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1. Introduction

This note is a supplement of the joint paper [3] with S. Brandhorst.
It was established by Nikulin [7], Kondo [5], and Martin [6] that Enriques sur-

faces in characteristic 6= 2 with finite automorphism group are divided into seven
classes I, II, . . . ,VII. The configurations of smooth rational curves on these Enriques
surfaces are depicted in Kondo [5] by beautiful but complicated graphs.

A lattice of rank n is hyperbolic if the signature is (1, n− 1). A positive cone of
a hyperbolic lattice L is a connected component of {x ∈ L⊗ R | 〈x, x〉 > 0 }. For a
positive integer n with n ≡ 2 mod 8, let Ln denote the even unimodular hyperbolic
lattice of rank n, which is unique up to isomorphism. Borcherds’ method [1, 2] is
a method to calculate the automorphism group of an even hyperbolic lattice S by
embedding S into L26 primitively and using the tessellation of a positive cone of L26

by Conway chambers. (See Chapter 27 of [4]. See [3] for the definition of Conway
chambers.) This method has been applied to lattices SX of numerical equivalence
classes of divisors of various K3 surfaces X, and the automorphism group of these
K3 surfaces are calculated.

The lattice SY of numerical equivalence classes of divisors of an Enriques surface
Y is isomorphic to L10. The universal covering X → Y of Y by a K3 surface X
induces a primitive embedding SY (2) ↪→ SX , where SY (2) is the lattice obtained
from SY by multiplying the intersection form 〈 , 〉 by 2. If SX is embedded primi-
tively into L26 in Borcherds’ method, then SY (2) is also embedded primitively into
L26. In [3], hoping to apply Borcherds’ method to Enriques surfaces systematically,
we have classified all primitive embeddings of L10(2) into L26. It turns out that
there exist exactly 17 primitive embeddings

12A, 12B, 20A, . . . , 20F, 40A, . . . , 40E, 96A, 96B, 96C, infty

up to the action of the orthogonal groups of L10 and L26. Let P10 be a positive
cone of L10. For each of these primitive embeddings except for the type infty,
we obtain a finite polyhedral cone in P10 bounded by hyperplanes perpendicular
to (−2)-vectors in L10 such that P10 is tessellated by the image of reflections of
this finite polyhedral cone with respect to the walls. The set of walls of this finite
polyhedral cone defines a configuration of (−2)-vectors of L10. The 7 configurations
I, II, . . . ,VII of Nikulin-Kondo appear among these 16 configurations.

In this note, we give a combinatorial description for each of these configurations.
The result includes new descriptions of the Nikulin-Kondo configurations, which
we hope are handier than the picturesque graphs of [5] in some situations.
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An explicit computational data is available at [10]. We used GAP [11] for the
calculation.

Conventions. (1) A configuration is a pair (Γ, µ) of a finite set Γ and a mapping
µ : Γ × Γ → Z such that µ(x, y) = µ(y, x) for all x, y ∈ Γ. In this note, we always
assume that

(1.1) µ(x, x) = −2 for all x ∈ Γ.

The automorphism group of a configuration (Γ, µ) is the group of permutations of
Γ that preserve µ. The size of a configuration (Γ, µ) is |Γ|.

(2) The cyclic group of order n is denoted by Cn. The symmetric group of degree
n is denoted by Sn, and the alternating group of degree n is denoted by An. Let
In denote the identity matrix of size n. Let 1n and 0n be the square matrix of size
n whose components are all 1 and all 0, respectively.

2. Combinatorial descriptions

2.1. 12A. The configuration of type 12A is the configuration of Nikulin-Kondo type I
(Fig. 1.4 of [5]). The automorphism group is isomorphic to C2 × C2.

2.2. 12B. The configuration of type 12B is the configuration of Nikulin-Kondo
type II (Fig. 2.4 of [5]). The automorphism group is isomorphic to C2 ×S4.

2.3. 20A. The configuration of type 20A is isomorphic to the configuration of Nikulin-
Kondo type V (Fig. 5.5 of [5]).

Let A be the set {1, 2, 3, 4}, and B the set of subsets {i, j} of A with size 2. Let
A1 and A2 be two copies of A with the natural bijection to A denoted by a 7→ ā.
Let B1 and B2 be two copies of B with the natural bijection to B denoted by b 7→ b̄.
We then put

Γ := A1 tA2 tB1 tB2,

and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that a, a′ ∈ A1 with a 6= a′. Then µ(a, a′) = 0.
• Suppose that a ∈ A1 and a′ ∈ A2. Then

µ(a, a′) =

{
2 if ā = ā′,

0 otherwise.

• Suppose that a, a′ ∈ A2 with a 6= a′. Then µ(a, a′) = 2.
• Suppose that a ∈ A1 and b ∈ B1. Then µ(a, b) = 0.
• Suppose that a ∈ A1 and b ∈ B2. Then

µ(a, b) =

{
1 if ā ∈ b̄,
0 otherwise.

• Suppose that a ∈ A2 and b ∈ B1. Then

µ(a, b) =

{
2 if ā ∈ b̄,
0 otherwise.

• Suppose that a ∈ A2 and b ∈ B2. Then µ(a, b) = 0.
• Suppose that b, b′ ∈ B1 with b 6= b′. Then

µ(a, b) =

{
2 if b̄ ∩ b̄′ = ∅,
1 otherwise.



CONFIGURATIONS ON ENRIQUES SURFACES 3

• Suppose that b ∈ B1 and b′ ∈ B2. Then

µ(a, b) =

{
2 if b̄ ∩ b̄′ = ∅,
0 otherwise.

• Suppose that b, b′ ∈ B2 with b 6= b′. Then µ(b, b′) = 0.

Then (Γ, µ) defines the configuration of type 20A.

Remark 2.1. The automorphism group of (Γ, µ) is isomorphic to S4, acting natu-
rally on A.

2.4. 20B. The configuration of type 20B is isomorphic to the configuration of Nikulin-
Kondo type III (Fig. 3.5 of [5]).

We put P := {1, 2, 3, 4}. Let Q1 and Q2 be quadrangles. For i = 1, 2, let
V Qi be the set of vertices of Qi, and let EQi be the set of edges of Qi. Let
EQi = {ai, a′i} ∪ {bi, b′i} be the decomposition such that ai and a′i (resp. bi and b′i)
have no common vertex. We then put

Γ := P t V Q1 t V Q2 t EQ1 t EQ2,

and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that p1, p2 ∈ P with p1 6= p2. Then µ(p1, p2) = 0.
• Suppose that p ∈ P and v ∈ V Q1 t V Q2. Then µ(p, v) = 0.
• Suppose that p ∈ P and e1 ∈ EQ1. Then

µ(p, e1) =

{
1 if ( p ∈ {1, 2} and e1 ∈ {a1, a′1} ) or ( p ∈ {3, 4} and e1 ∈ {b1, b′1} ),

0 otherwise.

• Suppose that p ∈ P and e2 ∈ EQ2. Then

µ(p, e2) =

{
1 if ( p ∈ {1, 3} and e2 ∈ {a2, a′2} ) or ( p ∈ {2, 4} and e2 ∈ {b2, b′2} ),

0 otherwise.

• Suppose that v1, v2 ∈ V Q1 t V Q2 with v1 6= v2. Then

µ(v1, v2) =

{
0 if v1 and v2 are the end-points of an edge,

2 otherwise.

• Suppose that v ∈ V Q1 t V Q2 and e ∈ EQ1 t EQ2. Then

µ(v, e) =

{
2 if v is an end-point of e,

0 otherwise.

• Suppose that e1, e2 ∈ EQ1 t EQ2 with e1 6= e2. Then µ(e1, e2) = 0.

Then (Γ, µ) defines the configuration of type 20B.

Remark 2.2. The automorphism group of (Γ, µ) is the group of the automorphism
of the disjoint union Q1 tQ2 of two quadrangles, that is, D2

8 o C2.
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2.5. 20C and 20D. The configurations of type 20C and of type 20D are isomor-
phic, and they are isomorphic to the configuration of Nikulin-Kondo type VII
(Fig. 7.7 of [5]).

Let A be {1, . . . , 5}, and let B be the set of non-ordered pairs {(ij), (kl)} of
disjoint subsets (ij) = {i, j} and (kl) = {k, l} of A with size 2. For b = {(ij), (kl)} ∈
B, let b̄ ∈ A denote the unique element of A that is not contained in (ij) ∪ (kl).
We then put

Γ := A tB,
and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that a, a′ ∈ A with a 6= a′. Then we have µ(a, a′) = 2.
• Suppose that a ∈ A and b ∈ B. Then we have

µ(a, b) :=

{
2 if a = b̄,

0 otherwise.

• Suppose that b, b′ ∈ B with b 6= b′. Then we have

µ(b, b′) :=

{
1 if b ∩ b′ 6= ∅,
0 otherwise.

Then (Γ, µ) defines the configurations of type 20C and type 20D.

Remark 2.3. The automorphism group of (Γ, µ) is isomorphic to S5.

2.6. 20E. The configuration of type 20E is isomorphic to the configuration of Nikulin-
Kondo type VI (Fig. 6.4 of [5]). The description below of this configuration was
obtained in [9].

Let A be the set of subsets of {1, . . . , 5} with size 3. Let A1 and A2 be two copies
of A with the natural bijection to A denoted by a 7→ ā. We then put

Γ := A1 tA2,

and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that a, a′ ∈ A1 with a 6= a′. Then

µ(a, a′) =

{
1 if |a ∩ a′| = 1,

0 otherwise.

• Suppose that a, a′ ∈ A2 with a 6= a′. Then

µ(a, a′) =

{
1 if |a ∩ a′| = 2,

0 otherwise.

• Suppose that a ∈ A1 and a′ ∈ A2. Then

µ(a, a′) =

{
2 if ā = ā′,

0 otherwise.

Then (Γ, µ) defines the configuration of type 20E.

Remark 2.4. The sub-configuration (A1, µ|A1) is isomorphic to the Petersen graph,
and the sub-configuration (A2, µ|A2) is isomorphic to the complement of the Pe-
tersen graph. The automorphism group of (Γ, µ) is equal to the automorphism
group of the Petersen graph, which is isomorphic to S5.
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Figure 2.1. Graph for Nikulin-Kondo type VI

2.7. 20F. The configuration of type 20F is isomorphic to the configuration of Nikulin-
Kondo type IV (Fig. 4.4 of [5]). The description below of this configuration was
obtained in [8].

Let Γ be the set of vertices of the Petersen graph P , and let Γ be the set with
20 vertices with a map ρ : Γ → Γ such that |ρ−1(v̄)| = 2 for every v̄ ∈ Γ. We fix
a numbering v1, v2 of the elements in each fiber ρ−1(v̄) = {v1, v2} of ρ. We then
define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• We have µ(v, v′) = 0 if ρ(v) = ρ(v′).
• We have µ(v, v′) = 0 if ρ(v) and ρ(v′) are not connected in P .
• We have µ(v, v′) = 1 if ρ(v) and ρ(v′) are connected by a thin line in

Figure 2.1.
• Suppose that v̄ and v̄′ are connected by a thick line in Figure 2.1. Let
ρ−1(v̄) = {v1, v2} and ρ−1(v̄′) = {v′1, v′2} be the fibers with the fixed num-
berings. Then

µ(vi, v
′
j) =

{
2 if i = j,

0 if i 6= j.

Then the isomorphism class of the configuration (Γ, µ) does not depend on the
choice of numberings of two elements in fibers of ρ, and (Γ, µ) defines the configu-
ration of type 20F.

Remark 2.5. The group Aut(Γ, µ) is of order 640. The action of Aut(Γ, µ) on Γ pre-
serves the fibers of ρ : Γ→ Γ, and we have a natural homomorphism from Aut(Γ, µ)
to the automorphism group Aut(P ) of the Petersen graph, which is isomorphic to
S5. Thus we obtain an exact sequence

(2.1) 0 −→ C5
2 −→ Aut(Γ, µ) −→ G20 −→ 1,

where G20 is the subgroup of Aut(P ) ∼= S5 consisting of elements that preserve the
thick edges in Figure 2.1. As a subgroup of S5, the group G20 is conjugate to the
subgroup generated by (12345) and (2354).

2.8. 40A. Let C+ and C− be two copies of the cubes I3 ⊂ R3, where I ⊂ R is the
unit interval. Let ε be + or −. A vertex of Cε is written as ((ax, ay, az), ε), where
ax, ay, az ∈ {0, 1}, and a face of Cε is written as (w = a, ε), where w ∈ {x, y, z} and
a ∈ {0, 1}. Let V be the set of vertices of C±, and let F be the set of faces of C±.
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Let P be the set of pairs of a face f+ = (w = a+) of C+ and a face f− = (w = a−)
of C− that are parallel. Each element of P is written as (w = a+, w = a−), where
w ∈ {x, y, z} and a± ∈ {0, 1}. We have |V | = 16, |F | = 12, |P | = 12. We put

Γ := V t F t P,

and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that v1, v2 ∈ V with v1 6= v2. Then

µ(v1, v2) =


0 if v1v2 is an edge of C+ or C−,

4 if v1v2 is a diagonal of C+ or C−,

2 otherwise.

• Suppose that v ∈ V and f ∈ F . Then

µ(v, f) =

{
2 if v ∈ f ,

0 otherwise.

• Suppose that v ∈ V and p = (f+, f−) ∈ P . Then

µ(v, p) =

{
2 if v ∈ f+ ∪ f−,

0 otherwise.

• Suppose that f1, f2 ∈ F with f1 6= f2. Let fi be (wi = ai, εi), where
wi ∈ {x, y, z}, ai ∈ {0, 1}, and εi ∈ {+,−}. Then

µ(f1, f2) =

{
1 if ε1 6= ε2 and w1 6= w2,

0 otherwise.

• Suppose that f = (w = a, ε) ∈ F and p = (f ′+, f
′
−) ∈ P . Let f̄ be the

unique face of Cε that is disjoint from f . Then

µ(f, p) =

{
2 if f̄ = f ′+ or f̄ = f ′−,

0 otherwise.

• Suppose that p1, p2 ∈ P with p1 6= p2. Let faces(pi) denote the set of 2
faces contained in pi, and let verts(pi) denote the set of 8 vertices contained
in the two faces of pi.

µ(p1, p2) =


2 if verts(p1) ∩ verts(p2) = ∅,
0 if faces(p1) ∩ faces(p2) 6= ∅,
1 otherwise.

Then (Γ, µ) defines the configuration of type 40A.

Remark 2.6. The automorphism group Aut(Γ, µ) is of order 768, and V, F, P are the
orbits of the action on Γ. Let V+ and V− be the set of vertices of C+ and C−, regarded
as graphs with edges being the edges of the cubes. The automorphism group of the
graph V+ is of order 48. The stabilizer subgroup Stab(V+) of V+ in Aut(Γ, µ) is
of index 2, the natural homomorphism Stab(V+) → Aut(V+) is surjective, and its
kernel is isomorphic to C3

2 acting on V− as ((ax, ay, az),−) 7→ ((±ax,±ay,±az),−).
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2.9. 40B and 40C. The configurations of type 40B and of 40C are isomorphic.
We put F := {1, 2, 3, 4}. Let P be the set F×F with the projections pr1 : P → F

and pr2 : P → F . Let B be the set of bijections f : F → F . We put

Γ := P tB,
and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that p, p′ ∈ P with p 6= p′. Then

µ(p, p′) =

{
1 if pr1(p) = pr1(p′) or pr2(p) = pr2(p′),

0 otherwise.

• Suppose that p ∈ P and f ∈ B. Then

µ(p, f) =

{
2 if f(pr1(p)) = pr2(p),

0 otherwise.

• Suppose that f, f ′ ∈ B with f 6= f ′. Then γ := ff ′−1 is a permutation
of F . Let τ(γ) denote the lengths of cycles in the cycle decomposition of
γ ∈ S4. Then

µ(f, f ′) =


2 if τ(γ) = 4,

2 if τ(γ) = 2 + 2,

1 if τ(γ) = 3 + 1,

0 if τ(γ) = 2 + 1 + 1.

Then (Γ, µ) defines the configurations of type 40B and 40C.

Remark 2.7. The group Aut(Γ, µ) is isomorphic to (S4 ×S4) oC2, which acts on
P in the natural way.

2.10. 40D and 40E. The configurations of type 40D and of 40E are isomorphic.
A subset (ij) := {i, j} of size 2 of {1, . . . , 6} is called a duad, and a subset (ijk) :=

{i, j, k} of size 3 of {1, . . . , 6} is called a trio. A syntheme is a non-ordered set
(ij)(kl)(mn) := {(ij), (kl), (mn)} of 3 duads such that {i, j, k, l,m, n} = {1, . . . , 6}.
A double trio is a non-ordered pair (ijk)(lmn) := {(ijk), (lmn)} of complementary
trios. Let D, S and T be the set of duads, synthemes, and double trios, respectively.
We have |D| = 15, |S| = 15, and |T | = 10. We then put

Γ := D t S t T,
and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that δ1, δ2 ∈ D with δ1 6= δ2. Then

µ(δ1, δ2) =

{
1 if |δ1 ∩ δ2| = 1,

0 if |δ1 ∩ δ2| = 0.

• Suppose that δ ∈ D ans σ ∈ S. Then

µ(δ, σ) =

{
2 if δ ∈ σ,

0 if δ /∈ σ.

• Suppose that δ ∈ D ans τ = {t1, t2} ∈ T , where t1 and t2 are trios. Then

µ(δ, τ) =

{
2 if δ ⊂ t1 or δ ⊂ t2,

0 otherwise.
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• Suppose that σ1, σ2 ∈ S with σ1 6= σ2. Then

µ(σ1, σ2) =

{
1 if σ1 ∩ σ2 = ∅,
0 otherwise.

• Suppose that σ ∈ S and τ ∈ T . Then

µ(σ, τ) =

{
2 if |δ ∩ t| = 1 for any duad δ ∈ σ and any trio t ∈ τ ,

0 otherwise.

• Suppose that τ1, τ2 ∈ T with τ1 6= τ2. Then µ(τ1, τ2) = 2.

Then (Γ, µ) defines the configurations of type 40D and 40E.

Remark 2.8. By construction, the symmetric group S6 acts on (Γ, µ), and D,S, T
are the orbits. The full automorphism group of the configuration (Γ, µ) is isomor-
phic to the automorphism group Aut(A6) of the alternating group A6. The group
Aut(A6) contains A6 as a normal subgroup of index 4 such that Aut(A6)/A6 is
isomorphic to C2

2 , and contains S6, PGL2(9) and M10 as subgroups of index 2.
(See, for example, Section 1.5, Chapter 10 of [4].) We can construct Aut(A6) from
S6 by adding an automorphism θ that induces the non-trivial outer automorphism
of S6. Correspondingly, the action of Aut(A6) on (Γ, µ) fuses the duads D and the
synthemes S, and decomposes Γ into two orbits D t S and T .

2.11. 96A. Recall that 0n is the n×n zero matrix, and 1n is the n×n matrix with
all components 1. We consider the matrix

Σ16 :=


−2I4 14 2I4 04

14 −2I4 04 2I4
2I4 04 −2I4 14

04 2I4 14 −2I4

 .
We put

d :=

[
−2 2
2 −2

]
, t+ :=

[
2 0
0 2

]
, t− :=

[
0 2
2 0

]
,

and

D8 :=


d 02 02 02

02 d 02 02

02 02 d 02

02 02 02 d

 , T8 :=


t+ t− t− t−
t− t+ t− t−
t− t− t+ t−
t− t− t− t+

 .
We then consider the matrix

Σ32 :=


D8 T8 18 08

T8 D8 08 18

18 08 D8 T8
08 18 T8 D8

 .
For k = 16 and k = 32, let (Γk, µk) be the configuration of size k with the sym-

metric bilinear form µk : Γk ×Γk → Z given by the matrix Σk defined above. Then
there exist exactly 64 sub-configurations (Γ ′, µ32|Γ ′) of (Γ32, µ32) with Γ ′ ⊂ Γ32

that are isomorphic to (Γ16, µ16). We denote by Γ64 the set of sub-configurations
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of (Γ32, µ32) isomorphic to (Γ16, µ16), and define µ64 : Γ64 × Γ64 → Z by

µ64(Γ ′, Γ ′′) :=



6 if |Γ ′ ∩ Γ ′′| = 0,

4 if |Γ ′ ∩ Γ ′′| = 4,

2 if |Γ ′ ∩ Γ ′′| = 8,

0 if |Γ ′ ∩ Γ ′′| = 12,

−2 if |Γ ′ ∩ Γ ′′| = 16.

We then put

Γ := Γ32 t Γ64,

and define a symmetric function µ : Γ× Γ→ Z satisfying (1.1) as follows.

• Suppose that v, v′ ∈ Γ32. Then µ(v, v′) := µ32(v, v′).
• Suppose that Γ ′, Γ ′′ ∈ Γ64. Then µ(Γ ′, Γ ′′) := µ64(Γ ′, Γ ′′).
• Suppose that v ∈ Γ32 and Γ ′ ∈ Γ64. Then

µ(v, Γ ′) :=

{
2 if v ∈ Γ ′,
0 otherwise.

Then (Γ, µ) defines the configuration of type 96A.

Remark 2.9. The order of the automorphism group of (Γ, µ) is 147456. The nat-
ural homomorphism Aut(Γ32, µ32) → Aut(Γ, µ) is an isomorphism. The set Γ32 is
regarded as the indexes {1, . . . , 32} of row vectors of the matrix Σ32. We have a
decomposition

Γ32 = o1 t · · · t o4, oi := {8(i− 1) + 1, . . . , 8(i− 1) + 8}.
The action of Aut(Γ32, µ32) on Γ32 preserves this decomposition, and hence we have
a homomorphism

π : Aut(Γ32, µ32)→ S4

to the permutation group of o1, . . . , o4. The image is isomorphic to C2
2 . Each oi is

equipped with a structure of the configuration by µ32|oi : oi × oi → Z, or equiva-
lently, by the matrix D8. The automorphism group Aut(oi) of this configuration
(oi, µ32|oi) is isomorphic to C4

2 oS4. Let G192 denote the subgroup Aut(oi) ∩ A8

of Aut(oi), where the intersection is taken in the full permutation group S8 of oi.
Then the natural homomorphism

Kerπ → Aut(o1)×Aut(o3)

is injective, and the image is equal to G192×G192. Thus we have an exact sequence

1 −→ G192 ×G192 −→ Aut(Γ, µ) −→ C2
2 −→ 0.

2.12. 96B and 96C. The configurations of type 96B and of 96C are isomorphic.
We put

m :=

[
−2 4
4 −2

]
, t+ :=

[
2 0
0 2

]
, t− :=

[
0 2
2 0

]
.

We then define an 8× 8 matrix D by

D :=


m t+ t+ t+
t+ m t+ t+
t+ t+ m t+
t+ t+ t+ m

 ,
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S1 :=


− − + +
− − + +
+ + − −
+ + − −

 , S2 :=


− − + +
+ + − −
− − + +
+ + − −

 , S3 :=


− − + +
+ + − −
+ + − −
− − + +

 ,

S4 :=


− + − +
− + − +
+ − + −
+ − + −

 , S5 :=


− + − +
+ − + −
− + − +
+ − + −

 , S6 :=


− + − +
+ − + −
+ − + −
− + − +

 ,

S7 :=


− + + −
− + + −
+ − − +
+ − − +

 , S8 :=


− + + −
+ − − +
− + + −
+ − − +

 , S9 :=


− + + −
+ − − +
+ − − +
− + + −

 ,

S10 :=


+ − − +
− + + −
− + + −
+ − − +

 , · · · · · · S18 :=


+ + − −
+ + − −
− − + +
− − + +

 .
Table 2.1. Eighteen matrices S1, . . . , S18

and a 24× 24 matrix T by

(2.2) T :=

 D 18 18

18 D 18

18 18 D

 .
Let S be the set of 18 square matrices S1, . . . , S18 of size 4 with components in
{+,−} obtained from S1 in Table 2.1 by permuting rows and columns. For a 3× 3
matrix

ν :=

 i11 i12 i13
i21 i22 i23
i31 i32 i33


with components iαβ in {1, . . . , 18}, let S[ν] denote the 24 × 24 matrix obtained
from ν by first replacing each iαβ with the member Siαβ

of S indexed by iαβ and
then replacing + with t+ and − with t−. We put

ν1 :=

 9 8 7
6 4 5
1 2 3

 , ν2 :=

 5 9 7
9 5 4
3 2 1

 , ν3 :=

 4 8 9
9 5 4
2 1 3

 ,
ν4 :=

 8 9 1
6 1 5
1 5 9

 , ν5 :=

 8 1 9
1 9 5
6 5 1

 , ν6 :=

 9 8 1
1 5 9
6 1 5

 .
Then the 96× 96 symmetric matrix

(2.3)


T S[ν1] S[ν2] S[ν3]

T S[ν4] S[ν5]
T S[ν6]

T


defines the configurations of type 96B and 96C.
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Remark 2.10. The group S4 acts on S as S 7→ σS for S ∈ S and σ ∈ S4, where
σS is obtained from S by permuting rows of S by σ. Let Grow be the subgroup of
the full permutation group S(S) of S generated by the action of S4 on rows and
the flipping +↔ −. Then |Grow| = 48, and S is decomposed by Grow into 3 orbits,
each of which is of size 6. Similarly, we define Gcol to be the subgroup of S(S)
generated by the action of S4 on columns and the flipping. Then |Gcol| = 48 and
S is decomposed by Gcol into 3 orbits of size 6. The intersection of any orbit of
Grow and any orbit of Gcol consists of two matrices that are interchanged by the
flipping.

Let M be the set of 3 × 3 matrices with components in the set {1, . . . , 18} of
indexes of S. The groups Grow and Gcol act on {1, . . . , 18} as described in the
previous paragraph. Let G be the subgroup of the full permutation group of M
generated by the following permutations:

• the permutations of 3 rows,
• choosing a row and making an element of Grow act on the 3 components of

the row,
• the permutations of 3 columns, and
• choosing a column and making an element of Gcol act on the 3 components

of the column.

Then we confirm that there exists one and only one orbit O of the action of G
on M with the following property: for every ν ∈ O, each row of ν consists of 3
distinct elements, and each column of ν consists of 3 distinct elements. We have
|O| = 23887872.

The 6 matrices ν1, . . . , ν6 above belong to this orbit O. We tried to characterize
the 6-tuple ν1, . . . , ν6 of elements of O combinatorially, but we could not find a nice
description.

Remark 2.11. The automorphism group of (Γ, µ) is of order 221184. The set Γ is
decomposed into 48 pairs {v, v′} with µ(v, v′) = 4. Let P48 be the set of these pairs.
The kernel of the natural homomorphism

π : Aut(Γ, µ)→ S(P48)

is isomorphic to C2. The set P48 is decomposed into the disjoint union of 4 subsets
t1, . . . , t4 of size 12, each of which corresponds to the diagonal block T of the
matrix (2.3). The natural homomorphism

ρ : Imπ → S4

is surjective. Hence Ker ρ is of order 4608. The kernel of the natural homomorphism

σ : Ker ρ→ S(t1)

is isomorphic to C2
2 , and hence Im σ is of order 1152. The set t1 is then decomposed

into the disjoint union of 3 subsets d1, . . . , d3 of size 4, each of which corresponds
to the diagonal block D of the matrix (2.2). The natural homomorphism

τ : Imσ → S3

is surjective. Hence Ker τ is of order 192, which is isomorphic to C6
2 : C3.
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