \\ 0 & \text { if } \delta \notin \sigma\end{cases}
$$

- Suppose that $\delta \in D$ ans $\tau=\left\{t_{1}, t_{2}\right\} \in T$, where t_{1} and t_{2} are trios. Then

$$
\mu(\delta, \tau)= \begin{cases}2 & \text { if } \delta \subset t_{1} \text { or } \delta \subset t_{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $\sigma_{1}, \sigma_{2} \in S$ with $\sigma_{1} \neq \sigma_{2}$. Then

$$
\mu\left(\sigma_{1}, \sigma_{2}\right)= \begin{cases}1 & \text { if } \sigma_{1} \cap \sigma_{2}=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $\sigma \in S$ and $\tau \in T$. Then

$$
\mu(\sigma, \tau)= \begin{cases}2 & \text { if }|\delta \cap t|=1 \text { for any duad } \delta \in \sigma \text { and any trio } t \in \tau \\ 0 & \text { otherwise }\end{cases}
$$

- Suppose that $\tau_{1}, \tau_{2} \in T$ with $\tau_{1} \neq \tau_{2}$. Then $\mu\left(\tau_{1}, \tau_{2}\right)=2$.

Then (Γ, μ) defines the configurations of type 40D and 40E.
Remark 2.8. By construction, the symmetric group \mathfrak{S}_{6} acts on (Γ, μ), and D, S, T are the orbits. The full automorphism group of the configuration (Γ, μ) is isomorphic to the automorphism group $\operatorname{Aut}\left(\mathfrak{A}_{6}\right)$ of the alternating group \mathfrak{A}_{6}. The group $\operatorname{Aut}\left(\mathfrak{A}_{6}\right)$ contains \mathfrak{A}_{6} as a normal subgroup of index 4 such that $\operatorname{Aut}\left(\mathfrak{A}_{6}\right) / \mathfrak{A}_{6}$ is isomorphic to C_{2}^{2}, and contains $\mathfrak{S}_{6}, \mathrm{PGL}_{2}(9)$ and M_{10} as subgroups of index 2. (See, for example, Section 1.5, Chapter 10 of [4].) We can construct $\operatorname{Aut}\left(\mathfrak{A}_{6}\right)$ from \mathfrak{S}_{6} by adding an automorphism θ that induces the non-trivial outer automorphism of \mathfrak{S}_{6}. Correspondingly, the action of $\operatorname{Aut}\left(\mathfrak{A}_{6}\right)$ on (Γ, μ) fuses the duads D and the synthemes S, and decomposes Γ into two orbits $D \sqcup S$ and T.
2.11. 96A. Recall that $\mathbf{0}_{n}$ is the $n \times n$ zero matrix, and $\mathbf{1}_{n}$ is the $n \times n$ matrix with all components 1 . We consider the matrix

$$
\Sigma_{16}:=\left[\begin{array}{cccc}
-2 I_{4} & \mathbf{1}_{4} & 2 I_{4} & \mathbf{0}_{4} \\
\mathbf{1}_{4} & -2 I_{4} & \mathbf{0}_{4} & 2 I_{4} \\
2 I_{4} & \mathbf{0}_{4} & -2 I_{4} & \mathbf{1}_{4} \\
\mathbf{0}_{4} & 2 I_{4} & \mathbf{1}_{4} & -2 I_{4}
\end{array}\right]
$$

We put

$$
d:=\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right], \quad t_{+}:=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad t_{-}:=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

and

$$
D_{8}:=\left[\begin{array}{cccc}
d & \mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} \\
\mathbf{0}_{2} & d & \mathbf{0}_{2} & \mathbf{0}_{2} \\
\mathbf{0}_{2} & \mathbf{0}_{2} & d & \mathbf{0}_{2} \\
\mathbf{0}_{2} & \mathbf{0}_{2} & \mathbf{0}_{2} & d
\end{array}\right], \quad T_{8}:=\left[\begin{array}{cccc}
t_{+} & t_{-} & t_{-} & t_{-} \\
t_{-} & t_{+} & t_{-} & t_{-} \\
t_{-} & t_{-} & t_{+} & t_{-} \\
t_{-} & t_{-} & t_{-} & t_{+}
\end{array}\right] .
$$

We then consider the matrix

$$
\Sigma_{32}:=\left[\begin{array}{cccc}
D_{8} & T_{8} & \mathbf{1}_{8} & \mathbf{0}_{8} \\
T_{8} & D_{8} & \mathbf{0}_{8} & \mathbf{1}_{8} \\
\mathbf{1}_{8} & \mathbf{0}_{8} & D_{8} & T_{8} \\
\mathbf{0}_{8} & \mathbf{1}_{8} & T_{8} & D_{8}
\end{array}\right]
$$

For $k=16$ and $k=32$, let $\left(\Gamma_{k}, \mu_{k}\right)$ be the configuration of size k with the symmetric bilinear form $\mu_{k}: \Gamma_{k} \times \Gamma_{k} \rightarrow \mathbb{Z}$ given by the matrix Σ_{k} defined above. Then there exist exactly 64 sub-configurations $\left(\Gamma^{\prime}, \mu_{32} \mid \Gamma^{\prime}\right)$ of $\left(\Gamma_{32}, \mu_{32}\right)$ with $\Gamma^{\prime} \subset \Gamma_{32}$ that are isomorphic to $\left(\Gamma_{16}, \mu_{16}\right)$. We denote by Γ_{64} the set of sub-configurations
of $\left(\Gamma_{32}, \mu_{32}\right)$ isomorphic to $\left(\Gamma_{16}, \mu_{16}\right)$, and define $\mu_{64}: \Gamma_{64} \times \Gamma_{64} \rightarrow \mathbb{Z}$ by

$$
\mu_{64}\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right):= \begin{cases}6 & \text { if }\left|\Gamma^{\prime} \cap \Gamma^{\prime \prime}\right|=0 \\ 4 & \text { if }\left|\Gamma^{\prime} \cap \Gamma^{\prime \prime}\right|=4 \\ 2 & \text { if }\left|\Gamma^{\prime} \cap \Gamma^{\prime \prime}\right|=8 \\ 0 & \text { if }\left|\Gamma^{\prime} \cap \Gamma^{\prime \prime}\right|=12 \\ -2 & \text { if }\left|\Gamma^{\prime} \cap \Gamma^{\prime \prime}\right|=16\end{cases}
$$

We then put

$$
\Gamma:=\Gamma_{32} \sqcup \Gamma_{64}
$$

and define a symmetric function $\mu: \Gamma \times \Gamma \rightarrow \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $v, v^{\prime} \in \Gamma_{32}$. Then $\mu\left(v, v^{\prime}\right):=\mu_{32}\left(v, v^{\prime}\right)$.
- Suppose that $\Gamma^{\prime}, \Gamma^{\prime \prime} \in \Gamma_{64}$. Then $\mu\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right):=\mu_{64}\left(\Gamma^{\prime}, \Gamma^{\prime \prime}\right)$.
- Suppose that $v \in \Gamma_{32}$ and $\Gamma^{\prime} \in \Gamma_{64}$. Then

$$
\mu\left(v, \Gamma^{\prime}\right):= \begin{cases}2 & \text { if } v \in \Gamma^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Then (Γ, μ) defines the configuration of type 96 A .
Remark 2.9. The order of the automorphism group of (Γ, μ) is 147456 . The natural homomorphism $\operatorname{Aut}\left(\Gamma_{32}, \mu_{32}\right) \rightarrow \operatorname{Aut}(\Gamma, \mu)$ is an isomorphism. The set Γ_{32} is regarded as the indexes $\{1, \ldots, 32\}$ of row vectors of the matrix Σ_{32}. We have a decomposition

$$
\Gamma_{32}=o_{1} \sqcup \cdots \sqcup o_{4}, \quad o_{i}:=\{8(i-1)+1, \ldots, 8(i-1)+8\}
$$

The action of $\operatorname{Aut}\left(\Gamma_{32}, \mu_{32}\right)$ on Γ_{32} preserves this decomposition, and hence we have a homomorphism

$$
\pi: \operatorname{Aut}\left(\Gamma_{32}, \mu_{32}\right) \rightarrow \mathfrak{S}_{4}
$$

to the permutation group of o_{1}, \ldots, o_{4}. The image is isomorphic to C_{2}^{2}. Each o_{i} is equipped with a structure of the configuration by $\mu_{32} \mid o_{i}: o_{i} \times o_{i} \rightarrow \mathbb{Z}$, or equivalently, by the matrix D_{8}. The automorphism group Aut $\left(o_{i}\right)$ of this configuration $\left(o_{i}, \mu_{32} \mid o_{i}\right)$ is isomorphic to $C_{2}^{4} \rtimes \mathfrak{S}_{4}$. Let G_{192} denote the subgroup $\operatorname{Aut}\left(o_{i}\right) \cap \mathfrak{A}_{8}$ of $\operatorname{Aut}\left(o_{i}\right)$, where the intersection is taken in the full permutation group \mathfrak{S}_{8} of o_{i}. Then the natural homomorphism

$$
\operatorname{Ker} \pi \rightarrow \operatorname{Aut}\left(o_{1}\right) \times \operatorname{Aut}\left(o_{3}\right)
$$

is injective, and the image is equal to $G_{192} \times G_{192}$. Thus we have an exact sequence

$$
1 \longrightarrow G_{192} \times G_{192} \longrightarrow \operatorname{Aut}(\Gamma, \mu) \longrightarrow C_{2}^{2} \longrightarrow 0
$$

2.12. 96B and 96C. The configurations of type 96B and of 96C are isomorphic.

We put

$$
m:=\left[\begin{array}{cc}
-2 & 4 \\
4 & -2
\end{array}\right], \quad t_{+}:=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad t_{-}:=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] .
$$

We then define an 8×8 matrix D by

$$
D:=\left[\begin{array}{cccc}
m & t_{+} & t_{+} & t_{+} \\
t_{+} & m & t_{+} & t_{+} \\
t_{+} & t_{+} & m & t_{+} \\
t_{+} & t_{+} & t_{+} & m
\end{array}\right]
$$

$$
\begin{aligned}
& S_{1}:=\left[\begin{array}{cccc}
- & - & + & + \\
- & - & + & + \\
+ & + & - & - \\
+ & + & - & - \\
- & + & - & + \\
- & + & - & + \\
+ & - & + & - \\
+ & - & + & - \\
- & + & + & - \\
- & + & + & - \\
+ & - & - & + \\
+ & - & - & + \\
+ & - & - & + \\
- & + & + & - \\
- \\
- & + & - \\
+ & - & - & +
\end{array}\right],
\end{aligned}, \quad S_{5}:=\left[\begin{array}{cccc}
- & - & + & + \\
+ & + & - & - \\
- & - & + & + \\
+ & + & - & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & + & - \\
+ & - & - & + \\
- & + & + & - \\
+ & - & - & +
\end{array}\right], \quad S_{3}:=\left[\begin{array}{cccc}
- & - & + & + \\
+ & + & - & - \\
+ & + & - & - \\
- & - & + & + \\
- & + & - & + \\
+ & - & + & - \\
+ & - & + & - \\
- & + & - & + \\
- & + & + & - \\
+ & - & - & + \\
+ & - & - & + \\
- & + & + & -
\end{array}\right],
$$

TABLE 2.1. Eighteen matrices S_{1}, \ldots, S_{18}
and a 24×24 matrix T by

$$
T:=\left[\begin{array}{ccc}
D & \mathbf{1}_{8} & \mathbf{1}_{8} \tag{2.2}\\
\mathbf{1}_{8} & D & \mathbf{1}_{8} \\
\mathbf{1}_{8} & \mathbf{1}_{8} & D
\end{array}\right]
$$

Let \mathcal{S} be the set of 18 square matrices S_{1}, \ldots, S_{18} of size 4 with components in $\{+,-\}$ obtained from S_{1} in Table 2.1 by permuting rows and columns. For a 3×3 matrix

$$
\nu:=\left[\begin{array}{ccc}
i_{11} & i_{12} & i_{13} \\
i_{21} & i_{22} & i_{23} \\
i_{31} & i_{32} & i_{33}
\end{array}\right]
$$

with components $i_{\alpha \beta}$ in $\{1, \ldots, 18\}$, let $S[\nu]$ denote the 24×24 matrix obtained from ν by first replacing each $i_{\alpha \beta}$ with the member $S_{i_{\alpha \beta}}$ of \mathcal{S} indexed by $i_{\alpha \beta}$ and then replacing + with t_{+}and - with t_{-}. We put

$$
\begin{array}{ll}
\nu_{1}:=\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 4 & 5 \\
1 & 2 & 3
\end{array}\right], \quad \nu_{2}:=\left[\begin{array}{lll}
5 & 9 & 7 \\
9 & 5 & 4 \\
3 & 2 & 1
\end{array}\right], \quad \nu_{3}:=\left[\begin{array}{lll}
4 & 8 & 9 \\
9 & 5 & 4 \\
2 & 1 & 3
\end{array}\right], \\
\nu_{4}:=\left[\begin{array}{lll}
8 & 9 & 1 \\
6 & 1 & 5 \\
1 & 5 & 9
\end{array}\right], \quad \nu_{5}:=\left[\begin{array}{lll}
8 & 1 & 9 \\
1 & 9 & 5 \\
6 & 5 & 1
\end{array}\right], \quad \nu_{6}:=\left[\begin{array}{lll}
9 & 8 & 1 \\
1 & 5 & 9 \\
6 & 1 & 5
\end{array}\right] .
\end{array}
$$

Then the 96×96 symmetric matrix

$$
\left[\begin{array}{cccc}
T & S\left[\nu_{1}\right] & S\left[\nu_{2}\right] & S\left[\nu_{3}\right] \tag{2.3}\\
& T & S\left[\nu_{4}\right] & S\left[\nu_{5}\right] \\
& & T & S\left[\nu_{6}\right] \\
& & & T
\end{array}\right]
$$

defines the configurations of type 96B and 96C.

Remark 2.10. The group \mathfrak{S}_{4} acts on \mathcal{S} as $S \mapsto \sigma S$ for $S \in \mathcal{S}$ and $\sigma \in \mathfrak{S}_{4}$, where σS is obtained from S by permuting rows of S by σ. Let $G_{\text {row }}$ be the subgroup of the full permutation group $\mathfrak{S}(\mathcal{S})$ of \mathcal{S} generated by the action of \mathfrak{S}_{4} on rows and the flipping $+\leftrightarrow-$. Then $\left|G_{\text {row }}\right|=48$, and \mathcal{S} is decomposed by $G_{\text {row }}$ into 3 orbits, each of which is of size 6 . Similarly, we define $G_{\text {col }}$ to be the subgroup of $\mathfrak{S}(\mathcal{S})$ generated by the action of \mathfrak{S}_{4} on columns and the flipping. Then $\left|G_{\text {col }}\right|=48$ and \mathcal{S} is decomposed by $G_{\text {col }}$ into 3 orbits of size 6 . The intersection of any orbit of $G_{\text {row }}$ and any orbit of $G_{\text {col }}$ consists of two matrices that are interchanged by the flipping.

Let \mathcal{M} be the set of 3×3 matrices with components in the set $\{1, \ldots, 18\}$ of indexes of \mathcal{S}. The groups $G_{\text {row }}$ and $G_{\text {col }}$ act on $\{1, \ldots, 18\}$ as described in the previous paragraph. Let \mathcal{G} be the subgroup of the full permutation group of \mathcal{M} generated by the following permutations:

- the permutations of 3 rows,
- choosing a row and making an element of $G_{\text {row }}$ act on the 3 components of the row,
- the permutations of 3 columns, and
- choosing a column and making an element of $G_{\text {col }}$ act on the 3 components of the column.

Then we confirm that there exists one and only one orbit O of the action of \mathcal{G} on \mathcal{M} with the following property: for every $\nu \in O$, each row of ν consists of 3 distinct elements, and each column of ν consists of 3 distinct elements. We have $|O|=23887872$.

The 6 matrices ν_{1}, \ldots, ν_{6} above belong to this orbit O. We tried to characterize the 6 -tuple ν_{1}, \ldots, ν_{6} of elements of O combinatorially, but we could not find a nice description.

Remark 2.11. The automorphism group of (Γ, μ) is of order 221184. The set Γ is decomposed into 48 pairs $\left\{v, v^{\prime}\right\}$ with $\mu\left(v, v^{\prime}\right)=4$. Let P_{48} be the set of these pairs. The kernel of the natural homomorphism

$$
\pi: \operatorname{Aut}(\Gamma, \mu) \rightarrow \mathfrak{S}\left(P_{48}\right)
$$

is isomorphic to C_{2}. The set P_{48} is decomposed into the disjoint union of 4 subsets t_{1}, \ldots, t_{4} of size 12 , each of which corresponds to the diagonal block T of the matrix (2.3). The natural homomorphism

$$
\rho: \operatorname{Im} \pi \rightarrow \mathfrak{S}_{4}
$$

is surjective. Hence $\operatorname{Ker} \rho$ is of order 4608. The kernel of the natural homomorphism

$$
\sigma: \text { Ker } \rho \rightarrow \mathfrak{S}\left(t_{1}\right)
$$

is isomorphic to C_{2}^{2}, and hence $\operatorname{Im} \sigma$ is of order 1152. The set t_{1} is then decomposed into the disjoint union of 3 subsets d_{1}, \ldots, d_{3} of size 4 , each of which corresponds to the diagonal block D of the matrix (2.2). The natural homomorphism

$$
\tau: \operatorname{Im} \sigma \rightarrow \mathfrak{S}_{3}
$$

is surjective. Hence $\operatorname{Ker} \tau$ is of order 192, which is isomorphic to $C_{2}^{6}: C_{3}$.

References

[1] Richard Borcherds. Automorphism groups of Lorentzian lattices. J. Algebra, 111(1):133-153, 1987.
[2] Richard E. Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces. Internat. Math. Res. Notices, 1998(19):1011-1031, 1998.
[3] Simon Brandhorst and Ichiro Shimada. Borcherds' method for Enriques surfaces, 2019. Preprint, arXiv:1903.01087.
[4] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, third edition, 1999.
[5] Shigeyuki Kondo. Enriques surfaces with finite automorphism groups. Japan. J. Math. (N.S.), 12(2):191-282, 1986.
[6] Gebhard Martin. Enriques surfaces with finite automorphism group in positive characteristic. Preprint, arXiv:1703.08419, 2017.
[7] V. V. Nikulin. Description of automorphism groups of Enriques surfaces. Dokl. Akad. Nauk SSSR, 277(6):1324-1327, 1984. Soviet Math. Dokl. 30 (1984), No. 1 282-285.
[8] Ichiro Shimada. The elliptic modular surface of level 4 and its reduction modulo 3, 2018. Preprint. arXiv:1806.05787.
[9] Ichiro Shimada. On an Enriques surface associated with a quartic Hessian surface. Canad. J. Math., 71(1):213-246, 2019.
[10] Ichiro Shimada. A note on configurations of (-2)-vectors on Enriques surfaces: computational data. http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html, 2019.
[11] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http: //www.gap-system.org).

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp

[^0]: Supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.

