COMPUTATIONAL DATA FOR THE PAPER "A NOTE ON CONSTRUCTIONS OF THE LEECH LATTICE"

ICHIRO SHIMADA

Abstract

We explain the contents of the computational data that was used in the paper "A note on constructions of the Leech lattice".

1. Introduction

This paper explains the numerical data for the paper

```
[Note] Ichiro Shimada: A note on constructions of the Leech lattice.
```

The data is written in the plain text file

ConstructionsLeech.txt

in GAP format. The term "record" that appears below means the data structure used by GAP. The paper and the data are available from the author's web page.
http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html

2. The data

In the file ConstructionsLeech.txt, the following two data are written.
2.1. Niemeier lattices. The data NiemeierLattices is the list of 23 records for the isomorphism classes of Niemeier lattices with roots. Each record contains numerical data of a negative-definite Niemeier lattice N^{-}with roots. These records are sorted in the descending order of the Coxeter number h of N^{-}.

In this data, each Niemeier lattice N^{-}is equipped with a certain basis, and vectors of N^{-}are expressed as row vectors with respect to this basis.

Each record has the following items.

- tau is the ADE-type $\tau(N)=\tau(N)_{1}+\cdots+\tau(N)_{K}$. For example, the ADE-type $D_{4}+4 A_{5}$ is written as ["D4", "A5", "A5", "A5", "A5"].
- h is the Coxeter number h of N^{-}.
- Gram is the Gram matrix of N^{-}(with respect to the fixed basis of N^{-}).

[^0]- roots is the list R of (-2)-vectors in N^{-}.
- Theta is the list $\left[\Theta_{1}, \ldots, \Theta_{K}\right]$ of lists Θ_{i} of (-2)-vectors in R. The list Θ_{i} forms a connected ordinary ADE-configuration of type $\tau(N)_{i}$, and the disjoint union of $\Theta_{1}, \ldots, \Theta_{K}$ is a simple root system $\Theta \subset R$ of the negativedefinite root lattice $\langle R\rangle$.
- mus is the list $\left[\mu_{1}, \ldots, \mu_{K}\right]$ of the highest roots $\mu_{i} \in\left\langle\Theta_{i}\right\rangle$ with respect to Θ_{i}.
- ms is the list $\left[m_{1}, \ldots, m_{K}\right]$ of functions $m_{i}: \Theta_{i} \rightarrow \mathbb{Z}_{>0}$ defined in Section 2.3 of the paper [Note]. Each function m_{i} is presented by the list $\left[m_{i}\left(r_{1}\right), \ldots, m_{i}\left(r_{n_{i}}\right)\right]$ of integers, where Θ_{i} is given by the list $\left[r_{1}, \ldots, r_{n_{i}}\right]$ of (-2)-vectors in the item Theta above.
- rhos is the list $\left[\rho_{1}, \ldots, \rho_{K}\right]$ of the vectors $\rho_{i} \in\left\langle\Theta_{i}\right\rangle \otimes \mathbb{Q}$ satisfying $\left\langle r, \rho_{i}\right\rangle_{N}=$ 1 for all $r \in \Theta_{i}$.
- rho is the Weyl vector $\rho=\rho_{1}+\cdots+\rho_{K}$ of N^{-}with respect to Θ.
- code indicates the isomorphism class of the finite abelian group $N^{-} /\langle R\rangle$. For example, the empty list [] indicates $N^{-} /\langle R\rangle=0$, and the list $[2,3]$ indicates $N^{-} /\langle R\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
- codewords is the list of codewords of the code $N^{-} /\langle R\rangle$. Each codeword $\gamma \in N^{-} /\langle R\rangle$ is presented by its canonical representative $\tilde{\gamma} \in N^{-}$.
2.2. The Leech lattice. The data LeechLattice is a record that contains numerical data of the negative-definite Leech lattice Λ^{-}. The Leech lattice Λ^{-}is equipped with a certain basis, and vectors of $\Lambda^{-} \otimes \mathbb{Q}$ are expressed as row vectors with respect to this basis. This record has the following items.
- Gram is the Gram matrix of Λ^{-}(with respect to the fixed basis of Λ^{-}).
- holes is the list of Co_{∞}-equivalence classes of deep holes. These equivalence classes are sorted by the corresponding Niemeier lattices in the same order as in the data NiemeierLattices. Each Co_{∞}-equivalence class is described by a record that contains the following items.
- center is the vector $c \in \Lambda^{-} \otimes \mathbb{Q}$ of a deep hole in this equivalence class.
- tau is the ADE-type $\tau(c)=\tau(c)_{1}+\cdots+\tau(c)_{K}$. For example, the ADEtype $D_{4}+4 A_{5}$ is expressed as ["D4", "A5", "A5", "A5", "A5"].
-h is the the Coxeter number h of the deep hole c.
- P0 is the list of vectors $\lambda \in \Lambda^{-}$such that $d(\lambda, c)^{2}=2$. This list P0 is given as a list $\left[\mathrm{PO}_{1}, \ldots, \mathrm{PO}_{K}\right]$ in such a way that PO is decomposed as the disjoint union of $\mathrm{PO}_{1}, \ldots, \mathrm{PO}_{K}$, and that, for $i=1, \ldots, K$, the set of Leech roots $\Xi_{0}(c)_{i}=\left\{r_{\lambda} \mid \lambda \in \mathrm{PO}_{i}\right\}$ of L_{Λ} with respect to w_{Λ} forms an extended connected ADE-configuration of type $\tau(c)_{i}$.
- ms is the list $\left[m_{1}, \ldots, m_{K}\right]$ of functions $m_{i}: \Xi_{0}(c)_{i} \rightarrow \mathbb{Z}_{>0}$ defined in Section 2.3 of the paper [Note]. Suppose that PO_{i} is given by the list $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ of vectors of Λ in the item P0 above. Then the function m_{i} is presented by the list $\left[m_{i}\left(r_{\lambda_{1}}\right), \ldots, m_{i}\left(r_{\lambda_{n}}\right)\right]$ of integers.
- P1 is the list of vectors $\lambda \in \Lambda^{-}$such that $d(\lambda, c)^{2}=2(1+1 / h)$.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. 11H06.
 Key words and phrases. Leech lattice, Niemeier lattice, deep hole.
 This work was supported by JSPS KAKENHI Grant Number 20H01798.

