A NOTE ON CONFIGURATIONS OF (-2)-VECTORS ON ENRIQUES SURFACES

ICHIRO SHIMADA

1. INTRODUCTION

This note is a supplement of the joint paper [3] with S. Brandhorst.

It was established by Nikulin [7], Kondo [5], and Martin [6] that Enriques surfaces in characteristic $\neq 2$ with finite automorphism group are divided into seven classes I, II, ..., VII. The configurations of smooth rational curves on these Enriques surfaces are depicted in Kondo [5] by beautiful but complicated graphs.

A lattice of rank n is hyperbolic if the signature is (1, n - 1). A positive cone of a hyperbolic lattice L is a connected component of $\{x \in L \otimes \mathbb{R} \mid \langle x, x \rangle > 0\}$. For a positive integer n with $n \equiv 2 \mod 8$, let L_n denote the even unimodular hyperbolic lattice of rank n, which is unique up to isomorphism. Borcherds' method [1, 2] is a method to calculate the automorphism group of an even hyperbolic lattice S by embedding S into L_{26} primitively and using the tessellation of a positive cone of L_{26} by Conway chambers. (See Chapter 27 of [4]. See [3] for the definition of Conway chambers.) This method has been applied to lattices S_X of numerical equivalence classes of divisors of various K3 surfaces X, and the automorphism group of these K3 surfaces are calculated.

The lattice S_Y of numerical equivalence classes of divisors of an Enriques surface Y is isomorphic to L_{10} . The universal covering $X \to Y$ of Y by a K3 surface X induces a primitive embedding $S_Y(2) \hookrightarrow S_X$, where $S_Y(2)$ is the lattice obtained from S_Y by multiplying the intersection form \langle , \rangle by 2. If S_X is embedded primitively into L_{26} in Borcherds' method, then $S_Y(2)$ is also embedded primitively into L_{26} . In [3], hoping to apply Borcherds' method to Enriques surfaces systematically, we have classified all primitive embeddings of $L_{10}(2)$ into L_{26} . It turns out that there exist exactly 17 primitive embeddings

12A, 12B, 20A, ..., 20F, 40A, ..., 40E, 96A, 96B, 96C, infty

up to the action of the orthogonal groups of L_{10} and L_{26} . Let \mathcal{P}_{10} be a positive cone of L_{10} . For each of these primitive embeddings except for the type **infty**, we obtain a finite polyhedral cone in \mathcal{P}_{10} bounded by hyperplanes perpendicular to (-2)-vectors in L_{10} such that \mathcal{P}_{10} is tessellated by the image of reflections of this finite polyhedral cone with respect to the walls. The set of walls of this finite polyhedral cone defines a configuration of (-2)-vectors of L_{10} . The 7 configurations I, II, ..., VII of Nikulin-Kondo appear among these 16 configurations.

In this note, we give a combinatorial description for each of these configurations. The result includes new descriptions of the Nikulin-Kondo configurations, which we hope are handier than the picturesque graphs of [5] in some situations.

Supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.

An explicit computational data is available at [10]. We used GAP [11] for the calculation.

Conventions. (1) A configuration is a pair (Γ, μ) of a finite set Γ and a mapping $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ such that $\mu(x, y) = \mu(y, x)$ for all $x, y \in \Gamma$. In this note, we always assume that

(1.1)
$$\mu(x, x) = -2 \quad \text{for all} \quad x \in \Gamma.$$

The automorphism group of a configuration (Γ, μ) is the group of permutations of Γ that preserve μ . The size of a configuration (Γ, μ) is $|\Gamma|$.

(2) The cyclic group of order n is denoted by C_n . The symmetric group of degree n is denoted by \mathfrak{S}_n , and the alternating group of degree n is denoted by \mathfrak{A}_n . Let I_n denote the identity matrix of size n. Let $\mathbf{1}_n$ and $\mathbf{0}_n$ be the square matrix of size n whose components are all 1 and all 0, respectively.

2. Combinatorial descriptions

2.1. 12A. The configuration of type 12A is the configuration of Nikulin-Kondo type I (Fig. 1.4 of [5]). The automorphism group is isomorphic to $C_2 \times C_2$.

2.2. 12B. The configuration of type 12B is the configuration of Nikulin-Kondo type II (Fig. 2.4 of [5]). The automorphism group is isomorphic to $C_2 \times \mathfrak{S}_4$.

2.3. 20A. The configuration of type 20A is isomorphic to the configuration of Nikulin-Kondo type V (Fig. 5.5 of [5]).

Let A be the set $\{1, 2, 3, 4\}$, and B the set of subsets $\{i, j\}$ of A with size 2. Let A_1 and A_2 be two copies of A with the natural bijection to A denoted by $a \mapsto \overline{a}$. Let B_1 and B_2 be two copies of B with the natural bijection to B denoted by $b \mapsto \overline{b}$. We then put

$$\Gamma := A_1 \sqcup A_2 \sqcup B_1 \sqcup B_2$$

and define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $a, a' \in A_1$ with $a \neq a'$. Then $\mu(a, a') = 0$.
- Suppose that $a \in A_1$ and $a' \in A_2$. Then

$$\mu(a, a') = \begin{cases} 2 & \text{if } \bar{a} = \bar{a}', \\ 0 & \text{otherwise.} \end{cases}$$

- Suppose that $a, a' \in A_2$ with $a \neq a'$. Then $\mu(a, a') = 2$.
- Suppose that $a \in A_1$ and $b \in B_1$. Then $\mu(a, b) = 0$.
- Suppose that $a \in A_1$ and $b \in B_2$. Then

$$\mu(a,b) = \begin{cases} 1 & \text{if } \bar{a} \in \bar{b}, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $a \in A_2$ and $b \in B_1$. Then

$$\mu(a,b) = \begin{cases} 2 & \text{if } \bar{a} \in \bar{b}, \\ 0 & \text{otherwise.} \end{cases}$$

- Suppose that $a \in A_2$ and $b \in B_2$. Then $\mu(a, b) = 0$.
- Suppose that $b, b' \in B_1$ with $b \neq b'$. Then

$$\mu(a,b) = \begin{cases} 2 & \text{if } \bar{b} \cap \bar{b'} = \emptyset, \\ 1 & \text{otherwise.} \end{cases}$$

 $\mathbf{2}$

• Suppose that $b \in B_1$ and $b' \in B_2$. Then

$$\mu(a,b) = \begin{cases} 2 & \text{if } \bar{b} \cap \bar{b'} = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $b, b' \in B_2$ with $b \neq b'$. Then $\mu(b, b') = 0$.

Then (Γ, μ) defines the configuration of type 20A.

Remark 2.1. The automorphism group of (Γ, μ) is isomorphic to \mathfrak{S}_4 , acting naturally on A.

2.4. 20B. The configuration of type 20B is isomorphic to the configuration of Nikulin-Kondo type III (Fig. 3.5 of [5]).

We put $P := \{1, 2, 3, 4\}$. Let Q_1 and Q_2 be quadrangles. For i = 1, 2, let VQ_i be the set of vertices of Q_i , and let EQ_i be the set of edges of Q_i . Let $EQ_i = \{a_i, a'_i\} \cup \{b_i, b'_i\}$ be the decomposition such that a_i and a'_i (resp. b_i and b'_i) have no common vertex. We then put

$$\Gamma := P \sqcup VQ_1 \sqcup VQ_2 \sqcup EQ_1 \sqcup EQ_2,$$

and define a symmetric function $\mu: \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $p_1, p_2 \in P$ with $p_1 \neq p_2$. Then $\mu(p_1, p_2) = 0$.
- Suppose that $p \in P$ and $v \in VQ_1 \sqcup VQ_2$. Then $\mu(p, v) = 0$.
- Suppose that $p \in P$ and $e_1 \in EQ_1$. Then

 $\mu(p, e_1) = \begin{cases} 1 & \text{if } (p \in \{1, 2\} \text{ and } e_1 \in \{a_1, a_1'\}) \text{ or } (p \in \{3, 4\} \text{ and } e_1 \in \{b_1, b_1'\}), \\ 0 & \text{otherwise.} \end{cases}$

• Suppose that $p \in P$ and $e_2 \in EQ_2$. Then

 $\mu(p, e_2) = \begin{cases} 1 & \text{if } (p \in \{1, 3\} \text{ and } e_2 \in \{a_2, a_2'\}) \text{ or } (p \in \{2, 4\} \text{ and } e_2 \in \{b_2, b_2'\}), \\ 0 & \text{otherwise.} \end{cases}$

• Suppose that $v_1, v_2 \in VQ_1 \sqcup VQ_2$ with $v_1 \neq v_2$. Then

 $\mu(v_1, v_2) = \begin{cases} 0 & \text{if } v_1 \text{ and } v_2 \text{ are the end-points of an edge,} \\ 2 & \text{otherwise.} \end{cases}$

• Suppose that $v \in VQ_1 \sqcup VQ_2$ and $e \in EQ_1 \sqcup EQ_2$. Then

$$\mu(v, e) = \begin{cases} 2 & \text{if } v \text{ is an end-point of } e, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $e_1, e_2 \in EQ_1 \sqcup EQ_2$ with $e_1 \neq e_2$. Then $\mu(e_1, e_2) = 0$.

Then (Γ, μ) defines the configuration of type 20B.

Remark 2.2. The automorphism group of (Γ, μ) is the group of the automorphism of the disjoint union $Q_1 \sqcup Q_2$ of two quadrangles, that is, $D_8^2 \rtimes C_2$.

2.5. 20C and 20D. The configurations of type 20C and of type 20D are isomorphic, and they are isomorphic to the configuration of Nikulin-Kondo type VII (Fig. 7.7 of [5]).

Let A be $\{1, \ldots, 5\}$, and let B be the set of non-ordered pairs $\{(ij), (kl)\}$ of disjoint subsets $(ij) = \{i, j\}$ and $(kl) = \{k, l\}$ of A with size 2. For $b = \{(ij), (kl)\} \in B$, let $\bar{b} \in A$ denote the unique element of A that is not contained in $(ij) \cup (kl)$. We then put

$$\Gamma := A \sqcup B,$$

and define a symmetric function $\mu: \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $a, a' \in A$ with $a \neq a'$. Then we have $\mu(a, a') = 2$.
- Suppose that $a \in A$ and $b \in B$. Then we have

$$\mu(a,b) := \begin{cases} 2 & \text{if } a = \bar{b}, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $b, b' \in B$ with $b \neq b'$. Then we have

$$\mu(b,b') := \begin{cases} 1 & \text{if } b \cap b' \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Then (Γ, μ) defines the configurations of type 20C and type 20D.

Remark 2.3. The automorphism group of (Γ, μ) is isomorphic to \mathfrak{S}_5 .

2.6. 20E. The configuration of type 20E is isomorphic to the configuration of Nikulin-Kondo type VI (Fig. 6.4 of [5]). The description below of this configuration was obtained in [9].

Let A be the set of subsets of $\{1, \ldots, 5\}$ with size 3. Let A_1 and A_2 be two copies of A with the natural bijection to A denoted by $a \mapsto \overline{a}$. We then put

$$\Gamma := A_1 \sqcup A_2,$$

and define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

• Suppose that $a, a' \in A_1$ with $a \neq a'$. Then

$$\mu(a,a') = \begin{cases} 1 & \text{if } |a \cap a'| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $a, a' \in A_2$ with $a \neq a'$. Then

$$\mu(a, a') = \begin{cases} 1 & \text{if } |a \cap a'| = 2, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $a \in A_1$ and $a' \in A_2$. Then

$$\mu(a,a') = \begin{cases} 2 & \text{if } \bar{a} = \bar{a}', \\ 0 & \text{otherwise.} \end{cases}$$

Then (Γ, μ) defines the configuration of type 20E.

Remark 2.4. The sub-configuration $(A_1, \mu | A_1)$ is isomorphic to the Petersen graph, and the sub-configuration $(A_2, \mu | A_2)$ is isomorphic to the complement of the Petersen graph. The automorphism group of (Γ, μ) is equal to the automorphism group of the Petersen graph, which is isomorphic to \mathfrak{S}_5 .

4

FIGURE 2.1. Graph for Nikulin-Kondo type VI

2.7. 20F. The configuration of type 20F is isomorphic to the configuration of Nikulin-Kondo type IV (Fig. 4.4 of [5]). The description below of this configuration was obtained in [8].

Let $\overline{\Gamma}$ be the set of vertices of the Petersen graph P, and let Γ be the set with 20 vertices with a map $\rho \colon \Gamma \to \overline{\Gamma}$ such that $|\rho^{-1}(\overline{v})| = 2$ for every $\overline{v} \in \overline{\Gamma}$. We fix a numbering v_1, v_2 of the elements in each fiber $\rho^{-1}(\overline{v}) = \{v_1, v_2\}$ of ρ . We then define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

- We have $\mu(v, v') = 0$ if $\rho(v) = \rho(v')$.
- We have $\mu(v, v') = 0$ if $\rho(v)$ and $\rho(v')$ are not connected in P.
- We have $\mu(v, v') = 1$ if $\rho(v)$ and $\rho(v')$ are connected by a thin line in Figure 2.1.
- Suppose that \bar{v} and \bar{v}' are connected by a thick line in Figure 2.1. Let $\rho^{-1}(\bar{v}) = \{v_1, v_2\}$ and $\rho^{-1}(\bar{v}') = \{v'_1, v'_2\}$ be the fibers with the fixed numberings. Then

$$\mu(v_i, v'_j) = \begin{cases} 2 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Then the isomorphism class of the configuration (Γ, μ) does not depend on the choice of numberings of two elements in fibers of ρ , and (Γ, μ) defines the configuration of type 20F.

Remark 2.5. The group $\operatorname{Aut}(\Gamma, \mu)$ is of order 640. The action of $\operatorname{Aut}(\Gamma, \mu)$ on Γ preserves the fibers of $\rho: \Gamma \to \overline{\Gamma}$, and we have a natural homomorphism from $\operatorname{Aut}(\Gamma, \mu)$ to the automorphism group $\operatorname{Aut}(P)$ of the Petersen graph, which is isomorphic to \mathfrak{S}_5 . Thus we obtain an exact sequence

$$(2.1) 0 \longrightarrow C_2^5 \longrightarrow \operatorname{Aut}(\Gamma, \mu) \longrightarrow G_{20} \longrightarrow 1,$$

where G_{20} is the subgroup of $\operatorname{Aut}(P) \cong \mathfrak{S}_5$ consisting of elements that preserve the thick edges in Figure 2.1. As a subgroup of \mathfrak{S}_5 , the group G_{20} is conjugate to the subgroup generated by (12345) and (2354).

2.8. 40A. Let C_+ and C_- be two copies of the cubes $I^3 \subset \mathbb{R}^3$, where $I \subset \mathbb{R}$ is the unit interval. Let ε be + or -. A vertex of C_{ε} is written as $((a_x, a_y, a_z), \varepsilon)$, where $a_x, a_y, a_z \in \{0, 1\}$, and a face of C_{ε} is written as $(w = a, \varepsilon)$, where $w \in \{x, y, z\}$ and $a \in \{0, 1\}$. Let V be the set of vertices of C_{\pm} , and let F be the set of faces of C_{\pm} .

ICHIRO SHIMADA

Let P be the set of pairs of a face $f_+ = (w = a_+)$ of \mathcal{C}_+ and a face $f_- = (w = a_-)$ of \mathcal{C}_- that are parallel. Each element of P is written as $(w = a_+, w = a_-)$, where $w \in \{x, y, z\}$ and $a_{\pm} \in \{0, 1\}$. We have |V| = 16, |F| = 12, |P| = 12. We put

$$\Gamma := V \sqcup F \sqcup P,$$

and define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

• Suppose that $v_1, v_2 \in V$ with $v_1 \neq v_2$. Then

$$\mu(v_1, v_2) = \begin{cases} 0 & \text{if } v_1 v_2 \text{ is an edge of } \mathcal{C}_+ \text{ or } \mathcal{C}_-, \\ 4 & \text{if } v_1 v_2 \text{ is a diagonal of } \mathcal{C}_+ \text{ or } \mathcal{C}_-, \\ 2 & \text{otherwise.} \end{cases}$$

• Suppose that $v \in V$ and $f \in F$. Then

$$\mu(v, f) = \begin{cases} 2 & \text{if } v \in f, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $v \in V$ and $p = (f_+, f_-) \in P$. Then

$$\mu(v,p) = \begin{cases} 2 & \text{if } v \in f_+ \cup f_-, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $f_1, f_2 \in F$ with $f_1 \neq f_2$. Let f_i be $(w_i = a_i, \varepsilon_i)$, where $w_i \in \{x, y, z\}, a_i \in \{0, 1\}$, and $\varepsilon_i \in \{+, -\}$. Then

$$\mu(f_1, f_2) = \begin{cases} 1 & \text{if } \varepsilon_1 \neq \varepsilon_2 \text{ and } w_1 \neq w_2, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $f = (w = a, \varepsilon) \in F$ and $p = (f'_+, f'_-) \in P$. Let \overline{f} be the unique face of $\mathcal{C}_{\varepsilon}$ that is disjoint from f. Then

$$\mu(f,p) = \begin{cases} 2 & \text{if } \bar{f} = f'_+ \text{ or } \bar{f} = f'_-, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $p_1, p_2 \in P$ with $p_1 \neq p_2$. Let $faces(p_i)$ denote the set of 2 faces contained in p_i , and let $verts(p_i)$ denote the set of 8 vertices contained in the two faces of p_i .

$$\mu(p_1, p_2) = \begin{cases} 2 & \text{if } \operatorname{verts}(p_1) \cap \operatorname{verts}(p_2) = \emptyset, \\ 0 & \text{if } \operatorname{faces}(p_1) \cap \operatorname{faces}(p_2) \neq \emptyset, \\ 1 & \text{otherwise.} \end{cases}$$

Then (Γ, μ) defines the configuration of type 40A.

Remark 2.6. The automorphism group $\operatorname{Aut}(\Gamma,\mu)$ is of order 768, and V, F, P are the orbits of the action on Γ . Let V_+ and V_- be the set of vertices of \mathcal{C}_+ and \mathcal{C}_- , regarded as graphs with edges being the edges of the cubes. The automorphism group of the graph V_+ is of order 48. The stabilizer subgroup $\operatorname{Stab}(V_+)$ of V_+ in $\operatorname{Aut}(\Gamma,\mu)$ is of index 2, the natural homomorphism $\operatorname{Stab}(V_+) \to \operatorname{Aut}(V_+)$ is surjective, and its kernel is isomorphic to C_2^3 acting on V_- as $((a_x, a_y, a_z), -) \mapsto ((\pm a_x, \pm a_y, \pm a_z), -)$.

2.9. 40B and 40C. The configurations of type 40B and of 40C are isomorphic.

We put $F := \{1, 2, 3, 4\}$. Let P be the set $F \times F$ with the projections $\operatorname{pr}_1 \colon P \to F$ and $\operatorname{pr}_2 \colon P \to F$. Let B be the set of bijections $f \colon F \to F$. We put

$$\Gamma := P \sqcup B,$$

and define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

• Suppose that $p, p' \in P$ with $p \neq p'$. Then

$$\mu(p,p') = \begin{cases} 1 & \text{if } \operatorname{pr}_1(p) = \operatorname{pr}_1(p') \text{ or } \operatorname{pr}_2(p) = \operatorname{pr}_2(p'), \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $p \in P$ and $f \in B$. Then

$$\mu(p, f) = \begin{cases} 2 & \text{if } f(\mathrm{pr}_1(p)) = \mathrm{pr}_2(p), \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $f, f' \in B$ with $f \neq f'$. Then $\gamma := ff'^{-1}$ is a permutation of F. Let $\tau(\gamma)$ denote the lengths of cycles in the cycle decomposition of $\gamma \in \mathfrak{S}_4$. Then

$$\mu(f, f') = \begin{cases} 2 & \text{if } \tau(\gamma) = 4, \\ 2 & \text{if } \tau(\gamma) = 2+2, \\ 1 & \text{if } \tau(\gamma) = 3+1, \\ 0 & \text{if } \tau(\gamma) = 2+1+1 \end{cases}$$

Then (Γ, μ) defines the configurations of type 40B and 40C.

Remark 2.7. The group $\operatorname{Aut}(\Gamma, \mu)$ is isomorphic to $(\mathfrak{S}_4 \times \mathfrak{S}_4) \rtimes C_2$, which acts on P in the natural way.

2.10. 40D and 40E. The configurations of type 40D and of 40E are isomorphic.

A subset $(ij) := \{i, j\}$ of size 2 of $\{1, \ldots, 6\}$ is called a *duad*, and a subset $(ijk) := \{i, j, k\}$ of size 3 of $\{1, \ldots, 6\}$ is called a *trio*. A *syntheme* is a non-ordered set $(ij)(kl)(mn) := \{(ij), (kl), (mn)\}$ of 3 duads such that $\{i, j, k, l, m, n\} = \{1, \ldots, 6\}$. A *double trio* is a non-ordered pair $(ijk)(lmn) := \{(ijk), (lmn)\}$ of complementary trios. Let D, S and T be the set of duads, synthemes, and double trios, respectively. We have |D| = 15, |S| = 15, and |T| = 10. We then put

$$\Gamma := D \sqcup S \sqcup T,$$

and define a symmetric function $\mu \colon \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

• Suppose that $\delta_1, \delta_2 \in D$ with $\delta_1 \neq \delta_2$. Then

$$\mu(\delta_1, \delta_2) = \begin{cases} 1 & \text{if } |\delta_1 \cap \delta_2| = 1, \\ 0 & \text{if } |\delta_1 \cap \delta_2| = 0. \end{cases}$$

• Suppose that $\delta \in D$ and $\sigma \in S$. Then

$$\mu(\delta, \sigma) = \begin{cases} 2 & \text{if } \delta \in \sigma, \\ 0 & \text{if } \delta \notin \sigma. \end{cases}$$

• Suppose that $\delta \in D$ and $\tau = \{t_1, t_2\} \in T$, where t_1 and t_2 are trios. Then

$$\mu(\delta, \tau) = \begin{cases} 2 & \text{if } \delta \subset t_1 \text{ or } \delta \subset t_2, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $\sigma_1, \sigma_2 \in S$ with $\sigma_1 \neq \sigma_2$. Then

$$\mu(\sigma_1, \sigma_2) = \begin{cases} 1 & \text{if } \sigma_1 \cap \sigma_2 = \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $\sigma \in S$ and $\tau \in T$. Then

$$\mu(\sigma,\tau) = \begin{cases} 2 & \text{if } |\delta \cap t| = 1 \text{ for any duad } \delta \in \sigma \text{ and any trio } t \in \tau, \\ 0 & \text{otherwise.} \end{cases}$$

• Suppose that $\tau_1, \tau_2 \in T$ with $\tau_1 \neq \tau_2$. Then $\mu(\tau_1, \tau_2) = 2$.

Then (Γ, μ) defines the configurations of type 40D and 40E.

Remark 2.8. By construction, the symmetric group \mathfrak{S}_6 acts on (Γ, μ) , and D, S, Tare the orbits. The full automorphism group of the configuration (Γ, μ) is isomorphic to the automorphism group $\operatorname{Aut}(\mathfrak{A}_6)$ of the alternating group \mathfrak{A}_6 . The group $\operatorname{Aut}(\mathfrak{A}_6)$ contains \mathfrak{A}_6 as a normal subgroup of index 4 such that $\operatorname{Aut}(\mathfrak{A}_6)/\mathfrak{A}_6$ is isomorphic to C_2^2 , and contains \mathfrak{S}_6 , PGL₂(9) and M_{10} as subgroups of index 2. (See, for example, Section 1.5, Chapter 10 of [4].) We can construct $\operatorname{Aut}(\mathfrak{A}_6)$ from \mathfrak{S}_6 by adding an automorphism θ that induces the non-trivial outer automorphism of \mathfrak{S}_6 . Correspondingly, the action of $\operatorname{Aut}(\mathfrak{A}_6)$ on (Γ, μ) fuses the duads D and the synthemes S, and decomposes Γ into two orbits $D \sqcup S$ and T.

2.11. 96A. Recall that $\mathbf{0}_n$ is the $n \times n$ zero matrix, and $\mathbf{1}_n$ is the $n \times n$ matrix with all components 1. We consider the matrix

$$\Sigma_{16} := \begin{bmatrix} -2I_4 & \mathbf{1}_4 & 2I_4 & \mathbf{0}_4 \\ \mathbf{1}_4 & -2I_4 & \mathbf{0}_4 & 2I_4 \\ 2I_4 & \mathbf{0}_4 & -2I_4 & \mathbf{1}_4 \\ \mathbf{0}_4 & 2I_4 & \mathbf{1}_4 & -2I_4 \end{bmatrix}.$$

We put

$$d := \begin{bmatrix} -2 & 2\\ 2 & -2 \end{bmatrix}, \quad t_+ := \begin{bmatrix} 2 & 0\\ 0 & 2 \end{bmatrix}, \quad t_- := \begin{bmatrix} 0 & 2\\ 2 & 0 \end{bmatrix},$$

and

$$D_8 := \begin{bmatrix} d & \mathbf{0}_2 & \mathbf{0}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & d & \mathbf{0}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & \mathbf{0}_2 & d & \mathbf{0}_2 \\ \mathbf{0}_2 & \mathbf{0}_2 & \mathbf{0}_2 & d \end{bmatrix}, \quad T_8 := \begin{bmatrix} t_+ & t_- & t_- & t_- \\ t_- & t_+ & t_- & t_- \\ t_- & t_- & t_+ & t_- \\ t_- & t_- & t_- & t_+ \end{bmatrix}.$$

We then consider the matrix

$$\Sigma_{32} := \begin{bmatrix} D_8 & T_8 & \mathbf{1}_8 & \mathbf{0}_8 \\ T_8 & D_8 & \mathbf{0}_8 & \mathbf{1}_8 \\ \mathbf{1}_8 & \mathbf{0}_8 & D_8 & T_8 \\ \mathbf{0}_8 & \mathbf{1}_8 & T_8 & D_8 \end{bmatrix}$$

For k = 16 and k = 32, let (Γ_k, μ_k) be the configuration of size k with the symmetric bilinear form $\mu_k \colon \Gamma_k \times \Gamma_k \to \mathbb{Z}$ given by the matrix Σ_k defined above. Then there exist exactly 64 sub-configurations $(\Gamma', \mu_{32}|\Gamma')$ of (Γ_{32}, μ_{32}) with $\Gamma' \subset \Gamma_{32}$ that are isomorphic to (Γ_{16}, μ_{16}) . We denote by Γ_{64} the set of sub-configurations

8

of (Γ_{32}, μ_{32}) isomorphic to (Γ_{16}, μ_{16}) , and define $\mu_{64} \colon \Gamma_{64} \times \Gamma_{64} \to \mathbb{Z}$ by

$$\mu_{64}(\Gamma', \Gamma'') := \begin{cases} 6 & \text{if } |\Gamma' \cap \Gamma''| = 0, \\ 4 & \text{if } |\Gamma' \cap \Gamma''| = 4, \\ 2 & \text{if } |\Gamma' \cap \Gamma''| = 8, \\ 0 & \text{if } |\Gamma' \cap \Gamma''| = 12, \\ -2 & \text{if } |\Gamma' \cap \Gamma''| = 16. \end{cases}$$

We then put

$$\Gamma := \Gamma_{32} \sqcup \Gamma_{64},$$

and define a symmetric function $\mu: \Gamma \times \Gamma \to \mathbb{Z}$ satisfying (1.1) as follows.

- Suppose that $v, v' \in \Gamma_{32}$. Then $\mu(v, v') := \mu_{32}(v, v')$.
- Suppose that $\Gamma', \Gamma'' \in \Gamma_{64}$. Then $\mu(\Gamma', \Gamma'') := \mu_{64}(\Gamma', \Gamma'')$.
- Suppose that $v \in \Gamma_{32}$ and $\Gamma' \in \Gamma_{64}$. Then

 τ

$$\mu(v, \Gamma') := \begin{cases} 2 & \text{if } v \in \Gamma', \\ 0 & \text{otherwise.} \end{cases}$$

Then (Γ, μ) defines the configuration of type 96A.

Remark 2.9. The order of the automorphism group of (Γ, μ) is 147456. The natural homomorphism $\operatorname{Aut}(\Gamma_{32}, \mu_{32}) \to \operatorname{Aut}(\Gamma, \mu)$ is an isomorphism. The set Γ_{32} is regarded as the indexes $\{1, \ldots, 32\}$ of row vectors of the matrix Σ_{32} . We have a decomposition

$$\Gamma_{32} = o_1 \sqcup \cdots \sqcup o_4, \quad o_i := \{8(i-1)+1, \dots, 8(i-1)+8\}.$$

The action of Aut(Γ_{32}, μ_{32}) on Γ_{32} preserves this decomposition, and hence we have a homomorphism

$$r: \operatorname{Aut}(\Gamma_{32}, \mu_{32}) \to \mathfrak{S}_4$$

to the permutation group of o_1, \ldots, o_4 . The image is isomorphic to C_2^2 . Each o_i is equipped with a structure of the configuration by $\mu_{32}|o_i: o_i \times o_i \to \mathbb{Z}$, or equivalently, by the matrix D_8 . The automorphism group $\operatorname{Aut}(o_i)$ of this configuration $(o_i, \mu_{32}|o_i)$ is isomorphic to $C_2^4 \times \mathfrak{S}_4$. Let G_{192} denote the subgroup $\operatorname{Aut}(o_i) \cap \mathfrak{A}_8$ of $\operatorname{Aut}(o_i)$, where the intersection is taken in the full permutation group \mathfrak{S}_8 of o_i . Then the natural homomorphism

$$\operatorname{Ker} \pi \to \operatorname{Aut}(o_1) \times \operatorname{Aut}(o_3)$$

is injective, and the image is equal to $G_{192} \times G_{192}$. Thus we have an exact sequence

$$1 \longrightarrow G_{192} \times G_{192} \longrightarrow \operatorname{Aut}(\Gamma, \mu) \longrightarrow C_2^2 \longrightarrow 0.$$

2.12. 96B and 96C. The configurations of type 96B and of 96C are isomorphic. We put

$$m := \begin{bmatrix} -2 & 4 \\ 4 & -2 \end{bmatrix}, \quad t_+ := \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad t_- := \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}.$$

We then define an 8×8 matrix D by

$$D := \begin{bmatrix} m & t_+ & t_+ & t_+ \\ t_+ & m & t_+ & t_+ \\ t_+ & t_+ & m & t_+ \\ t_+ & t_+ & t_+ & m \end{bmatrix},$$

ICHIRO SHIMADA

TABLE 2.1. Eighteen matrices S_1, \ldots, S_{18}

and a 24×24 matrix T by

(2.2)
$$T := \begin{bmatrix} D & \mathbf{1}_8 & \mathbf{1}_8 \\ \mathbf{1}_8 & D & \mathbf{1}_8 \\ \mathbf{1}_8 & \mathbf{1}_8 & D \end{bmatrix}.$$

Let S be the set of 18 square matrices S_1, \ldots, S_{18} of size 4 with components in $\{+, -\}$ obtained from S_1 in Table 2.1 by permuting rows and columns. For a 3×3 matrix

$$\nu := \left[\begin{array}{ccc} i_{11} & i_{12} & i_{13} \\ i_{21} & i_{22} & i_{23} \\ i_{31} & i_{32} & i_{33} \end{array} \right]$$

with components $i_{\alpha\beta}$ in $\{1, \ldots, 18\}$, let $S[\nu]$ denote the 24×24 matrix obtained from ν by first replacing each $i_{\alpha\beta}$ with the member $S_{i_{\alpha\beta}}$ of S indexed by $i_{\alpha\beta}$ and then replacing + with t_+ and - with t_- . We put

$$\nu_{1} := \begin{bmatrix} 9 & 8 & 7 \\ 6 & 4 & 5 \\ 1 & 2 & 3 \end{bmatrix}, \quad \nu_{2} := \begin{bmatrix} 5 & 9 & 7 \\ 9 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}, \quad \nu_{3} := \begin{bmatrix} 4 & 8 & 9 \\ 9 & 5 & 4 \\ 2 & 1 & 3 \end{bmatrix},$$
$$\nu_{4} := \begin{bmatrix} 8 & 9 & 1 \\ 6 & 1 & 5 \\ 1 & 5 & 9 \end{bmatrix}, \quad \nu_{5} := \begin{bmatrix} 8 & 1 & 9 \\ 1 & 9 & 5 \\ 6 & 5 & 1 \end{bmatrix}, \quad \nu_{6} := \begin{bmatrix} 9 & 8 & 1 \\ 1 & 5 & 9 \\ 6 & 1 & 5 \end{bmatrix}.$$

Then the 96×96 symmetric matrix

(2.3)
$$\begin{bmatrix} T & S[\nu_1] & S[\nu_2] & S[\nu_3] \\ & T & S[\nu_4] & S[\nu_5] \\ & & T & S[\nu_6] \\ & & & T \end{bmatrix}$$

defines the configurations of type 96B and 96C.

Remark 2.10. The group \mathfrak{S}_4 acts on S as $S \mapsto \sigma S$ for $S \in S$ and $\sigma \in \mathfrak{S}_4$, where σS is obtained from S by permuting rows of S by σ . Let G_{row} be the subgroup of the full permutation group $\mathfrak{S}(S)$ of S generated by the action of \mathfrak{S}_4 on rows and the flipping $+ \leftrightarrow -$. Then $|G_{\text{row}}| = 48$, and S is decomposed by G_{row} into 3 orbits, each of which is of size 6. Similarly, we define G_{col} to be the subgroup of $\mathfrak{S}(S)$ generated by the action of \mathfrak{S}_4 on columns and the flipping. Then $|G_{\text{col}}| = 48$ and S is decomposed by G_{col} into 3 orbits of size 6. The intersection of any orbit of G_{row} and any orbit of G_{col} consists of two matrices that are interchanged by the flipping.

Let \mathcal{M} be the set of 3×3 matrices with components in the set $\{1, \ldots, 18\}$ of indexes of \mathcal{S} . The groups G_{row} and G_{col} act on $\{1, \ldots, 18\}$ as described in the previous paragraph. Let \mathcal{G} be the subgroup of the full permutation group of \mathcal{M} generated by the following permutations:

- the permutations of 3 rows,
- choosing a row and making an element of G_{row} act on the 3 components of the row,
- the permutations of 3 columns, and
- choosing a column and making an element of $G_{\rm col}$ act on the 3 components of the column.

Then we confirm that there exists one and only one orbit O of the action of \mathcal{G} on \mathcal{M} with the following property: for every $\nu \in O$, each row of ν consists of 3 distinct elements, and each column of ν consists of 3 distinct elements. We have |O| = 23887872.

The 6 matrices ν_1, \ldots, ν_6 above belong to this orbit O. We tried to characterize the 6-tuple ν_1, \ldots, ν_6 of elements of O combinatorially, but we could not find a nice description.

Remark 2.11. The automorphism group of (Γ, μ) is of order 221184. The set Γ is decomposed into 48 pairs $\{v, v'\}$ with $\mu(v, v') = 4$. Let P_{48} be the set of these pairs. The kernel of the natural homomorphism

$$\pi: \operatorname{Aut}(\Gamma, \mu) \to \mathfrak{S}(P_{48})$$

is isomorphic to C_2 . The set P_{48} is decomposed into the disjoint union of 4 subsets t_1, \ldots, t_4 of size 12, each of which corresponds to the diagonal block T of the matrix (2.3). The natural homomorphism

$$\rho \colon \operatorname{Im} \pi \to \mathfrak{S}_4$$

is surjective. Hence Ker ρ is of order 4608. The kernel of the natural homomorphism

$$\sigma \colon \operatorname{Ker} \rho \to \mathfrak{S}(t_1)$$

is isomorphic to C_2^2 , and hence Im σ is of order 1152. The set t_1 is then decomposed into the disjoint union of 3 subsets d_1, \ldots, d_3 of size 4, each of which corresponds to the diagonal block D of the matrix (2.2). The natural homomorphism

$$\tau \colon \operatorname{Im} \sigma \to \mathfrak{S}_3$$

is surjective. Hence Ker τ is of order 192, which is isomorphic to $C_2^6: C_3$.

ICHIRO SHIMADA

References

- Richard Borcherds. Automorphism groups of Lorentzian lattices. J. Algebra, 111(1):133–153, 1987.
- [2] Richard E. Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces. Internat. Math. Res. Notices, 1998(19):1011-1031, 1998.
- Simon Brandhorst and Ichiro Shimada. Borcherds' method for Enriques surfaces, 2019. Preprint, arXiv:1903.01087.
- [4] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, third edition, 1999.
- [5] Shigeyuki Kondo. Enriques surfaces with finite automorphism groups. Japan. J. Math. (N.S.), 12(2):191–282, 1986.
- [6] Gebhard Martin. Enriques surfaces with finite automorphism group in positive characteristic. Preprint, arXiv:1703.08419, 2017.
- [7] V. V. Nikulin. Description of automorphism groups of Enriques surfaces. Dokl. Akad. Nauk SSSR, 277(6):1324–1327, 1984. Soviet Math. Dokl. 30 (1984), No.1 282–285.
- [8] Ichiro Shimada. The elliptic modular surface of level 4 and its reduction modulo 3, 2018. Preprint. arXiv:1806.05787.
- [9] Ichiro Shimada. On an Enriques surface associated with a quartic Hessian surface. Canad. J. Math., 71(1):213–246, 2019.
- [10] Ichiro Shimada. A note on configurations of (-2)-vectors on Enriques surfaces: computational data. http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html, 2019.
- [11] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http: //www.gap-system.org).

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp