THE EXPLANATION OF THE COMPUTATIONAL DATA ON THE HOLES OF THE LEECH LATTICE

ICHIRO SHIMADA

In [4], we present the following data of holes of the Leech lattice Λ used in the author's preprint [3]. These data are in GAP format [2].

- ADEades is the list

```
[ "A1", "A2", ..., "A24",
    "D4", "D5", ..., "D24", "E6", "E7", "E8",
    "a1", "a2", ..., "a24", "a25",
    "d4", "d5", ..., "d24", "d25", "e6", "e7", "e8"]
```

of names of indecomposable Coxeter-Dynkin diagrams.

- GramLeech is the Gram matrix of Λ with respect to the fixed basis of Λ; that is, the basis given in Figure 4.12 of [1].
- CartanMatrices is the record of the Cartan matrices of the indecomposable Coxeter-Dynkin diagrams in ADEades. For example, we have

$$
\begin{aligned}
\text { CartanMatrices.A3 }= & {[[2,-1,0,-1],} \\
& {[-1,2,-1,0], } \\
& {[0,-1,2,-1], } \\
& {[-1,0,-1,2]] . }
\end{aligned}
$$

- LeechHoleRecords is the list whose i th member is the record LHrec that describes the following data of the i th equivalence class $\left[\mathbf{c}_{i}\right]$ of holes:
- LHrec.number is the number i of the equivalence class, which ranges from 1 to $23+284=307$.
- LHrec.depth is "deep" (when $i \leq 23$) or "shallow" (when $i \geq 24$).
- LHrec.type is the list of indecomposable Coxeter-Dynkin types that indicates $\tau\left(\mathbf{c}_{i}\right)$. For example, when $i=18$, we have

LHrec.type=["D4", "A5", "A5", "A5", "A5"],
which means that $\tau\left(\mathbf{c}_{18}\right)=D_{4} A_{5}^{4}$.

- LHrec.center is a representative hole \mathbf{c}_{i} of the equivalence class [\mathbf{c}_{i}] written as a row vector with respect to the fixed basis of Λ.
- LHrec.vertices is the list of vertices $\boldsymbol{\lambda}_{j}$ of the convex polytope $\bar{P}_{\mathbf{c}_{i}}$, each of which is written as a row vector with respect to the fixed basis of Λ. Suppose that LHrec.type $=\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right]$. Then the vertices of $\bar{P}_{\mathbf{c}_{i}}$ are sorted in the list LHrec.vertices $=\left[\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{n}\right]$ in such a way that the $n \times n$ matrix

$$
\left[\begin{array}{c}
\left.\left\|\boldsymbol{\lambda}_{i}-\boldsymbol{\lambda}_{j}\right\|^{2}\right] \\
1
\end{array}\right.
$$

is equal to the matrix obtained from

by replacing the entries as follows: $2 \mapsto 0,0 \mapsto 4,-1 \mapsto 6,-2 \mapsto 8$.

- LHrec.s is $s\left(\mathbf{c}_{i}\right)$.
- LHrec.m is $m\left(\mathbf{c}_{i}\right)$.
- LHrec.N is $N\left(\mathbf{c}_{i}\right)$.
- LHrec.thetasquare is $\theta\left(\mathbf{c}_{i}\right)^{2}$.
- LHrec.svol is the scaled volume $24!\cdot \operatorname{vol}\left(\bar{P}_{\mathbf{c}_{i}}\right)$ of $\bar{P}_{\mathbf{c}_{i}}$.
- LHrec.g is the order of the group $\operatorname{Aut}\left(P_{\mathbf{c}_{i}}, \Lambda\right)$.

For the shallow holes except for the ones with numbers 293, 299, 303, 304, 305, 306, 307, we also record the following data:

- LHrec.aut is the structure of the group $\operatorname{Aut}\left(P_{\mathbf{c}_{i}}, \Lambda\right)$ calculated by GAP's StructureDescription.
- LHrec.generators is a list of generators of $\operatorname{Aut}\left(P_{\mathbf{c}_{i}}, \Lambda\right)$ regarded as a permutation group of LHrec.vertices. This list of generators was calculated by GAP's GeneratorsSmallest.
For the shallow holes with numbers 293, 299, 303, 304, 305, 306, 307, see the note in [4].
Example 0.1. Consider the shallow hole $\mathbf{c}=\mathbf{c}_{302}$ of type $a_{3}^{8} a_{1}$. Let LHrec be the 302nd record in LeechHoleRecords:
LHrec := LeechHoleRecords[302].

The center LHrec.center is

$$
\begin{aligned}
\mathbf{c}= & {[-1 / 3,2 / 9,2 / 9,2 / 9,1 / 3,0,2 / 9,0,1 / 9,-1 / 9,0,1 / 9} \\
& 0,1 / 9,-2 / 9,1 / 9,0,1 / 9,-1 / 9,0,-1 / 9,1 / 9,2 / 9,2 / 9]
\end{aligned}
$$

The list of vertices of $\bar{P}_{\mathbf{c}}$ is given in Table 0.1. The automorphism group $\operatorname{Aut}\left(P_{\mathbf{c}}, \Lambda\right)$ is of order 2688, and is isomorphic to

$$
\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right): \operatorname{PSL}(3,2)
$$

As a permutation group of the list LHrec.vertices, this group is generated by the six permutations in the following list:

$$
\begin{aligned}
& \text { LHrec.generators }:= \\
& {[(7,9)(10,24)(11,23)(12,22)(13,15)(16,19)(17,20)(18,21),} \\
& (7,10,16)(8,11,17)(9,12,18)(13,22,19)(14,23,20)(15,24,21), \\
& (4,6)(10,21)(11,20)(12,19)(13,15)(16,22)(17,23)(18,24), \\
& (4,7)(5,8)(6,9)(10,16)(11,17)(12,18)(19,21)(22,24), \\
& (1,3)(10,16)(11,17)(12,18)(13,15)(19,24)(20,23)(21,22), \\
& (1,4)(2,5)(3,6)(10,12)(16,19)(17,20)(18,21)(22,24)] . \\
& \text { REFERENCES }
\end{aligned}
$$

[1] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York, third edition, 1999.
$[[0,0]$
$[1,0,1]$
$[0,1,0,0,0]$
$[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]$
$[1,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]$
$[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0]$
$[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0]$
$[1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1]$
$[-1,0,0,0,1,0,0,1,1,0,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0]$
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]$
$[2,0,0,0,-1,0,1,-1,-1,-1,0,0,-1,1,0,0,-1,1,0,0,1,0,0,0]$
$[-6,2,2,2,2,1,1,-1,1,1,1,-1,0,0,-1,1,1,0,-1,0,-1,0,1,0]$
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]$
$[1,0,-1,-1,1,0,1,0,0,-1,-1,2,0,0,0,0,1,0,0,-2,0,0,0,1]$
$[-3,0,2,2,1,0,0,0,1,0,1,-1,0,1,-1,0,0,0,-1,1,-1,0,1,0]$,
$[-1,0,0,0,1,0,0,1,1,1,0,0,0,-1,0,0,0,-1,0,0,0,1,0,0]$
$[-3,1,1,1,2,1,1,-1,0,-1,0,1,1,0,-1,0,0,1,-1,0,-1,0,1,0]$,
$[0,0,0,0,0,-1,-1,2,1,0,0,0,0,0,0,0,1,-1,0,0,-1,1,0,0]$
$[-2,0,1,0,1,0,1,0,1,0,1,0,1,0,-2,0,0,0,0,0,0,0,0,1]$,
$[3,0,-2,0,0,0,0,-1,0,-1,-1,1,0,0,1,-1,0,1,0,-1,1,-1,-1,2]$,
$[-5,2,3,2,0,1,0,0,-1,1,1,-2,-1,0,0,2,-1,0,0,2,-2,2,2,-3]$
$[-3,1,1,1,1,0,1,0,1,0,0,0,1,0,-1,0,0,0,0,0,-1,0,1,0]$
$[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0]$
$[5,-1,-1,-1,-1,-1,0,0,-2,-1,-1,1,-1,1,0,0,-1,0,1,0,1,0,0,0]$,
$[-3,2,2,0,1,0,0,0,1,1,0,-1,0,-1,0,1,0,-1,1,0,-1,1,0,0]]$

TABLE 0.1. LeechHoleRecords [302].vertices

[2] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.7.9; 2015 (http://www.gap-system.org).
[3] Ichiro Shimada. Holes of the Leech lattice and the projective models of $K 3$ surfaces. Preprint, 2015. arXiv:1502.02099.
[4] Ichiro Shimada. The list of holes of the Leech lattice, 2016. http://www.math.sci.hiroshimau.ac.jp/~shimada/Leech.html.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

