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Abstract. Using the theory of holes of the Leech lattice and Borcherds method
for the computation of the automorphism group of a K3 surface, we give an

effective bound for the set of isomorphism classes of projective models of fixed
degree for certain K3 surfaces.

1. Introduction

Let X be a K3 surface defined over an algebraically closed field k, and let
d be an even positive integer. Sterk [27] and Lieblich and Maulik [14] showed
that, at least when the base field k is not of characteristic 2, there exist only a
finite number of projective models of X with degree d up to the action of the
automorphism group Aut(X) of X. On the other hand, by means of Borcherds
method ([1], [2]), the automorphism groups of several K3 surfaces have been cal-
culated ([5], [6], [8], [10], [11], [23], [25], [28]). Combining this method with the
precise description of holes of the Leech lattice due to Borcherds, Conway, Parker,
Queen, and Sloane ([4, Chapters 23–25]), we obtain an effective bound for the set
of isomorphism classes of projective models of degree d. This bound is applicable
to a wide class of K3 surfaces.

Our result on K3 surfaces is a corollary of Theorem 1.2 on the Conway chamber
of the even unimodular hyperbolic lattice L := II1,25 of rank 26.

We fix some terminologies and notation about lattices. A lattice is a free Z-
module of finite rank with a nondegenerate symmetric bilinear form that takes
values in Z, which we call the intersection form. Let M be a lattice with the
intersection form ⟨ , ⟩M . We let the orthogonal group O(M) of M act on M from
the right. We say that M is hyperbolic if its rank n is > 1 and its signature is
(1, n− 1), whereas M is negative-definite if its signature is (0, n).

We say that M is even if ⟨v, v⟩M ∈ 2Z holds for all vectors v ∈M . Suppose that
M is even. We put

RM := { r ∈M | ⟨r, r⟩M = −2 }.

The dual lattice M∨ of M is the Z-module Hom(M,Z), into which M is embedded
by ⟨ , ⟩M as a submodule of finite index. We say thatM is unimodular ifM =M∨

holds.
Suppose that M is an even hyperbolic lattice. A positive cone of M is one of the

two connected components of {x ∈M ⊗ R | ⟨x, x⟩M > 0}. We denote by O+(M)
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the stabilizer subgroup of a positive cone ofM in O(M). We choose a positive cone
PM . Then O+(M) acts on PM . For each r ∈ RM , we put

(r)⊥ := { x ∈ PM | ⟨x, r⟩M = 0 },
and denote by sr the element of O+(M) given by

sr : x 7→ x+ ⟨x, r⟩M · r.
Then sr acts on PM as the reflection in the real hyperplane (r)⊥. Let WM denote
the subgroup of O+(M) generated by all the reflections sr, where r ranges through
RM . The closure in PM of a connected component of

PM \
∪

r∈RM

(r)⊥

is called a standard fundamental domain of the action of WM on PM .
Let L be an even unimodular hyperbolic lattice of rank 26, and let ⟨ , ⟩L denote

the intersection form of L. It is well known that L is unique up to isomorphism. We
choose a positive cone PL of L. By the negative-definite Leech lattice, we mean an
even negative-definite unimodular lattice Λ− of rank 24 with no vectors of square
norm −2. It is well known that Λ− is unique up to isomorphism. A vector w ∈ L is
called a Weyl vector if w is a nonzero primitive vector of square norm 0 contained in
the closure of PL in L⊗R such that the lattice ⟨w⟩⊥/⟨w⟩ is isomorphic to Λ−, where
⟨w⟩⊥ is the orthogonal complement of the submodule ⟨w⟩ := Zw in L. A standard
fundamental domain of the action of WL on PL is called a Conway chamber. For a
Weyl vector w, we put

RL(w) := { r ∈ RL | ⟨r, w⟩L = 1 },
and

D(w) := { x ∈ PL | ⟨r, x⟩L ≥ 0 for all r ∈ RL(w) }.
We have the following theorem.

Theorem 1.1 (Conway [3]). The mapping w 7→ D(w) gives rise to a bijection from
the set of Weyl vectors to the set of Conway chambers.

Our main result is as follows:

Theorem 1.2. Let w ∈ L be a Weyl vector, and let d be an even positive integer.
Then, for any vector v ∈ D(w) ∩ L with ⟨v, v⟩L = d, we have

⟨v, w⟩L ≤ ϕ(d) :=

√
1081 (529 d+ 1)

23
= 756.20698 · · · d+ 1.4295028 · · · .

We apply Theorem 1.2 to K3 surfaces X, and obtain an effective bound for
the set of nef classes of self-intersection number d modulo the action of Aut(X) for
certain K3 surfaces (Corollary 1.8). For this purpose, we give a review of Borcherds
method ([1], [2]). See also [23] for the computational aspects of this method.

First we recall the definition of the discriminant forms. Let M be an even
lattice. Then the dual latticeM∨ is equipped with a canonical Q-valued symmetric
bilinear form extending ⟨ , ⟩M . This Q-valued symmetric bilinear form defines a
finite quadratic form

qM : M∨/M → Q/2Z,
which is called the discriminant form of M . (See Nikulin [15] for the basic prop-
erties of discriminant forms.) Let O(qM ) denote the automorphism group of the
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finite quadratic form qM , and let ηM : O(M) → O(qM ) denote the natural homo-
morphism.

Let X be a K3 surface, and let SX denote the Néron–Severi lattice of X with
the intersection form ⟨ , ⟩S . Suppose that rankSX > 1. Then SX is an even
hyperbolic lattice. Let P(X) be the positive cone of SX that contains an ample
class. We let Aut(X) act on X from the left, and on SX from the right by the
pull-back. Hence we have a natural homomorphism

Aut(X) → O+(SX).

Suppose that X is defined over C or is supersingular in characteristic ̸= 2. Then
we can use Torelli theorem (Piatetski-Shapiro and Shafarevich [20], Ogus [18], [19])
for X. We put

N(X) := { x ∈ P(X) | ⟨x,C⟩S ≥ 0 for all curves C on X }.
It is well known that N(X) is a standard fundamental domain of the action of
WSX

on P(X). When X is defined over C, we denote by HX the unimodular

lattice H2(X,Z) with the cup-product, by G̃X the subgroup of O(HX) consisting
of isometries of HX that preserve the 1-dimensional subspace H2,0(X) of HX ⊗C,
and put

GX := { g ∈ O+(SX) | g extends to an isometry g̃ ∈ G̃X }.
When X is supersingular, we put

GX := { g ∈ O+(SX) | g preserves the period of X }.
(See Ogus [18], [19] for the definition of the period of a supersingular K3 surface.)
Note that, in either case, GX is of finite index in O+(SX). By Torelli theorem, the
image of the natural homomorphism Aut(X) → O+(SX) is equal to

{ g ∈ GX | N(X)g = N(X) }.
Suppose that we have a primitive embedding of SX into the even unimodular

hyperbolic lattice L of rank 26. By changing the sign of the embedding if necessary,
we can assume that P(X) ⊂ PL. Let R denote the orthogonal complement of SX

in L. Then the even unimodular overlattice L of SX ⊕R induces an isomorphism

δL : qSX →∼ −qR
of finite quadratic forms.

Assumption 1.3. We assume that the following conditions hold.

(a) The negative-definite lattice R cannot be embedded into the negative-
definite Leech lattice Λ−.

(b) The image ηSX (GX) of GX by ηSX : O(SX) → O(qSX ) is contained in
the image ηR(O(R)) of ηR : O(R) → O(qR), where O(qSX

) and O(qR) are
identified by the isomorphism δL.

Remark 1.4. When X is defined over C, we always have a primitive embedding of
SX into L. See [23, Proposition 8.1].

A closed subset D of P(X) is said to be an induced chamber if there exists
a Conway chamber D(w) such that D = P(X) ∩ D(w) holds and the interior
of D in P(X) is nonempty. Since PL is tessellated by the Conway chambers,
P(X) is tessellated by the induced chambers. Moreover, since N(X) is bounded
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by hyperplanes of P(X) perpendicular to vectors in RSX
and RSX

is a subset of
RL by the embedding SX ↪→ L, it follows that N(X) is also tessellated by induced
chambers. We say that two induced chambers D and D′ are GX-congruent if there
exists an element g ∈ GX such that Dg = D′. Then we have the following theorem.

Theorem 1.5 ([23]). Suppose that SX has a primitive embedding into L satisfying
Assumption 1.3 and P(X) ⊂ PL. Then the following statements hold:

(1) Each induced chamber D is bounded by a finite number of hyperplanes of
P(X), and the group AutGX

(D) := {g ∈ GX |Dg = D} is finite.
(2) The number of GX-congruence classes of induced chambers is finite.

In [23], we presented an algorithm to calculate a complete set

{D0, . . . , Dm−1}
of representatives ofGX -congruence classes of induced chambers contained inN(X).
We also presented an algorithm to calculate the set of hyperplanes bounding Di

and the finite group AutGX
(Di) for each Di. Then, for any vector v ∈ N(X)∩SX ,

there exist an automorphism g ∈ Aut(X) and an index i such that vg ∈ Di. Let
prS : L → S∨

X denote the orthogonal projection. Let wi ∈ L be a Weyl vector such
that

Di = PL ∩ D(wi).

We put
ai := prS(wi).

We have ⟨ai, ai⟩S > 0. (See Remark 5.4.) Moreover we have ⟨v, wi⟩L = ⟨v, ai⟩S for
any vector v ∈ SX . Therefore we obtain the following corollary of Theorem 1.2.

Corollary 1.6. Suppose that SX has a primitive embedding into L satisfying As-
sumption 1.3 and P(X) ⊂ PL. Then there exist vectors a0, . . . , am−1 of S∨

X satis-
fying ⟨ai, ai⟩S > 0 such that, for any vector v ∈ N(X) ∩ SX with ⟨v, v⟩S = d > 0,
there exist an automorphism g ∈ Aut(X) and an index i satisfying ⟨vg, ai⟩S ≤ ϕ(d).

Since ⟨ai, ai⟩S > 0, the set of all vectors v ∈ SX satisfying ⟨v, v⟩S = d and
⟨v, ai⟩S ≤ ϕ(d) is finite for each d > 0. Therefore, provided that we have obtained,
by the algorithm in [23], a set of Weyl vectors w0, . . . , wm−1 that give the represen-
tatives of GX -congruence classes of induced chambers, we get an effective bound for
the set of nef vectors of square norm d up to the action of Aut(X). Unfortunately,
we do not yet have a general bound for such a set {w0, . . . , wm−1}. In some cases,
however, the algorithm in [23] terminates very quickly.

Definition 1.7. Let X be a K3 surface that is defined over C or is supersingular
in characteristic ̸= 2, and let h ∈ SX ⊗Q be an ample class. We say that (X,h) is a
polarized K3 surface of simple Borcherds type if SX admits a primitive embedding
SX ↪→ L satisfying Assumption 1.3, P(X) ⊂ PL, and the following condition; there
exists only one GX -congruence classes of induced chambers, and it is represented
by D = PL ∩ D(w) with h = prS(w).

Corollary 1.8. Let (X,h) be a polarized K3 surface of simple Borcherds type. If
v ∈ SX is a nef vector with ⟨v, v⟩S = d > 0, then there exists an automorphism
g ∈ Aut(X) such that ⟨vg, h⟩S ≤ ϕ(d).

Example 1.9. The following polarized K3 surfaces (X,h) are of simple Borcherds
type. For each of them, Aut(X) was determined by Borcherds method.
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• The K3 surface X is the complex Kummer surface Km(Jac(C)) associated
with the Jacobian of a generic curve C of genus 2, and h is a polarization
of degree 8 that embeds X in P5 as a complete intersection of multi-degree
(2, 2, 2). We have rankSX = 17. See [10].

• The K3 surface X is the complex Kummer surface Km(E × F ), where E
and F are generic elliptic curves, and h is a polarization of degree 28. We
have rankSX = 18. See [8].

• The K3 surface X is the Fermat quartic surface in characteristic 3, and h
is the class of a hyperplane section. We have rankSX = 22. See [11].

See Section 5 for further examples.

The problem to classify all Jacobian fibrations on a given K3 surface X up
to the action of Aut(X) has been studied by many authors. For example, this
classification was done for the three K3 surfaces in Example 1.9. See [12] for
Km(Jac(C)), [13], [16], and [17] for Km(E × F ), and [22] for the Fermat quartic
surface in characteristic 3. This problem is equivalent to the classification modulo
Aut(X) of primitive nef vectors v satisfying ⟨v, v⟩S = 0 and a certain condition
corresponding to the existence of a zero section. Our problem can be regarded as
an extension of this problem to the case where ⟨v, v⟩S > 0.

The proof of Theorem 1.2 relies on the enumeration [4, Table 25.1, Chapter 25]
of holes of Λ carried out by Borcherds, Conway, and Queen. Hence the correctness
of their list is crucial for our result. Using the data we computed for the proof of
Theorem 1.2, we reconfirmed the correctness of the list. See Remark 2.10. Since
the whole computational data are too large to be put in the paper, we present the
data only on the most important hole (the deep hole of type D24), and the rest is
put in the author’s web page [24]. 1 For the computation, we used GAP [7].

The plan of this paper is as follows. In Section 2, we give a review of the theory
of holes of the Leech lattice, and describe a method to obtain representatives of
equivalence classes of holes. In Section 3, we define several invariants of holes,
and relate them to the set of possible values of ⟨v, w⟩L, where w ∈ L is a fixed
Weyl vector and v ranges through D(w) ∩ L. Proposition 3.2 in this section is the
principal ingredient of the proof of Theorem 1.2, which is carried out in Section 4.
In Section 5, we discuss some examples, and conclude the paper by several remarks.

Acknowledgements. Thanks are due to Professor Daniel Allcock for stimulat-
ing discussions. We also thank the referee for many valuable comments on the first
version of this paper.

2. Holes of the Leech lattice

We review the theory of holes of the Leech lattice by Borcherds, Conway, Parker,
Queen, and Sloane. See [4, Chapters 23–25] for the details.

We denote by Λ the positive-definite Leech lattice with the intersection form
⟨ , ⟩Λ. Let ΛR denote Λ ⊗ R. We use the basis of Λ given in [4, Chapter 4,
Figure 4.12], and write elements of ΛR as a row vector with respect to this basis.

We put ∥x∥ :=
√
⟨x,x⟩Λ for x ∈ ΛR, and define the function dΛ : ΛR → R by

dΛ(x) := min{ ∥x− λ∥ | λ ∈ Λ }.

1See also Appendix B.
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By the main result of [4, Chapter 23], we know that the maximum of the function

dΛ on ΛR is
√
2.

Definition 2.1. A point c of ΛR is called a hole if dΛ attains a local maximum at
c. The radius R(c) of a hole c is defined to be dΛ(c). We say that a hole c is deep

if R(c) =
√
2, whereas c is shallow if R(c) <

√
2.

For λ ∈ Λ, we define the Voronoi cell of λ by

V (λ) := { x ∈ ΛR | ∥x− λ∥ ≤ ∥x− λ′∥ for all λ′ ∈ Λ \ {λ} }.
Then V (λ) is a convex polytope, and ΛR is tessellated by these Voronoi cells.
Moreover, a point c of ΛR is a hole if and only if c is a vertex of a Voronoi cell V (λ)
for some λ ∈ Λ.

Let c be a hole. We put

Pc := { λ ∈ Λ | ∥λ− c∥ = R(c) } = { λ ∈ Λ | c ∈ V (λ) },
and let P c denote the convex hull of Pc in ΛR. The following remark is important
in the proof of our main result.

Remark 2.2. The affine space ΛR is tessellated by the convex polytopes P c, where
c ranges though the set of all holes. This tessellation is dual to the tessellation of
ΛR by the Voronoi cells.

In [4, Chapter 23, Section 2], it is shown that ∥λi − λj∥ ∈ {2,
√
6,
√
8} for any

distinct points λi,λj of Pc. We define ∆c to be the graph whose set of nodes is Pc

and whose edges are drawn by the following rule:

λi and λj are not connected ⇐⇒ ∥λi − λj∥ = 2,

λi and λj are connected by a single edge ⇐⇒ ∥λi − λj∥ =
√
6,

λi and λj are connected by a double edge ⇐⇒ ∥λi − λj∥ =
√
8.

Then each connected component of the graph ∆c is an indecomposable Coxeter–
Dynkin diagram; that is, the diagram of type Ak or ak (k ≥ 1), or Dk or dk (k ≥ 4),
or Ek or ek (k = 6, 7, 8). See [4, Chapter 23, Figure 23.1] for these diagram. We say
that Ak, Dk, Ek are extended, and ak, dk, ek are ordinary. (The readers are warned
that this usage of the symbols Ak, Dk, Ek for extended diagrams and ak, dk, ek for
ordinary diagrams is not standard.) Let

∆c = ∆c,1 ⊔ · · · ⊔∆c,m

be the decomposition of ∆c into the connected components, and let

(2.1) Pc = Pc,1 ⊔ · · · ⊔ Pc,m

be the corresponding decomposition of the nodes. Let τc,i be the type of the
indecomposable Coxeter–Dynkin diagram ∆c,i. We define the hole type τ(c) of c
to be the product

τ(c) := τc,1 · · · τc,m.
Note that, if τc,i is Ak, Dk, or Ek, then |Pc,i| = k + 1, whereas if τc,i is ak, dk, or
ek, then |Pc,i| = k.

For a nonempty subset S of ΛR, we denote by ⟨S⟩ the minimal affine subspace
of ΛR containing S. For an affine subspace E of ΛR and a point x of E, we denote
by Ex the linear space obtained from E by regarding x as the origin. Then Ex is
a linear subspace of the linear space (ΛR)x.

By the classification of the deep holes in [4, Chapter 23], we obtain the following:
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Theorem 2.3. Suppose that c is deep. Then each τc,i is extended, and the convex

hull P c,i of each Pc,i is an (ni−1)-dimensional simplex containing c in its interior,
where ni := |Pc,i|. The linear space (ΛR)c is the orthogonal direct sum of the
subspaces ⟨Pc,1⟩c, . . . , ⟨Pc,m⟩c. In particular, we have

∑
i(ni − 1) = 24.

By the classification of the shallow holes in [4, Chapter 25], we obtain the fol-
lowing:

Theorem 2.4. Suppose that c is shallow. Then each τc,i is ordinary. Moreover,

we have |Pc| = 25, and P c is a 24-dimensional simplex containing c in its interior.

We say that two holes c and c′ are equivalent if there exists an affine isometry
g of Λ such that cg = c′. For a hole c, we denote by [c] the equivalence class of
holes containing c. The equivalence classes of holes are enumerated in [4, Table
25.1, Chapter 25]. The result is summarized as follows.

Theorem 2.5. There exist exactly 23 equivalence classes of deep holes, and 284
equivalence classes of shallow holes. Each equivalence class [c] is determined uniquely
by the hole type τ(c), except for the following hole types:

(2.2) a17a8, d7a17a1, d7a11a3a
2
2, a29a4a3.

For each of the hole types in (2.2), there exist exactly two equivalence classes of
holes.

Remark 2.6. The two equivalence classes of each hole type in (2.2) can be distin-
guished by another method. See Remark 3.1.

We describe a method to find a representative element c of each equivalence class
[c] of holes and the set Pc of vertices of P c.

Let P and P ′ be finite sets of Λ. A congruence map from P to P ′ is a bijection
γ : P →∼ P ′ such that

∥v1 − v2∥ = ∥γ(v1)− γ(v2)∥
holds for any v1,v2 ∈ P . Suppose that c is a hole. Then the congruence class
containing Pc is determined by τ(c), and hence is denoted by [τ(c)]. If P ′ belongs
to [τ(c)], then the convex hull P ′ of P ′ is circumscribed by a 23-dimensional sphere
of radius R(c), and hence P ′ has the circumcenter c(P ′).

Proposition 2.7. Let c be a hole. Suppose that P ′ belongs to [τ(c)]. Then c(P ′)
is a hole with Pc(P ′) = P ′ and τ(c(P ′)) = τ(c).

Proof. For the case where c is deep, this result follows from [4, Chapter 23, Theorem
7]. The proof for the case where c is shallow is almost the same. Let c be a shallow
hole. Then P ′ is a 24-dimensional simplex whose circumradius R′ is smaller than√
2. It is enough to show that there exist no vectors z ∈ Λ such that z /∈ P ′ and

∥z− c(P ′)∥ ≤ R′. Suppose that z ∈ Λ satisfies z /∈ P ′ and ∥z− c(P ′)∥ ≤ R′. Then,
for any vi ∈ P ′, we have

4 ≤ ∥z− vi∥2 = ∥z− c(P ′)∥2 − 2 ⟨z− c(P ′),vi − c(P ′)⟩Λ + ∥vi − c(P ′)∥2,

where the first inequality follows from z,vi ∈ Λ and z ̸= vi. Since ∥z − c(P ′)∥ ≤
R′ <

√
2 and ∥vi − c(P ′)∥ = R′ <

√
2, we have

(2.3) ⟨z− c(P ′),vi − c(P ′)⟩Λ < 0.
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On the other hand, since c(P ′) is the circumcenter of the simplex P ′ contained in
the interior, there exist positive real numbers ai such that

(2.4)
∑

vi∈P ′

ai (vi − c(P ′)) = 0.

Combining (2.3) and (2.4), we obtain a contradiction. □
Suppose that c is a hole, and let P1 and P2 be elements of [τ(c)]. We can

determine whether the holes c(P1) and c(P2) are equivalent or not by the following
method. Since P1 and P2 are finite, we can make the list of all congruence maps γ
from P1 to P2. Since ⟨P1⟩ = ⟨P2⟩ = ΛR, each congruence map γ induces an affine
isometry

γΛ : Λ⊗Q →∼ Λ⊗Q.
Then c(P1) and c(P2) are equivalent if and only if there exists a congruence map γ
from P1 to P2 such that γΛ maps Λ ⊂ Λ⊗Q to itself.

Remark 2.8. Let c be a hole. Let Aut(P c) denote the group of all congruence maps
from Pc to Pc, and let Aut(Pc,Λ) denote the group of all affine isometries of Λ that
maps Pc to Pc. If the order of Aut(P c) is not very large, we can calculate Aut(Pc,Λ)
by selecting from Aut(P c) all the congruence maps g such that gΛ preserves Λ.

We describe a method to find a representative c of an equivalence class [c] of
hole type τ(c). The case where τ(c) = A24

1 is described in [4, Chapter 23] in
details. Hence we assume that τ(c) ̸= A24

1 . Then the graph ∆c contains no double
edges. By an affine translation of Λ, we can assume that Pc contains the origin
O of Λ. Then Pc is a subset of the set N≤6 := {O} ∪ N4 ∪ N6 of cardinality
1 + 196560 + 16773120, where

N2d := { λ ∈ Λ | ⟨λ, λ⟩Λ = 2d }.
We make the set N≤6, and search for a subset P ′ of N≤6 such that the congruence
class of P ′ is [τ(c)]. If τ(c) is not on the list (2.2), then c(P ′) is a representative
of [c] and Pc(P ′) is equal to P

′ by Theorem 2.5 and Proposition 2.7. Suppose that
τ(c) is on the list (2.2). We search for subsets P ′

1, . . . , P
′
K of N≤6 contained in

the congruence class [τ(c)] until c(P ′
K) is not equivalent to c(P ′

1). Then c(P
′
1) and

c(P ′
K) are representatives of the two equivalence classes of hole type τ(c).

Remark 2.9. For the computation, we used the standard backtrack algorithm.
See [9] for the definition of this algorithm.

In the author’s web page [24], we present a representative element c of each
equivalence class [c] and the set Pc of vertices of P c in the vector representation.

Remark 2.10. The computation above relies on the enumeration [4, Table 25.1,
Chapter 25] of equivalence classes of holes of Λ. In order to show that this enumer-
ation is complete, Borcherds, Conway, and Queen used the volume formula

(2.5)
∑
[c]

vol(P c)

|Aut(Pc,Λ)|
=

1

|Co0|
,

where vol(P c) is the volume of P c, Aut(Pc,Λ) is defined in Remark 2.8, Co0 is the
Conway group, and the summation is taken over the set of all equivalence classes of
holes. Using the sets Pc that we computed, we have reconfirmed the equality (2.5).
The volume vol(P c) can be computed easily from Pc. The groups Aut(Pc,Λ) for
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deep holes c are studied in detail in [4, Chapters 23 and 24]. For the shallow holes,
we can use the method described in Remark 2.8, except for the holes of type

a5a
10
2 , d4a

21
1 , a3a

11
2 , a3a

22
1 , a1a

12
2 , a2a

23
1 , a251 .

For example, for the hole c = c303 of type τ(c303) = a3a
11
2 , the order of Aut(P c) is

2 · 211 · 11! = 163499212800, which is too large to be treated by this naive method.
To deal with these holes, we need some consideration involving Golay codes and
Mathieu groups. In particular, a characterization of Golay codes by Pless [21] plays
an important role. See a note presented in the web page [24]. 2

3. Geometry of holes and the integer points in a Conway chamber

Let c be a hole of radius R(c). Suppose that c is shallow. Then there exists a
positive rational number s(c) that satisfies

(3.1) R(c) =

√
2− 1

s(c)
.

When c is deep, we put s(c) := ∞. It is obvious that s(c) depends only on [c].
Let v be a point of Λ ⊗ Q. We define m(v) to be the order of v mod Λ in the

torsion group (Λ⊗Q)/Λ ∼= (Q/Z)24. It is obvious that m(v) is invariant under the
action of affine isometries of Λ.

Note that c belongs to Λ⊗Q, because c is the intersection point of the bisectors
of distinct two points of Pc. It is obvious that m(c) depends only on [c].

Remark 3.1. The invariant m(v) enables us to distinguish the two equivalence
classes of each hole type in (2.2).

(1) For the two equivalence classes [c42] and [c43] with τ(c42) = τ(c43) = a17a8,
we have m(c42) = 33 and m(c43) = 99.

(2) For the two equivalence classes [c45] and [c46] with τ(c45) = τ(c46) = d7a17a1,
we have m(c45) = 144 and m(c46) = 48.

(3) For the two equivalence classes [c130] and [c131] with τ(c130) = τ(c131) =
d7a11a3a

2
2, we have m(c130) = m(c131) = 54. For ν = 130 and 131, let v1ν and v2ν

be the two vertices of P cν that correspond to the two nodes of valency 1 in the
Coxeter–Dynkin diagram of type a3 in d7a11a3a

2
2. For i = 1 and 2, let ciν be the

circumcenter of the 23-dimensional face of P cν that does not contain viν . Then we
have {m(c1130),m(c2130)} = {120, 240} and {m(c1131),m(c2131)} = {480}. Therefore
c130 and c131 are not equivalent.

(4) For the two equivalence classes [c181] and [c182] with τ(c181) = τ(c182) =
a29a4a3, we have m(c181) = m(c182) = 60. For ν = 181 and 182, let v1ν and
v2ν be the two vertices of P cν that correspond to the two nodes of valency 1 in
a4. For i = 1 and 2, let ciν be the circumcenter of the 23-dimensional face of
P cν that does not contain viν . Then we have {m(c1181),m(c2181)} = {350, 70} and
{m(c1182),m(c2182)} = {350}. Therefore c181 and c182 are not equivalent.

We then define the invariant N(c) of [c] as follows. When c is deep, we put

N(c) :=

{
m(c)/2 if m(c) is even,

m(c) if m(c) is odd.

2See also Appendix A.
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When c is shallow, we define N(c) to be the least positive integer such that
N(c)/s(c) ∈ Z.

For a positive real number r, we put

Ξ(r) := { x ∈ ΛR | dΛ(x) ≥ r }.
Let c be a hole. We put

Ξc(r) := { x ∈ P c | ∥x− λ∥ ≥ r for all λ ∈ Pc }.
Then we obviously have

(3.2) Ξ(r) ∩ P c ⊂ Ξc(r).

Note also that, if r ≤ R(c), then we have c ∈ Ξc(r). Let θ(c) be the minimal real
number such that, if r satisfies θ(c) < r ≤ R(c), then Ξc(r) is contained in the
interior of P c. For r with θ(c) ≤ r ≤ R(c), we put

σ(c, r) := max{ ∥x− c∥ | x ∈ Ξc(r) }.

Since θ(c) and σ(c, r) depend only on the congruence class of the polytope P c,
they depend only on the hole type τ(c), and hence only on the equivalence class
[c]. It is easy to see that σ(c, r) is a decreasing function with respect to r, and that
σ(c, R(c)) = 0. For simplicity, we put

σ(c, r) := 0 for r > R(c).

In fact, the function σ(c, r) can be calculated from the real number θ(c) (see Sec-
tion 4.1).

Using these invariants of holes, we can state our principal result. For each even
positive integer d, we put

ρd(x) :=

√
2− d

x2
,

which is a function defined for x ≥
√
d/2.

Proposition 3.2. Let w ∈ L be a Weyl vector, and let d be an even positive integer.
Let v be a point of D(w)∩L with ⟨v, v⟩L = d, and suppose that b := ⟨v, w⟩L satisfies

b ≥
√
d/2. Then there exists a hole c for which b satisfies one of the following

conditions.

(I) b2 divides N(c)2d, and b2 ≤ s(c)d,

(II) ρd(b) ≤ θ(c), or

(III) ρd(b) ≥ θ(c) and σ(c, ρd(b)) ≥
2

m(c)b
.

Remark 3.3. When c is deep, the second condition in (I) is vacuous.

For the proof of Proposition 3.2, we use the following lemma.

Lemma 3.4. For any hole c′ ∈ [c], we have N(c) ⟨c′, c′⟩Λ ∈ Z.

Proof. Let λ0 ∈ Λ be an element of Pc′ , and we put c′′ := c′ − λ0. Note that
c′′ ∈ [c] and hence m(c) c′′ ∈ Λ. Moreover, we have ⟨c′′, c′′⟩Λ = R(c)2. Hence we
have

⟨c′, c′⟩Λ = R(c)2 + 2⟨c′′, λ0⟩Λ + ⟨λ0, λ0⟩Λ.
Suppose that c is deep. Then we have R(c)2 = 2 ∈ Z, and 2N(c) c′′ ∈ Λ. Therefore
N(c) ⟨c′, c′⟩Λ ∈ Z holds. Suppose that c is shallow. Then we have N(c)R(c)2 ∈ Z
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by (3.1). By the list [24], we confirm that m(c) divides 2N(c), and thus we obtain
2N(c) ⟨c′′, λ0⟩Λ ∈ Z. Therefore N(c) ⟨c′, c′⟩Λ ∈ Z holds. □

Proof of Proposition 3.2. Let U denote the hyperbolic plane; that is, U is the lattice
of rank 2 with a basis e1, e2 with respect to which the Gram matrix is(

0 1
1 0

)
.

We put

L := U ⊕ Λ−,

where Λ− is the negative-definite Leech lattice. Then L is an even unimodular
hyperbolic lattice of rank 26. A vector of L ⊗ R is written as (a, b,v), where
(a, b) = a e1 + b e2 ∈ U ⊗ R and v ∈ Λ ⊗ R. The intersection form ⟨ , ⟩L of L is
given by

⟨(a, b,v), (a′, b′,v′)⟩L = ab′ + a′b− ⟨v,v′⟩Λ.
We choose the positive cone PL of L⊗ R in such a way that the primitive vector

w0 := (1, 0,0)

of square norm 0 is contained in the closure of PL in L ⊗ R. Since ⟨w0⟩⊥/⟨w0⟩ is
isomorphic to Λ−, we see that w0 is a Weyl vector. Since the group O+(L) acts
on the set of Weyl vectors transitively, it is enough to prove Proposition 3.2 for the
Weyl vector w0.

For λ ∈ Λ, we put

rλ :=

(
λ2

2
− 1, 1, λ

)
∈ RL, where λ2 := ⟨λ, λ⟩Λ.

Then we have RL(w0) = {rλ |λ ∈ Λ}, and hence

D(w0) = { x ∈ PL | ⟨x, rλ⟩L ≥ 0 for all λ ∈ Λ }.

Let v = (a, b,v) be an arbitrary vector of D(w0) ∩ L satisfying ⟨v, v⟩L = d, and

suppose that b = ⟨v, w0⟩L satisfies b ≥
√
d/2.

Note that a, b, and v satisfy the following conditions:

(i) a, b ∈ Z and v ∈ Λ,

(ii) ⟨v, rλ⟩L = a+

(
λ2

2
− 1

)
b− ⟨v, λ⟩Λ ≥ 0 for all vectors λ ∈ Λ,

(iii) ⟨v, v⟩L = 2ab− ⟨v,v⟩Λ = d.

By condition (iii), we have

a

b
=

1

2

(
d

b2
+
⟨v
b
,
v

b

⟩
Λ

)
.

Combining this with the assumption b ≥
√
d/2, we see that condition (ii) is equiv-

alent to

(3.3)
∥∥∥v
b
− λ

∥∥∥ ≥
√
2− d

b2
for all λ ∈ Λ.

In other words, we have

(3.4) v/b ∈ Ξ( ρd(b) ).
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By Remark 2.2, there exists a hole c such that the convex polytope P c contains
the point v/b. By (3.2) and (3.4), we have

(3.5)
v

b
∈ Ξc( ρd(b) ).

We will show that b satisfies one of conditions (I), (II) or (III) for this hole c.

Lemma 3.5. Suppose that v/b is equal to the hole c, and let N be a positive integer
such that N ⟨c, c⟩Λ ∈ Z. Then b2 divides N2d.

Proof. We putM := N ⟨c, c⟩Λ ∈ Z. By condition (iii) and the assumption v/b = c,
we have

a =
d

2b
+
Mb

2N
.

Multiplying 2N on both sides, we obtain

L :=
Nd

b
= 2Na−Mb ∈ Z.

Moreover, we have

a =
d

2b
+
Md

2L
.

Multiplying 2L on both sides, we obtain

Ld

b
=
Nd2

b2
= 2La−Md ∈ Z.

This completes the proof. □

Case 1. Suppose that v/b is equal to the hole c. From the case λ ∈ Pc

in (3.3), we obtain
√

2− d/b2 ≤ R(c) =
√
2− 1/s(c), and hence b2 ≤ s(c) d. By

Lemmas 3.4 and 3.5, we also have that b2 divides N(c)2 d. Therefore b satisfies
condition (I).

Case 2. Suppose that v/b is not equal to c . Then m(c)v and bm(c) c are
distinct points of Λ by the definition of m(c) and hence ∥m(c)v − bm(c) c∥2 ≥ 4
holds. Therefore we have

(3.6)
∥∥∥v
b
− c
∥∥∥ ≥ 2

m(c)b
.

We assume that b does not satisfy condition (II). Then Ξc( ρd(b) ) is contained in
the interior of P c. By (3.5) and the definition of σ(c, r), we have

(3.7)
∥∥∥v
b
− c
∥∥∥ ≤ σ (c, ρd(b) ) .

Combining (3.6) and (3.7), we see that b satisfies condition (III). □

4. Proof of Theorem 1.2

4.1. Computation of the hole invariants. The values of s(c), m(c), and N(c)
can be easily obtained from the set Pc of vertices of P c. To calculate the value of
θ(c) and the function σ(c, r), we use the following lemma.

Lemma 4.1. Let c be a hole. Let F1, . . . , FM be the 23-dimensional faces of P c.
Then each Fj is a 23-dimensional simplex.
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Proof. If c is shallow, then the convex polytope P c is a 24-dimensional simplex,
and it has exactly 25 faces of dimension 23, each of which is obviously a simplex.
Suppose that c is deep. We consider the decomposition (2.1) of Pc. Note that
P c,i is an (ni − 1)-dimensional simplex in the (ni − 1)-dimensional affine space
⟨Pc,i⟩ containing Pc,i for i = 1, . . . ,m, where ni = |Pc,i|. If F is a 23-dimensional

face of P c, then the intersection F ∩ ⟨Pc,i⟩ is an (ni − 2)-dimensional face of the

simplex P c,i. Conversely, if F (i) is an (ni − 2)-dimensional face of the simplex

P c,i for i = 1, . . . ,m, then the convex hull F of the vertices of F (1), . . . , F (m) is

a 23-dimensional face of P c. By Theorem 2.3, we see that the sum
∑

i(ni − 1) of

the numbers of the vertices of F (1), . . . , F (m) is 24. Hence their convex hull F is a
23-dimensional simplex. □

The proof above also indicates a method to make the list of all 23-dimensional
faces F1, . . . , FM of P c. Let hj denote the point on ⟨Fj⟩ such that the line passing
through c and hj is perpendicular to ⟨Fj⟩. Then hj lies in the interior of Fj , and
Fj is circumscribed by a 22-dimensional sphere in the 23-dimensional affine space
⟨Fj⟩ with center hj of radius

Rj :=
√
R(c)2 − ∥hj − c∥2.

Therefore we have

θ(c) = max{ Rj | j = 1, . . . ,M },(4.1)

σ(c, r) = max(0,
√
R(c)2 − θ(c)2 −

√
r2 − θ(c)2 ).(4.2)

Example 4.2. Let c1 ∈ ΛR be the point such that

46 c1 = [15,−2,−1,−2, 5,−1,−2, 4, 0, 0,−6, 12,−1, 0, 0, 0, 5,−4,−2, 0, 3, 12, 2, 14].

Then c1 is a deep hole with τ(c1) = D24. We have m(c1) = 46. The convex
polytope P c1 is a 24-dimensional simplex, and its vertices are given in Table 4.1.
The nodes of the graph ∆c1 correspond to these vertices in the way indicated in the
graph in Table 4.1. Let Fj be the 23-dimensional face of P c1 that does not contain
λj . Then ∥hj − c1∥2 is calculated as in Table 4.2. Note that, by the symmetry of

the simplex P c1 , we have ∥hj − c1∥ = ∥h26−j − c1∥ and ∥h1 − c1∥ = ∥h2 − c1∥.
Therefore we have

θ(c1)
2 = 8647/4324.

In the list [24], we present the values of these invariants s,m, N , and θ2.

4.2. Definition of the set S(d). For simplicity, we introduce three series of sets
SI([c], d), SII([c], d), SIII([c], d) of positive integers, which correspond to the three
possibilities in Proposition 3.2. Let c be a hole, and let d be an even positive
integer. We put

SI([c], d) := { b ∈ Z>0 | b2 divides N(c)2d, and b2 ≤ s(c) d }.
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λ1 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

λ2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

λ3 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

λ4 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

λ5 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

λ6 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

λ7 = [2,−1,−1,−1, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

λ8 = [0, 0, 0, 0, 0,−1,−1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0,−1, 1, 0, 0]

λ9 = [−2, 1, 1, 1, 1, 1, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

λ10 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

λ11 = [2, 0,−1,−1, 0, 0,−1, 1, 0, 0,−1, 1, 0,−1, 1, 0, 0,−1, 0, 0, 0, 1, 0, 0]

λ12 = [2,−1, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

λ13 = [1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

λ14 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

λ15 = [−1, 0, 0, 1, 1, 1, 1,−1, 0,−1, 0, 1, 0, 0,−1, 0, 0, 1,−1, 0, 0, 0, 1, 0]

λ16 = [−3, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0,−1, 1, 0, 0]

λ17 = [1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

λ18 = [−1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0]

λ19 = [3,−1, 0,−1,−1,−1, 0, 0,−1,−1,−1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

λ20 = [−2, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,−2, 0, 0, 0, 0, 1]

λ21 = [5,−1,−2,−2,−1,−1, 0, 0, 0, 0,−1, 1, 0, 0, 0,−1, 0, 0, 1,−1, 2,−1,−1, 2]

λ22 = [−5, 2, 3, 2, 0, 1, 0, 0,−1, 1, 1,−2,−1, 0, 0, 2,−1, 0, 0, 2,−2, 2, 2,−3]

λ23 = [1, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 1]

λ24 = [1, 0,−1,−1, 1, 0, 1, 0, 0,−1,−1, 2, 0, 0, 0, 0, 1, 0, 0,−2, 0, 0, 0, 1]

λ25 = [4,−2,−2,−1, 0,−1,−1, 2, 0,−1,−1, 2, 1, 0, 0,−2, 0, 0, 0, 0, 0, 0, 0, 1]

cλ1

cλ2

Q
Q

�
�

c
λ3

c
λ4

. . . . . . c
λ23

�
�

Q
Q

cλ24

cλ25

Table 4.1. Vertices of P c1

j 1 3 4 5 6 7 8

∥hj − c1∥2 1/4324 1/3312 1/2875 1/2484 1/2139 1/1840 1/1587

j 9 10 11 12 13

∥hj − c1∥2 1/1380 1/1219 1/1104 1/1035 1/1012
.

Table 4.2. ∥hj − c1∥2
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We put

T (d) :=

{
b ∈ Z>0

∣∣∣∣ 2− d

b2
< 0

}
=

{
b ∈ Z>0

∣∣∣∣∣ b ≤
√
d

2

}
, and

SII([c], d) := T (d) ∪

{
b ∈ Z>0 \ T (d)

∣∣∣∣∣
√
2− d

b2
≤ θ(c)

}

=

{
b ∈ Z>0

∣∣∣∣∣ b ≤
√

d

2− θ(c)2

}
.

If b /∈ SII([c], d), then σ(c,
√

2− d/b2 ) is defined. We put

SIII([c], d) :=

{
b ∈ Z>0 \ SII([c], d)

∣∣∣∣∣ σ

(
c,

√
2− d

b2

)
≥ 2

m(c)b

}
.

Consider the rational function

ψc(t) :=

(√
R(c)2 − θ(c)2 − 2

m(c) t

)2

−
(
2− d

t2
− θ(c)2

)
of t. By (4.2), we see that a positive real number t0 satisfying

√
2− d/t20 ≥ θ(c)

satisfies

σ

(
c,

√
2− d

t20

)
≥ 2

m(c)t0

if and only if ψc(t0) is non-negative and√
R(c)2 − θ(c)2 − 2

m(c) t0
≥ 0

holds. We put

Ψc(t) := t2 ψc(t) =

(
4

m(c)2
+ d

)
−

4
√
R(c)2 − θ(c)2

m(c)
t+ (R(c)2 − 2) t2.

Note that Ψc is a strictly decreasing linear function of t having a positive root
β(c, d) if c is deep, whereas Ψc is an upward convex quadratic function of t having
a negative root α(c, d) and a positive root β(c, d) if c is shallow. Hence we have

SIII([c], d) =

{
b ∈ Z>0 \ SII([c], d)

∣∣∣∣∣ 2

m(c)
√
R(c)2 − θ(c)2

≤ b ≤ β(c, d)

}
.

In terms of the invariants s, m, and θ2, the function β(c, d) is given as follows:

(4.3) β(c, d) =
dm(c)2 + 4

4m(c)
√
2− θ(c)2

when c is deep, whereas

β(c, d) =

√
4 s(c)2 (2− θ(c)2) + d s(c)m(c)2 −

√
4 s(c)2 (2− θ(c)2)− 4 s(c)

m(c)

when c is shallow.
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Example 4.3. Let c1 be the deep hole with τ(c1) = D24 given in Example 4.2.
Recall that we have m(c1) = 46 and 2 − θ(c1)

2 = 1/4324. By (4.3), we see that
β(c1, d) is equal to the function ϕ(d) given in the statement of Theorem 1.2. On
the other hand, we have

2

m(c1)
√
R(c1)2 − θ(c1)2

=
2

23

√
1081 = 2.859 . . . .

Hence we have

SII([c1], d) ∪ SIII([c1], d) = { b ∈ Z>0 | b ≤ ϕ(d) }.

Finally, we put

S(d) :=
∪
[c]

(
SI([c], d) ∪ SII([c], d) ∪ SIII([c], d)

)
,

where [c] ranges through the set of all equivalence classes of holes. Then Proposi-
tion 3.2 can be rephrased as follows:

Proposition 4.4. Let w ∈ L be a Weyl vector, and let d be an even positive integer.
Then, for any vector v ∈ D(w) ∩ L with ⟨v, v⟩L = d, we have ⟨v, w⟩L ∈ S(d).

4.3. Proof of Theorem 1.2. We compare the sets SI([c], d),SII([c], d),SIII([c], d)
and prove Theorem 1.2. After the comparison, it turns out that the the set
SIII([c1], d) given by the deep hole c1 of type D24 is the largest.

Theorem 1.2 follows from Proposition 4.4 by the following lemma.

Lemma 4.5. The set S(d) coincides with {b ∈ Z>0 | b ≤ ϕ(d)}.

Proof. The fact that S(d) includes {b ∈ Z>0 | b ≤ ϕ(d)} follows from Example 4.3.
In order to show the opposite inclusion, we prove the following claims.

Claim 4.6. If b ∈ SI([c], d), then b ≤ ϕ(d).

We put

µc := min(N(c),
√
s(c) ).

Then SI([c], d) is included in {b ∈ Z>0 | b ≤ µc

√
d}. Since

√
d < d for any even

positive integer d and ϕ(0) > 0, Claim 4.6 follows from

µc <
529

√
1081

23
= 756.20 · · · ,

which can be confirmed by numerical computation for each equivalence class [c].

Claim 4.7. If b ∈ SII([c], d), then b ≤ β(c, d).

This claim follows from

Ψc

(√
d

2− θ(c)2

)
=

(√
R(c)2 − θ(c)2

2− θ(c)2

√
d− 2

m

)2

≥ 0.

Claim 4.8. Suppose that [c] ̸= [c1]. Then β(c, d) ≤ ϕ(d) holds for all even positive
integers d.
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i discTi Ti ⟨hi, hi⟩S References
a b c

1 3 2 1 2 78 [29]
2 4 2 0 2 55 [29]
3 7 2 1 4 28 [28]
4 8 2 0 4 61/2 [23]
5 12 2 0 6 18 [23]
6 12 4 2 4 16 [8]
7 15 2 1 8 12 [23], [25]
8 16 4 0 4 10 [8]
9 20 4 2 6 11
10 24 2 0 12 15/2 [25]
11 36 6 0 6 5 [25]

Table 5.1. Singular K3 surfaces of simple Borcherds type

Suppose that c is deep. Then β(c, d) is a linear function of d, and hence we
can write it as f(c) d + g(c). We have f(c) > 0. Hence the hoped-for inequality
β(c, d) ≤ β(c1, d) follows from

f(c) < f(c1) =
529

√
1081

23
and − g(c)− g(c1)

f(c)− f(c1)
< 2,

which we can confirm by numerical computation again. Suppose that c is shallow.
In order to prove β(c, d) ≤ ϕ(d), it is enough to show that Ψc(ϕ(d)) ≤ 0. Since
Ψc(ϕ(d)) is a quadratic polynomial in d, and its coefficient of d2 is negative, we can
prove Ψc(ϕ(d)) ≤ 0 for any even positive integer d by showing that the quadratic
equation Ψc(ϕ(x)) = 0 in variable x has no roots larger than 2.

Combining these three claims, we complete the proof of Lemma 4.5 and hence
that of Theorem 1.2. □

5. Examples and remarks

We continue the list of polarized K3 surfaces (X,h) of simple Borcherds type in
Example 1.9.

A complex K3 surface X is said to be singular if SX is of rank 20. For a singular
K3 surface X, the orthogonal complement of SX in HX = H2(X,Z) is called the
transcendental lattice of X. By [26], we see that, for each even positive-definite
lattice Ti of rank 2 whose Gram matrix[

a b
b c

]
is given in Table 5.1, there exists a singular K3 surface Xi, unique up to isomor-
phism, such that the transcendental lattice of Xi is isomorphic to Ti. Then Xi

possesses an ample class hi such that (Xi, hi) is of simple Borcherds type. The
automorphism group Aut(Xi) of each Xi has been determined in the papers cited
in Table 5.1.

In [6], it was shown that the generic quartic Hessian surface X possesses an
ample class h ∈ SX ⊗Q with h2 = 20 such that (X,h) is of simple Borcherds type.
In this case, we have rankSX = 16.
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In [8], it was shown that the complex Kummer surface Km(E × E), where E is
a generic elliptic curve, possesses an ample class h ∈ SX ⊗ Q with h2 = 19 such
that (X,h) is of simple Borcherds type. In this case, we have rankSX = 19.

Remark 5.1. In [5], it was shown that the supersingular K3 surface X in charac-
teristic 2 with Artin invariant 1 possesses an ample class h ∈ SX ⊗Q with h2 = 14
such that Corollary 1.8 holds for (X,h).

Remark 5.2. There exists a singular K3 surface X, unique up to isomorphism, such
that its transcendental lattice is of discriminant 11. We showed in [23] that there
exists a primitive embedding SX ↪→ L satisfying Assumption 1.3 and P(X) ⊂ PL

such that the number of GX -congruence classes of induced chambers is 1098.

Remark 5.3. In all known examples of polarized K3 surfaces (X,h) of simple
Borcherds type, the orthogonal complement R of SX in L contains a sublattice
of finite index generated by the set RR of vectors of R with square norm −2.
See [1, Lemma 5.1] and [23, Remark 6.7].

Remark 5.4. Let SX ↪→ L be a primitive embedding satisfying Assumption 1.3
and P(X) ⊂ PL, and let a := prS(w) be the image of a Weyl vector w ∈ L
by the orthogonal projection prS : L → S∨

X . We show that ⟨a, a⟩S > 0. Since
the orthogonal complement R of SX in L is negative-definite, we have ⟨a, a⟩S ≥
⟨w,w⟩L = 0, and the equality holds if and only if a = w. Therefore, if ⟨a, a⟩S = 0,
then we have w ∈ SX , and hence ⟨w⟩⊥/⟨w⟩ ∼= Λ− contains R, which contradicts
condition (b) in Assumption 1.3 .
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Appendix A. Reconfirmation of the enumeration of holes

This appendix is a detailed version of Remark 2.10. In the following, TABLE
means Table 25.1 of [4, Chapter 25] calculated by Borcherds, Conway, and Queen.
In TABLE, the equivalence classes of holes of the Leech lattice Λ are enumerated.
The purpose of this appendix is to explain a method to reconfirm the correctness
of TABLE.

The fact that there exist at least 23 + 284 equivalence classes of holes can be
established by giving explicitly the set Pc of vertices of the polytope P c for a
representative c of each equivalence class [c]. See Remark 3.1 and the computational
data given in the author’s web page [24]. (See also Appendix B.)

In order to see that there exist no other equivalence classes, Borcherds, Conway,
and Queen used the volume formula (2.5). The volume vol(P c) of P c can be easily
calculated from the set Pc of vertices, and the result coincides with the values
given in the third column of TABLE. The equality (2.5) holds when |Aut(Pc,Λ)|
is replaced by the value g = g(c) given in the second column of TABLE and the
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no. type α β ν |Aut(P c)| g(c)

293 a5a
10
2 a5 a2 10 2 · 210 · 10! 720

299 d4a
21
1 d4 a1 21 6 · 21! 120960

303 a3a
11
2 a3 a2 11 2 · 211 · 11! 7920

304 a3a
22
1 a3 a1 22 2 · 22! 887040

305 a1a
12
2 a1 a2 12 212 · 12! 190080

306 a2a
23
1 a2 a1 23 2 · 23! 10200960

307 a251 a1 a1 24 25! 244823040

Table A.1. Shallow holes with large Aut(P c)

summation is taken over the set of the equivalence classes of holes listed in TABLE.
Therefore, in order to show the completeness of TABLE, it is enough to prove the
inequality

(A.1) |Aut(Pc,Λ)| ≤ g(c)

for each hole c that appears in TABLE. The groups Aut(Pc,Λ) for deep holes are
studied in detail in [4, Chapters 23 and 24]. Hence we will prove the inequality (A.1)
for shallow holes c.

Let c be a shallow hole that appears in TABLE. Then P c is a 24-dimensional
simplex, and Pc consists of 25 points of Λ. Recall that Aut(P c) is the group of
permutations g of Pc such that ∥pg − qg∥ = ∥p − q∥ holds for any p, q ∈ Pc. Each
permutation g ∈ Aut(P c) induces an affine isometry gΛ : Λ⊗Q →∼ Λ⊗Q, and we
have

(A.2) g ∈ Aut(Pc,Λ) ⇐⇒ gΛ preserves Λ ⊂ Λ⊗Q.
When Aut(P c) is not very large, we can make the list of elements of Aut(Pc,Λ)
by the criterion (A.2). We can also use the following trick to reduce the amount of
the computation.

Example A.1. Consider the shallow hole c297 of type d44a
9
1. We have |Aut(P c)| =

64 ·4!·9! = 11287019520. We choose two vertices v1 and v2 that correspond to nodes
of two a1 in d44a

9
1, and consider the subgroup Stab(v1, v2) of Aut(P c) consisting of

permutations that fix each of v1 and v2. Then the index of Stab(v1, v2) in Aut(P c)
is at most 72. We see by the criterion (A.2) that Aut(Pc,Λ)∩Stab(v1, v2) is of order
6, and hence |Aut(Pc,Λ)| is at most 72× 6 = 432 = g(c297). In fact, Aut(Pc,Λ) is
isomorphic to (((C3 × C3) : Q8) : C3) : C2, where Cn is the cyclic group of order n
and Q8 is the quaternion group.

This brute-force method works for shallow holes except for the seven cases listed
in Table A.1.

A.1. Golay codes and Mathieu groups. The values g(c) in Table A.1 suggest
that the groups Aut(Pc,Λ) are related to Mathieu groups. (See Table A.2.) For
each shallow hole c in Table A.1, we construct a code that is related to a Golay
code, and clarify the relation between Aut(Pc,Λ) and the corresponding Mathieu
group.

Remark A.2. In Remarks (ii) of [4, Chapter 25], it is stated that Aut(Pc,Λ) is
isomorphic to the Mathieu group M24 for the shallow hole c307 of type a251 .
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|M21| = 20160 = g(c299)/6
|M22| = 443520 = g(c304)/2
|M23| = 10200960 = g(c306)
|M24| = 244823040 = g(c307)
|M11| = 7920 = g(c303)
|M12| = 95040 = g(c305)/2

Table A.2. Orders of Mathieu groups

We fix notions and notation about codes, and recall the definitions of Golay
codes and Mathieu groups. Let F be either F2 or F3, and let l be a positive integer.
A code of length l over F is a linear subspace of Fl. Let C be a code of length
l. When F = F2, we say that C is binary, and when F = F3, we say that C is
ternary. When dimC = d, we say that C is an (l, d)-code. Each element of C
is called a codeword. The weight wt(x) of a codeword x = (x1, . . . , xl) is defined
to be the cardinality of {i |xi ̸= 0}. The minimal weight of C is the minimum of
{wt(x) |x ∈ C \ {0}}. The weight distribution of a code C is the expression

01 wn1
1 wn2

2 . . . wnm
m

that indicates that C contains exactly ni codewords of weight wi for i = 1, . . . ,m,
where 0, w1, . . . , wm are distinct weights, and that |C| = 1 + n1 + · · ·+ nm holds.

For a linear subspace V of Fl, the intersection C ∩ V is also a code of length l.
For a positive integer k < l, let prk : Fl → Fk denote the projection

(x1, . . . , xl) 7→ (x1, . . . , xk).

Then prk(C) is a code of length k.
Let Gl denote the subgroup of GLl(F) consisting of monomial transformations,

that is, Gl is the group of linear automorphisms of Fl generated by permutations
of coordinates and multiplications by a non-zero scalar on one coordinate. When
F = F2, we have Gl

∼= Sl, and when F = F3, we have Gl
∼= {±1}l ⋊ Sl. The

automorphism group of a code C of length l is defined to be

Aut(C) := { g ∈ Gl | Cg = C }.

Two codes C and C ′ of length l are said to be equivalent if there exists a mono-
mial transformation g ∈ Gl such that C ′ = Cg. The weight distribution and the
isomorphism class of the automorphism group depend only on the equivalence class
of codes.

The binary Golay code C24 is the binary (24, 12)-code generated by the row
vectors of the matrix in Table A.3. The ternary Golay code C12 is the ternary
(12, 6)-code generated by the row vectors of the matrix in Table A.4. We have the
following theorem, which will be used frequently in the next section.

Theorem A.3 (Pless [21]). (1) Let C be a binary (24, 12)-code. Then the following
conditions are equivalent:

• C is equivalent to the binary Golay code C24,
• the minimal weight of C is 8, and
• the weight distribution of C is 01 8759 122576 16759 241.

(2) Let C be a ternary (12, 6)-code. Then the following conditions are equivalent:
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1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1


Table A.3. A basis of C24


1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 2 0 1 2 2 1
0 0 1 0 0 0 2 1 0 1 2 2
0 0 0 1 0 0 2 2 1 0 1 2
0 0 0 0 1 0 2 2 2 1 0 1
0 0 0 0 0 1 2 1 2 2 1 0


Table A.4. A basis of C12

• C is equivalent to the ternary Golay code C12,
• the minimal weight of C is 6, and
• the weight distribution of C is 01 6264 9440 1224.

Let F be F2. The automorphism group of C24 is the Mathieu group M24. As
a subgroup of the full symmetric group S24 of the set {x1, . . . , x24} of coordinate
positions of F24

2 , the Mathieu group M24 is 5-transitive. For a positive integer
k < 24, let Sk denote the subgroup of S24 consisting of permutations that fix each
of xk+1, . . . , x24. For k = 21, 22, 23, we define the Mathieu group Mk by

Mk :=M24 ∩Sk.

Let F be F3. We have a natural homomorphism from G12 to the full symmetric
group S12 of the set {x1, . . . , x12} of coordinate positions of F12

3 . The image of
Aut(C12) by this homomorphism is the Mathieu group M12. The kernel of the pro-
jection Aut(C12) →M12 is of order 2 and is generated by the scalar multiplication
by −1. The action of M12 on {x1, . . . , x12} is 5-transitive. The stabilizer subgroup
of x12 in M12 is the Mathieu group M11.

A.2. Construction of a code. Let [c] be one of the equivalence classes listed in
Table A.1. The hole type τ(c) is of the form αβν , where α, β, and ν are given in
Table A.1. We put

p = 2, F = F2, when β = a1, and

p = 3, F = F3, when β = a2.
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We consider the case c ̸= c307. (The case c = c307 will be treated in Section A.4.)
We decompose Pc to the disjoint union of A and B, where the vertices in A corre-
spond to the nodes of α and the vertices in B correspond to the nodes of βν . Since
α ̸= β, we have a direct product decomposition

Aut(P c) = Aut(A)×Aut(B),

where Aut(A) and Aut(B) are the groups of symmetries of the Coxeter–Dynkin
diagrams α of A and βν of B, respectively. Since Aut(A) is very small, we can
easily calculate Aut(A) ∩ Aut(Pc,Λ) by the criterion (A.2). It turns out that, in
all cases, the group Aut(A)∩Aut(Pc,Λ) is trivial. Therefore the second projection
Aut(P c) → Aut(B) embeds Aut(Pc,Λ) into Aut(B). We denote by

AutB(Pc,Λ) ⊂ Aut(B)

the image of Aut(Pc,Λ). For the proof of the inequality (A.1), it is enough to show
that the order of AutB(Pc,Λ) is at most g(c).

Let ⟨A⟩ and ⟨B⟩ denote the minimal affine subspaces of ΛR that contain A and
B, respectively. We have

dim⟨A⟩ = |A| − 1, dim⟨B⟩ = |B| − 1, dim⟨A⟩+ dim⟨B⟩ = 23, ⟨A⟩ ∩ ⟨B⟩ = ∅.
Let ΛR/⟨A⟩ be the quotient of ΛR by the equivalence relation

x ∼ y ⇐⇒ a+ x− y ∈ ⟨A⟩ for one (and hence all) a ∈ ⟨A⟩,
that is, we have x ∼ y if and only if x− y is parallel to ⟨A⟩. We denote by

ρ : ΛR → ΛR/⟨A⟩
the quotient map. Then ΛR/⟨A⟩ has a natural structure of the linear space of
dimension |B| over R with ρ(⟨A⟩) being the origin, and

L := ρ(Λ)

is a discrete Z-submodule of ΛR/⟨A⟩ with full rank. LetM denote the Z-submodule
of ΛR/⟨A⟩ generated by ρ(B). Then M is also a discrete Z-submodule with full
rank, and is equipped with a canonical basis {ρ(b) | b ∈ B}. It is obvious that M is
contained in L. Therefore we have

M ⊂ L ⊂M ⊗Q.

Note that Aut(B) acts on M naturally, and that each element of the subgroup
AutB(Pc,Λ) of Aut(B) preserves L ⊂M ⊗Q.

Let n denote the least positive integer such that nL ⊂ M . Then we have a
submodule nL/nM of M/nM = (Z/nZ)B . It turns out that n is divisible by p.
We define a submodule F of M/nM as follows.

• When β = a1, we put b̃ := (n/2) b, and

F :=
⊕
b∈B

(Z/nZ) b̃.

• Suppose that β = a2. We label the elements of B as b1, b
′
1, . . . , bν , b

′
ν in

such a way that the nodes corresponding to bi and b
′
i are connected in the

Coxeter–Dynkin diagram aν2 . We then put b̃i := (n/3) bi + (2n/3) b′i, and

F :=
ν⊕

i=1

(Z/nZ) b̃i.



24 ICHIRO SHIMADA

Note that F does not change even if we interchange bi and b
′
i, because we

have (n/3) (bi + 2b′i) = −(n/3) (2bi + b′i) in M/nM .

Then we have F = Fν . We define a code Γ of length ν over F by

Γ := (nL/nM) ∩ F.
The group Aut(B) acts on F , and is identified with the group Gν of monomial
transformations of Fν . (When β = α2, the transposition of bi and b

′
i corresponds

to the multiplication by −1 on the ith coordinate of Fν .) Under this identification,
we have

AutB(Pc,Λ) ⊂ Aut(Γ).

In the next section, we describe this code Γ explicitly, and derive an upper bound
of |Aut(Pc,Λ)| = |AutB(Pc,Λ)| from Aut(Γ).

A.3. Description of the code Γ.

A.3.1. The shallow hole c293 of type a5a
10
2 . In this case, we have n = 15. The

ternary code Γ is a (10, 5)-code with weight distribution

01 430 660 7120 920 1012.

It turns out that Γ is equivalent to the code pr10(C12 ∩ V ), where V is the linear
subspace of F12

3 defined by x11+x12 = 0. We can calculate its automorphism group
directly, and see that Aut(Γ) is of order 1440. Hence Aut(Pc,Λ) is contained in the
group Aut(A) × Aut(Γ) of order 2880. We calculate Aut(Pc,Λ) by applying the
criterion (A.2) to these 2880 elements. Then we see that Aut(Pc,Λ) is isomorphic
to the symmetric group of degree 6, and hence its order is g(c293) = 720.

A.3.2. The shallow hole c299 of type d4a
21
1 . In this case, we have n = 14. The

binary code Γ is a (21, 11)-code with weight distribution

01 6168 8210 101008 12280 14360 1621.

We construct a linear embedding

ι : Γ ↪→ F24
2

such that pr21 ◦ ι is the identity map of Γ, and that every codeword of the image
Γ′ := ι(Γ) is of weight 0, 8, 12, or 16. Let β1, . . . , β11 be a basis of Γ. We define
β′
i ∈ F24

2 as follows. When the weight of βi is 6, 10, or 14, we put

(A.3) β′
i := (βi | 0, 1, 1 ), or β′

i := (βi | 1, 0, 1 ), or β′
i := (βi | 1, 1, 0 ).

When the weight of βi is 8, 12, or 16, we put

β′
i := (βi | 0, 0, 0 ).

We search for a combination of choices in (A.3) such that every element of the linear
subspace of F24

2 generated by β′
1, . . . , β

′
11 has weight 0, 8, 12, or 16. If β′

1, . . . , β
′
11

satisfy this condition, then the linear embedding Γ ↪→ F24
2 defined by βi 7→ β′

i

satisfies the properties required for ι. By this method, we find exactly six such
embeddings. We fix one of them. The weight distribution of Γ′ is

01 8378 121288 16381.

Then the code Γ̃ generated by Γ′ and the vector ε := (1, 1, . . . , 1) ∈ F24
2 of weight

24 is equivalent to C24. This means that Γ is equivalent to the code pr21(C24 ∩ V ),
where V ⊂ F24

2 is the linear subspace defined by x22 + x23 + x24 = 0.
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Let S′
3 be the full symmetric group of the coordinate positions {x22, x23, x24}.

We have S21 ×S′
3 ⊂ S24. We will construct an injective homomorphism

Aut(Γ) ↪→ Aut(Γ̃) ∩ (S21 ×S′
3).

Since Aut(Γ̃) ∩S21 is isomorphic to M21, the order of Aut(Γ̃) ∩ (S21 ×S′
3) is at

most 6 × |M21| = g(c299). Since AutB(Pc,Λ) ⊂ Aut(Γ), the existence of such an
injective homomorphism will imply the desired inequality |AutB(Pc,Λ)| ≤ g(c299).

Let pr′3 : F24
2 → F3

2 denote the projection (x1, . . . , x24) 7→ (x22, x23, x24). Then
T := pr′3(Γ

′) is defined in F3
2 by x22 + x23 + x24 = 0, and hence we have a natural

identification

(A.4) GL(T ) = S′
3.

Let g ∈ S21 be an automorphism of Γ. Then, via ι : Γ ∼= Γ′, the automorphism g
induces a linear automorphism g′ of the linear space Γ′. Since the linear subspace
ι−1(Ker pr′3|Γ′) of Γ consists exactly of codewords of weight 0, 8, 12, and 16, it is
preserved by g, and hence g′ induces a linear automorphism of T . By (A.4), there
exists a unique permutation g′′ ∈ S′

3 such that (g, g′′) ∈ S21 × S′
3 preserves Γ′.

Since (g, g′′) preserves ε = (1, 1, . . . , 1), this pair (g, g′′) is in fact an automorphism

of Γ̃.

A.3.3. The shallow hole c303 of type a3a
11
2 . In this case, we have n = 18. The

ternary code Γ is an (11, 5)-code with weight distribution

01 6132 9110.

Let Γ ↪→ F12
3 be the linear embedding given by x 7→ (x | 0 ), and let Γ′ denote its

image. We put

Y := { y ∈ F11
3 | wt(y) = 11, and wt(x+ y) ≡ 2 mod 3 for all x ∈ Γ }.

Then Y consists of 24 vectors. We choose an element y0 ∈ Y , and let Γ̃1 (resp. Γ̃2)
be the code of length 12 generated by Γ′ and ( y0 | 1 ) (resp. ( y0 | 2 )). Then both of

Γ̃1 and Γ̃2 are equivalent to C12. This means that Γ is equivalent to pr11(C12 ∩ V ),
where V is the linear subspace of F12

3 defined by x12 = 0. Moreover, the two codes

Γ̃1 and Γ̃2 are distinct, and for each y ∈ Y , one and only one of the following holds:

( ( y | 1 ) ∈ Γ̃1 and ( y | 2 ) ∈ Γ̃2 ) or ( ( y | 1 ) ∈ Γ̃2 and ( y | 2 ) ∈ Γ̃1 ).

Let g ∈ G11 be an automorphism of Γ. Since g preserves Y , one and only one
of ( g | 1 ) ∈ G12 or ( g | − 1 ) ∈ G12 is an automorphism of Γ̃1. Hence |Aut(Γ)| is
bounded by the order of 2.M11.

On the other hand, let fA ∈ Aut(A) be the non-trivial element of Aut(A) ∼=
Z/2Z, and let fB be the element of Aut(B) which corresponds to the scalar mul-
tiplication by −1, that is, fB is the product of transpositions of bi and b′i for
i = 1, . . . , 11. Note that fB belongs to Aut(Γ). By the criterion (A.2), we see that
neither fB nor fAfB is in Aut(Pc,Λ). Hence AutB(Pc,Λ) is a proper subgroup of
Aut(Γ). In particular, its order is at most |M11| = 7920 = g(c303).

A.3.4. The shallow hole c304 of type a3a
22
1 . In this case, we have n = 16. The

binary code Γ is a (22, 11)-code with weight distribution

01 677 8330 10616 12616 14330 1677 221.
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Let β1, . . . , β11 be a basis of Γ. We define β′
i ∈ F24

2 by

β′
i :=

{
(βi | 0, 0 ) if wt(βi) is 8, 12, or 16,

(βi | 1, 1 ) if wt(βi) is 6, 10, 14, or 22.

Then the image Γ′ of the linear embedding Γ ↪→ F24
2 defined by βi 7→ β′

i is a binary
(24, 11)-code with weight distribution

01 8407 121232 16407 241.

We enumerate the set

Y := { y ∈ F22
2 | wt(y) = 7, and wt(x+ y) ≡ 3 mod 4 for all x ∈ Γ }.

Then Y consists of 352 vectors. We choose y0 ∈ Y , and define the code Γ̃01

(resp. Γ̃10) to be the code of length 24 generated by Γ′ and ( y0 | 0, 1 ) (resp.

( y0 | 1, 0 )). Then both of Γ̃01 and Γ̃10 are equivalent to C24. This means that
Γ is equivalent to the code pr22(C24 ∩ V ), where V ⊂ F24

2 is the linear subspace

defined by x23 + x24 = 0. Moreover, the two codes Γ̃01 and Γ̃10 are distinct, and
for each y ∈ Y , one and only one of the following holds:(

(y | 0, 1) ∈ Γ̃01 and (y | 1, 0) ∈ Γ̃10

)
or

(
(y | 0, 1) ∈ Γ̃10 and (y | 1, 0) ∈ Γ̃01

)
.

Let σ ∈ S24 denote the transposition of x23 and x24, and let S′
2 be the subgroup

{id, σ} of S24. We have S22 ×S′
2 ⊂ S24. Since Aut(Γ̃01) ∩S22 is isomorphic to

M22 and 2× |M22| = g(c304), it is enough to construct an injective homomorphism

Aut(Γ) ↪→ Aut(Γ̃01) ∩ (S22 ×S′
2).

Note that σ interchanges Γ̃01 and Γ̃10. Let g ∈ S22 be an automorphism of Γ.
Since g preserves Y , one and only one of (g, id) ∈ S22 ×S′

2 or (g, σ) ∈ S22 ×S′
2

induces an isomorphism of Γ̃01. Hence the mapping

g 7→

{
(g, id) if (g, id) maps Γ̃01 to Γ̃01,

(g, σ) if (g, id) maps Γ̃01 to Γ̃10,

gives the desired injective homomorphism.

A.3.5. The shallow hole c305 of type a1a
12
2 . In this case, we have n = 21. The

ternary code Γ is a (12, 6)-code of minimal weigh 6, and hence is equivalent to C12.
Therefore |AutB(Pc,Λ)| is at most |2.M12| = 2× 95040 = g(c305).

A.3.6. The shallow hole c306 of type a2a
23
1 . In this case, we have n = 18. The

binary code Γ is a (23, 11)-code with weight distribution

01 8506 121288 16253.

Let Γ ↪→ F24
2 be the linear embedding given by x 7→ (x | 0 ). Then the code Γ̃ in F24

2

generated by the image of this embedding and the vector ε = (1, 1, . . . , 1) ∈ F24
2 is

equivalent to C24. This means that Γ is equivalent to the code pr23(C24 ∩V ), where
V ⊂ F24

2 is the linear subspace defined by x24 = 0. Hence we obtain an injective

homomorphism Aut(Γ) → Aut(Γ̃) ∩S23
∼=M23.
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A.4. The shallow hole c307 of type a251 . Let c be a shallow hole with τ(c) = a251 .
Let v0, . . . , v24 be the vertices of P c, and let ci be the circumcenter of the 23-
dimensional face of P c that does not contain vi. Then there exists a unique vertex
vk such that m(ck) = 12 and m(cj) = 24 for j ̸= k, where m : Λ ⊗ Q → Z>0

is defined in Section 3. We put A := {vk} and B := Pc \ A. Then Aut(Pc,Λ)
is contained in Aut(B) ⊂ Aut(P c). We construct a code Γ of length 24 by the
method described in Section A.2. In this case, the quotient map ρ : ΛR → ΛR/⟨A⟩
is just the translation x 7→ x−vk, andM is the sublattice of Λ generated by vj−vk
(j ̸= k). We have n = 10, and the binary code Γ := (10Λ ∩ 5M)/10M of length 24
is equivalent to C24. Hence Aut(Pc,Λ) is embedded into M24.

Appendix B. The explanation of the computational data

The part of the LaTeX source file of this preprint between \end{appendix} and
\end{document} contains the following data of holes of the Leech lattice Λ in GAP

format [7].

• ADEades is the list

[ "A1", "A2", ..., "A24",

"D4", "D5", ..., "D24", "E6", "E7", "E8",

"a1", "a2", ..., "a24", "a25",

"d4", "d5", ..., "d24", "d25", "e6", "e7", "e8"]

of names of indecomposable Coxeter–Dynkin diagrams.
• GramLeech is the Gram matrix of Λ with respect to the fixed basis of Λ;
that is, the basis given in Figure 4.12 of [4].

• CartanMatrices is the record of the Cartan matrices of the indecomposable
Coxeter–Dynkin diagrams in ADEades. For example, we have

CartanMatrices.A3 = [[2,−1, 0,−1],
[−1, 2,−1, 0],
[0,−1, 2,−1],
[−1, 0,−1, 2]].

• LeechHoleRecords is the list whose ith member is the record LHrec that
describes the following data of the ith equivalence class [ci] of holes:

– LHrec.number is the number i of the equivalence class, which ranges
from 1 to 23 + 284 = 307.

– LHrec.depth is "deep" (when i ≤ 23) or "shallow" (when i ≥ 24).
– LHrec.type is the list of indecomposable Coxeter–Dynkin types that

indicates τ(ci). For example, when i = 18, we have

LHrec.type=["D4", "A5", "A5", "A5", "A5"],

which means that τ(c18) = D4A
4
5.

– LHrec.center is a representative hole ci of the equivalence class [ci]
written as a row vector with respect to the fixed basis of Λ.

– LHrec.vertices is the list of vertices λj of the convex polytope P ci ,
each of which is written as a row vector with respect to the fixed basis
of Λ. Suppose that LHrec.type = [X1, . . . , Xk]. Then the vertices of
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P ci are sorted in the list LHrec.vertices = [λ1, . . . ,λn] in such a way
that the n× n matrix

[ ∥λi − λj∥2 ]

is equal to the matrix obtained from CartanMatrices.(X1)
. . .

CartanMatrices.(Xk)


by replacing the entries as follows: 2 7→ 0, 0 7→ 4, −1 7→ 6, −2 7→ 8.

– LHrec.s is s(ci).
– LHrec.m is m(ci).
– LHrec.N is N(ci).
– LHrec.thetasquare is θ(ci)

2.
– LHrec.svol is the scaled volume 24! · vol(P ci) of P ci .
– LHrec.g is the order of the group Aut(Pci ,Λ).

For the shallow holes except for the ones with numbers 293, 299, 303, 304,
305, 306, 307, we also record the following data:

– LHrec.aut is the structure of the group Aut(Pci ,Λ) calculated by GAP’s
StructureDescription.

– LHrec.generators is a list of generators of Aut(Pci ,Λ) regarded as
a permutation group of LHrec.vertices. This list of generators was
calculated by GAP’s GeneratorsSmallest.

For the shallow holes with numbers 293, 299, 303, 304, 305, 306, 307, see
Appendix A.

Example B.1. Consider the shallow hole c = c302 of type a83a1. Let LHrec be the
302nd record in LeechHoleRecords:

LHrec := LeechHoleRecords[302].

The center LHrec.center is

c = [−1/3, 2/9, 2/9, 2/9, 1/3, 0, 2/9, 0, 1/9, −1/9, 0, 1/9,

0, 1/9, −2/9, 1/9, 0, 1/9, −1/9, 0, −1/9, 1/9, 2/9, 2/9].

The list of vertices of P c is given in Table B.1. The automorphism group Aut(Pc,Λ)
is of order 2688, and is isomorphic to

(C2 × C2 × C2 × C2) : PSL(3, 2).

As a permutation group of the list LHrec.vertices, this group is generated by the
six permutations in the following list:

LHrec.generators :=

[(7, 9)(10, 24)(11, 23)(12, 22)(13, 15)(16, 19)(17, 20)(18, 21),

(7, 10, 16)(8, 11, 17)(9, 12, 18)(13, 22, 19)(14, 23, 20)(15, 24, 21),

(4, 6)(10, 21)(11, 20)(12, 19)(13, 15)(16, 22)(17, 23)(18, 24),

(4, 7)(5, 8)(6, 9)(10, 16)(11, 17)(12, 18)(19, 21)(22, 24),

(1, 3)(10, 16)(11, 17)(12, 18)(13, 15)(19, 24)(20, 23)(21, 22),

(1, 4)(2, 5)(3, 6)(10, 12)(16, 19)(17, 20)(18, 21)(22, 24)].



HOLES OF THE LEECH LATTICE AND K3 SURFACES 29

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[−1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],

[2, 0, 0, 0,−1, 0, 1,−1,−1,−1, 0, 0,−1, 1, 0, 0,−1, 1, 0, 0, 1, 0, 0, 0],

[−6, 2, 2, 2, 2, 1, 1,−1, 1, 1, 1,−1, 0, 0,−1, 1, 1, 0,−1, 0,−1, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],

[1, 0,−1,−1, 1, 0, 1, 0, 0,−1,−1, 2, 0, 0, 0, 0, 1, 0, 0,−2, 0, 0, 0, 1],

[−3, 0, 2, 2, 1, 0, 0, 0, 1, 0, 1,−1, 0, 1,−1, 0, 0, 0,−1, 1,−1, 0, 1, 0],

[−1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0],

[−3, 1, 1, 1, 2, 1, 1,−1, 0,−1, 0, 1, 1, 0,−1, 0, 0, 1,−1, 0,−1, 0, 1, 0],

[0, 0, 0, 0, 0,−1,−1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1,−1, 0, 0,−1, 1, 0, 0],

[−2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,−2, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[3, 0,−2, 0, 0, 0, 0,−1, 0,−1,−1, 1, 0, 0, 1,−1, 0, 1, 0,−1, 1,−1,−1, 2],

[−5, 2, 3, 2, 0, 1, 0, 0,−1, 1, 1,−2,−1, 0, 0, 2,−1, 0, 0, 2,−2, 2, 2,−3],

[−3, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0, 0,−1, 0, 1, 0],

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

[5,−1,−1,−1,−1,−1, 0, 0,−2,−1,−1, 1,−1, 1, 0, 0,−1, 0, 1, 0, 1, 0, 0, 0],

[−3, 2, 2, 0, 1, 0, 0, 0, 1, 1, 0,−1, 0,−1, 0, 1, 0,−1, 1, 0,−1, 1, 0, 0]].

Table B.1. LeechHoleRecords[302].vertices
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