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Abstract. We classify normal supersingular K3 surfaces Y with total Milnor

number 20 in characteristic p, where p is an odd prime that does not divide

the discriminant of the Dynkin type of the rational double points on Y .

1. Introduction

A Dynkin type is, by definition, a finite formal sum of the symbols Al(l ≥ 1),
Dm(m ≥ 4) and En(n = 6, 7, 8) with non-negative integer coefficients. For a Dynkin
type R, we denote by L(R) the negative-definite lattice whose intersection matrix is
(−1) times the Cartan matrix of type R. We denote by rank(R) the rank of L(R),
and by disc(R) the discriminant of L(R).

A normal K3 surface is a normal surface whose minimal resolution is a K3
surface. It is well-known that a normal K3 surface has only rational double points
as its singularities ([2, 3]). Hence we can associate a Dynkin type to the singular
locus Sing(Y ) of a normal K3 surface Y . Recall that the Milnor number of a
rational double point of type An (resp. Dn, resp. En) is n. Hence the rank of the
Dynkin type of Sing(Y ) is equal to the sum of Milnor numbers of singular points
on Y , that is, the total Milnor number of Y . In particular, it is at most 21.

If the total Milnor number of a normal K3 surface Y is ≥ 20, then the minimal
resolution X of Y has Picard number ≥ 21, and hence is a supersingular K3 surface
(in the sense of Shioda [22]). In [8, Theorem 3.7], Goto proved that a normal K3
surface Y with total Milnor number 21 exists only when the characteristic of the
base field divides the discriminant of the Dynkin type of Sing(Y ). In [17], the first
author made the complete list of the pairs (R, p) of a Dynkin type R of rank 21 and
a prime integer p such that R is the Dynkin type of the singular locus of a normal
K3 surface in characteristic p.

In this paper, we investigate normal K3 surfaces with total Milnor number 20.

Definition 1.1. Let R be a Dynkin type of rank 20. A prime integer p is called
an R-supersingular K3 prime if it satisfies the following:

(i) p is odd and does not divide disc(R), and
(ii) there exists a normal K3 surface Y defined over an algebraically closed field

of characteristic p such that Sing(Y ) is of type R.
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The Artin invariant of a supersingular K3 surface X in characteristic p is the
positive integer σ such that the discriminant of the Néron-Severi lattice NS(X) of
X is equal to −p2σ. (See [1]). We will prove that, if p is an R-supersingular K3
prime for a Dynkin type R with rank(R) = 20, and if Y is a normal K3 surface in
the condition (ii) above, then the Artin invariant of the minimal resolution of Y is
1. It is known that, for each p, the supersingular K3 surface with Artin invariant
1 is unique up to isomorphisms ([12, 7]). Therefore the condition (i) and (ii) above
is equivalent to (i) and the following:

(ii)′ the supersingular K3 surface Xp in characteristic p with Artin invariant 1
is birational to a normal K3 surface Y such that Sing(Y ) is of type R.

In this paper, we present an algorithm to determine the set of R-supersingular K3
primes for a given Dynkin type R of rank 20. As a corollary, we prove the following.

Theorem 1.2. Let R be a Dynkin type of rank 20, and let aR be the product of the
odd prime divisors of disc(R). We put bR := 8aR if disc(R) is even, while bR := aR

if disc(R) is odd. Then there exists a subset ΣR of (Z/bRZ)× such that a prime
integer p is an R-supersingular K3 prime if and only if p mod bR ∈ ΣR.

In fact, we have a result finer than above. Let Y be a normal supersingular
K3 surface in characteristic p ̸= 2 such that Sing(Y ) is of Dynkin type R with
rank(R) = 20, and let X → Y be the minimal resolution of Y . We denote by LY

the sublattice of the Néron-Severi lattice NS(X) of X generated by the classes of
the exceptional curves of X → Y . Then LY is isomorphic to L(R). Let TY denote
the orthogonal complement of LY in NS(X). Then TY is an even indefinite lattice
of rank 2. Our key observation is the following:

(1.1) tt′ ∈ pZ for all t, t′ ∈ TY ,

where tt′ ∈ Z is the intersection number of the classes t and t′ in NS(X). Thus we
can define an indefinite lattice T ′

Y of rank 2 by introducing a new bilinear form

(t, t′)T ′
Y

:=
1
p
(tt′).

on the Z-module underlying TY . It turns out that disc(T ′
Y ) divides disc(R). Note

that, since p is odd, T ′
Y is an even lattice. Let L̃Y be the orthogonal complement

of TY in NS(X). Then L̃Y is an even overlattice of LY such that the set roots(L̃Y )
of roots in L̃Y coincides with the set roots(LY ) of roots in LY . The following is a
refinement of Theorem 1.2.

Theorem 1.3. Let R be a Dynkin type of rank 20, let T ′ be an even indefinite
lattice of rank 2 such that disc(T ′) divides disc(R), and let L̃ be an even overlattice
of L(R) such that roots(L̃) = roots(L(R)). Then there exist a subset Sl of {1,−1}
for each odd prime divisor l of disc(R), and a subset S2 of {1, 3, 5, 7}, such that the
following holds. Let p be an odd prime that does not divide disc(R). Then there
exists a normal K3 surface Y in characteristic p with Sing(Y ) being of type R such
that T ′

Y
∼= T ′ and L̃Y

∼= L̃ if and only if

(1.2)
(

p
l

)
∈ Sl for each odd prime divisor l of disc(R), and

p mod 8 ∈ S2.
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If disc(R) is odd, then we have S2 = {1, 3, 5, 7}.

Using computational algebra system Maple, we have made the complete list of
R-supersingular K3 primes, which is too large to be included in this paper. It is
available from the first author’s home page

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html

in the plain text format. From this list, we derive the following fact:

Theorem 1.4. For each Dynkin type R with rank(R) = 20, the set of R-supersingular
K3 primes is either empty or has a natural density 1/2.

It would be very nice if Theorem 1.4 is proved, not by brute calculations of
making the complete list, but by some geometric reasonings.

As another corollary of the key observation (1.1), we obtain the following:

Corollary 1.5. Let Y ⊂ PN be a normal supersingular K3 surface of total Milnor
number 20 such that Sing(Y ) is of type R. If the characteristic p of the base field
is odd and does not divide disc(R), then the degree of Y is divisible by 2p.

Indeed the class of the pull-back of the hyperplane section of Y to X is contained
in TY . Note that, if R is of rank 20, then every prime divisor of disc(R) is ≤ 19.
Combining Corollary 1.5 with [8, Theorem 3.7], we obtain the following:

Corollary 1.6. Let Y be a normal K3 surface of degree d in characteristic p > 19.
If p does not divide d, then the total Milnor number of Y is ≤ 19.

In particular, a sextic plane curve C ⊂ P2 or a quartic surface S ⊂ P3 in
characteristic p > 19 with only rational double points as its singularities has total
Milnor number ≤ 19. Yang [25, 26] classified all possible configurations of rational
double points on sextic plane curves and quartic surfaces in characteristic 0. It
would be interesting to investigate Yang’s classification in characteristic p > 19.
See [19] for a result on this problem.

In our previous paper [21], we have proved that normal K3 surfaces with ten
ordinary cusps exist only in characteristic 3. This implies that the set of 10A2-
supersingular K3 primes is empty. More generally, the proof of Dolgachev-Keum
[6, Lemma 3.2] shows that, if disc(R) is a perfect square integer, then there exist
no R-supersingular K3 primes. (See Lemma 2.7.)

There are 3058 Dynkin types of rank 20. Among them, there exist 2437 Dynkin
types R such that disc(R) is not a perfect square integer, and 483 Dynkin types
with non-empty set of R-supersingular K3 primes.

This paper is organized as follows. In Section 2, we reduce the problem of
determining R-supersingular K3 primes to the calculation of overlattices of L(R)
and their quadratic forms. In Section 3, we investigate how the multiplications
by odd prime integers affects the isomorphism classes of finite quadratic forms.
In Section 4, we present an algorithm to calculate the set of R-supersingular K3
primes. In the last section, we explain the algorithm in detail by using an example.

The study of the cases where p is 2 or divides disc(R) seems to need more subtle
methods, and hence we do not treat these cases.
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2. The Néron-Severi lattices of supersingular K3 surfaces

A free Z-module Λ of finite rank with a non-degenerate symmetric bilinear form
Λ × Λ → Z is called a lattice. Let Λ be a lattice. The dual lattice Λ∨ of Λ is
the Z-module Hom(Λ, Z). Then Λ is naturally embedded into Λ∨ as a submodule
of finite index. There exists a natural Q-valued symmetric bilinear form on Λ∨

that extends the Z-valued symmetric bilinear form on Λ. An overlattice of Λ is a
submodule N of Λ∨ containing Λ such that the bilinear form on Λ∨ takes values
in Z on N × N . If Λ is a sublattice of a lattice Λ′ with finite index, then Λ′ is
embedded into Λ∨ in a natural way, and hence Λ′ can be regarded as an overlattice
of Λ.

We say that Λ is even if u2 ∈ 2Z holds for every u ∈ Λ. Let Λ be an even
negative-definite lattice. A vector r ∈ Λ is called a root if r2 = −2. We denote by
roots(Λ) the set of roots in Λ. Let R be a Dynkin type. Recall that L(R) is the
negative definite root lattice of type R. We put

L̃(R) := { L̃ | L̃ is an even overlattice of L(R) },
L(R) := { L̃ ∈ L̃(R) | roots(L̃) = roots(L(R)) }.

Remark that we consider L̃(R) as a subset of the set of submodules of L(R)∨, and
not up to isometries of lattices.

Let D be a finite abelian group. A quadratic form q on D is, by definition, a
map q : D → Q/2Z that satisfies the following:

(i) q(nx) = n2q(x) for any x ∈ D and any n ∈ Z, and
(ii) the map b[q] : D × D → Q/Z defined by

b[q](x, y) := (q(x + y) − q(x) − q(y))/2

is a symmetric bilinear form on D.

See Wall [24] for the complete classification of quadratic forms on finite abelian
groups. Let q be a quadratic form on a finite abelian group D, and let H be a
subgroup of D. We put

H⊥ := { x ∈ D | b[q](x, y) = 0 for any y ∈ H }.

We say that q is non-degenerate if D⊥ = {0}.
Let Λ be an even lattice. The finite abelian group Λ∨/Λ is called the discriminant

group of Λ, and is denoted by DΛ. We define a quadratic form qΛ on DΛ by

qΛ(x̄) = x2 mod 2Z (where x̄ := x mod Λ ∈ DΛ for x ∈ Λ∨),

and call qΛ the discriminant form of Λ. It is easy to see that qΛ is non-degenerate,
and that

|DΛ| = |disc(Λ)|
holds. By Nikulin [10], the map

N 7→ N/Λ
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induces a bijection from the set of even overlattices of Λ to the set of isotropic
subgroups of (DΛ, qΛ). In particular, we can calculate the set of even overlattices
of a given lattice by calculating the set of isotropic subgroups of its discriminant
forms. Let N be an even overlattice of Λ. Then we have a natural sequence of
inclusions

Λ ↪→ N ↪→ N∨ ↪→ Λ∨.

Therefore disc(N) divides disc(Λ), and the exponent of DN divides the exponent of
DΛ. For a prime p, we denote by (DΛ)p and (DΛ)p′ the p-part and the prime-to-p
part of DΛ, and by (qΛ)p and (qΛ)p′ the restrictions of q to (DΛ)p and to (DΛ)p′ ,
respectively. We have the following orthogonal decomposition:

(DΛ, qΛ) = ((DΛ)p, (qΛ)p) ⊕ ((DΛ)p′ , (qΛ)p′).

We now state the main theorem of this section.

Theorem 2.1. Let R be a Dynkin type with rank(R) = 20, and let p be an odd prime
that does not divide disc(R). Then the following three conditions are equivalent:

(1) p is an R-supersingular K3 prime.
(2) The unique supersingular K3 surface Xp of Artin invariant 1 in charac-

teristic p is birational to a normal K3 surface Y such that Sing(Y ) is of
Dynkin type R.

(3) There exist an overlattice L̃ ∈ L(R) and a lattice T ′ of rank 2 with signature
(1, 1) such that (DT ′ , pqT ′) is isomorphic to (D

eL,−q
eL), where pqT ′ is the

discriminant form of T ′ multiplied by p.

A lattice Λ is said to be p-elementary if its discriminant group DΛ is a p-
elementary group. The following results due to Artin [1] and Rudakov-Shafarevich [14]
reduce our geometric problem to calculations of lattices and finite quadratic forms.

Theorem 2.2 (Artin [1] and Rudakov-Shafarevich [14]). The Néron-Severi lattice
of a supersingular K3 surface in characteristic p is p-elementary.

Combining this result with the classification of indefinite lattices, we have the
following.

Corollary 2.3 (Rudakov-Shafarevich [14]). The isomorphism class of the Néron-
Severi lattice NS(X) of a supersingular K3 surface X is uniquely determined by
the characteristic p of the base field and the Artin invariant of X.

Corollary 2.4 (Rudakov-Shafarevich [14]). Suppose that p is odd. If Λ is an even
p-elementary lattice of signature (1, 21) and discriminant −p2σ, then Λ is isomor-
phic to the Néron-Severi lattice of a supersingular K3 surface in characteristic p

with Artin invariant σ.

The following easy result will be used in the proof of Theorem 2.1.

Lemma 2.5. Let T ′ = Zt′1 ⊕Zt′2 be a lattice of rank 2 with the intersection matrix
(t′i.t

′
j) = (t′ij). Let p be a prime that does not divide disc(T ′). Define a lattice

T = Zt1 ⊕ Zt2 so that the intersection matrix (ti.tj) = (tij) with tij = pt′ij. Then
the following hold.
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(1) ((DT )p′ , (qT )p′) ∼= (DT ′ , pqT ′).
(2) There exist positive integers ℓ1 and ℓ2 such that

T∨/T ∼= Z/(pℓ1) ⊕ Z/(pℓ2), (T ′)∨/T ′ ∼= Z/(ℓ1) ⊕ Z/(ℓ2).

Proof. Since rank(T ′) = 2, we can write (T ′)∨/T ′ ∼= Z/(ℓ1)⊕Z/(ℓ2) so that ℓi > 0,
ℓ1|ℓ2 and disc(T ′) = det(t′ij) = ℓ with |ℓ| = ℓ1ℓ2. We can calculate the dual bases
of T ′ and T as follows, where s11 = t′22, s22 = t′11 and s12 = s21 = −t′12 = −t′21:

((t′1)
∗, (t′2)

∗) = (t′1, t
′
2)(t

′
ij)

−1 =
1
ℓ
(t′1, t

′
2)(sij),

(t∗1, t
∗
2) = (t1, t2)(tij)−1 =

1
p2ℓ

(t1, t2)(psij).

Note that (T∨/T )p′ is generated by (cosets of) the two coordinates of the vector:

(pt∗1, pt∗2) =
p

ℓ
(t1, t2)(sij).

Set bT ′ = b[qT ′ ], etc. Then

(bT ′((t′i)
∗, (t′j)

∗)) = (t′ij)
−1 =

1
ℓ
(sij),

(bT (t∗i , t
∗
j )) = (tij)−1 =

1
p2ℓ

(psij).

One can check that the following is an isomorphism of abelian groups:

(T ′)∨/T ′ → (T∨/T )p′

(t′i)
∗ + T ′ 7→ pt∗i + T.

Under the identification via this map, we have pqT ′ = (qT )p′ . This proves (1).
Clearly, disc(T ) = det(tij) = p2 disc(T ′). Also the expression of the dual basis
shows that (T∨/T )p is p-elementary. Thus (2) follows. This proves the lemma. ¤

The following is the key to the proof of Theorem 2.1.

Proposition 2.6. Let R be a Dynkin type with rank(R) = 20, and let L be an even
overlattice of L(R). Suppose that p is an odd prime and that p ̸ | disc(L).

(1) Suppose that L → Λ is a primitive embedding into an even p-elementary
lattice of signature (1, 21) with non-cyclic Λ∨/Λ. Let T = L⊥ be the or-
thogonal complement of L in Λ. Then (1a) ∼ (1e) below hold.
(1a) T is an even lattice of signature (1, 1) such that disc(T ) = −p2 disc(L)

and T∨/T ∼= Z/(pℓ1) ⊕ Z/(pℓ2).
(1b) There are a canonical isomorphism ϕ : L∨/L → (T∨/T )p′ and the

relation (qT )p′ = −qL (after the identification via ϕ).
(1c) Write T = Zt1 ⊕ Zt2. Then (ti.tj) = p(t′ij) for some t′ij ∈ Z.
(1d) Let T ′ = Zt′1 ⊕ Zt′2 be the lattice with the intersection form (t′i.t

′
j) =

(t′ij). Then (DT ′ , pqT ′) ∼= ((DT )p′ , (qT )p′) ∼= (DL,−qL).
(1e) Λ is the unique even p-elementary lattice of signature (1, 21) and dis-

criminant −p2.
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(2) Conversely, suppose that T is a lattice of signature (1, 1) satisfying (1a)
and (1b). Then there is a primitive embedding L → Λ into the unique
p-elementary even lattice Λ of signature (1, 21) and determinant −p2 such
that T is isomorphic to the orthogonal complement L⊥ of L in Λ.

Proof. Consider the inclusions:

(2.1) L ⊕ T ⊂ Λ ⊂ Λ∨ ⊂ L∨ ⊕ T∨.

Since L → Λ is a primitive embedding, its dual is a surjection Λ∨ → L∨ which
factors as Λ∨ → L∨ ⊕ T∨ → L∨ where the first is the inclusion in (2.1) while the
second is the projection. This surjection induces surjections Λ∨/(L ⊕ T ) → L∨/L

and ϕ1 : (Λ∨/(L ⊕ T ))p′ → (L∨/L)p′ = L∨/L where the latter equality is because
gcd(p, disc(L)) = 1. Since Λ is p-elementary we have (Λ∨/Λ)p′ = 0 and hence
(Λ∨/(L⊕T ))p′ = (Λ/(L⊕T ))p′ . Similarly, we have surjection ϕ2 : (Λ∨/(L⊕T ))p′ →
(T∨/T )p′ . On the other hand, the inclusion (2.1) and the assumption that Λ
is p-elementary imply |L∨/L| |(T∨/T )p′ | = |(Λ/(L ⊕ T ))p′ |2 ≥ |L∨/L| |(T∨/T )p′ |
where the latter inequality is due to the surjectivity of both ϕi. Thus both ϕi are
isomorphisms. Set ϕ = ϕ2 ϕ−1

1 : L∨/L → (T∨/T )p′ . For every r′ ∈ L∨/L, we
write ϕ(r′) = t′, and see that the coset of r′ + t′ belongs to (Λ/(L ⊕ T ))p′ . So
0 = qΛ(r′ + t′) = qR(r′) + (qT )p′(t′). This proves (1b).

Let e be the exponent of the abelian group L∨/L so that the latter is e-torsion.
This e is coprime to p by the assumption. Then Λ/(L ⊕ T ) (∼= (L∨ ⊕ T∨)/Λ∨)
is e-torsion. Indeed, for r′ + t′ ∈ Λ ⊂ L∨ ⊕ T∨, we have, mod L ⊕ T , that
e(r′ + t′) = et′ ∈ Λ∩L⊥ = T . So Λ/(L⊕T ) equals (Λ/(L⊕T ))p′ and is isomorphic
to both L∨/L and (T∨/T )p′ via ϕi’s; denote by r the order of these three isomorphic
groups, which is coprime to p.

We assert that T∨/T is pe-torsion. Indeed, for t′ ∈ T∨, we have et′ ∈ Λ∨ and
hence pet′ ∈ Λ ∩ L⊥ = T , because Λ is p-elementary. Since T is of rank 2, we have
T∨/T ∼= Z/(pε1ℓ1) ⊕ Z/(pε2ℓ2) where ℓi ≥ 1, each εi ∈ {0, 1} and gcd(p, ℓi) = 1.
Note that Λ∨/Λ ∼= (Z/(p))⊕λ for some λ ≥ 2. The inclusion (2.1) above implies
that −pε1+ε2ℓ1ℓ2 disc(L) = disc(T ) disc(L) = r2 disc(Λ) = −pλr2. So |Λ| = −p2

and both εi = 1. Note also that ℓ1ℓ2 = |(T∨/T )p′ | = r = disc(L). This proves
(1a) and (1e). The assertion (1c) is the observation in (1a) that (T∨/T )p is p-
elementary, rank(T ) = 2 and disc(T ) = p2× (some integer coprime to p) and that
the calculation of T∨/T is essentially the calculation of the matrix (ti.tj)−1; see
Lemma 2.5. The assertion (1d) follows from (1b) and Lemma 2.5 by noting that p

does not divide disc(T ′) = −disc(L).
Next we prove Proposition 2.6 (2). We define an overlattice Γ of L⊕T by adding

elements r′ + t′ ∈ L∨⊕T∨ such that ϕ(r′) = t′. Note that qL⊕T (r′ + t′) = qL(r′)+
(qT )p′(t′) = 0, so Γ is an even overlattice of L⊕T such that the projections induce
isomorphisms: L∨/L ∼= Γ/(L ⊕ T ) ∼= (T∨/T )p′ . Now |Γ| = |L ⊕ T |/disc(L)2 =
disc(T )/disc(L) = −p2 by (1a). Consider the inclusion (2.1) above but with Λ
replaced by Γ, we see that Γ∨/Γ equals (Γ∨/Γ)p, i.e., it is p-torsion because so is
((L∨ ⊕ T∨)/(L ⊕ T ))p = (T∨/T )p by (1a). So Γ is p-elementary. It is clear from
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the construction that both L → Γ and T → Γ are primitive embeddings, whence
T = L⊥ in Γ. This proves Proposition 2.6. ¤

Proof of Theorem 2.1. We now prove Theorem 2.1, the direction (1) =⇒ (2). So
there is a normal K3 surface Y defined over an algebraically closed field k with
char(k) = p such that Sing(Y ) is of Dynkin type R. Let f : X → Y be the minimal
resolution and Ex(f) the reduced exceptional divisor. Then Ex(f) is also of Dynkin
type R. Since the Picard number ρ(X) = ρ(Y )+#Ex(f) ≥ 21, we have ρ(X) = 22
(see Artin [1]) and hence X is supersingular in the sense of Shioda [22]. Let Λ
be the Néron-Severi lattice NS(X) of X. Then Λ is p-elementary and |Λ| = −p2σ

where 1 ≤ σ ≤ 10 is the Artin invariant (Corollary 2.4). Let L denote the sublattice
of Λ spanned by numerical equivalence classes of irreducible components in Ex(f).
Then we have L ∼= L(R). Let L̃ be the closure of the sublattice L in Λ. Applying
Proposition 2.6 to the primitive embedding L̃ → Λ, we see that σ = 1. So Theorem
2.1 (2) is true.

Next we prove Theorem 2.1, the direction (2) =⇒ (3). We use the notation
above. We assert that roots(L̃) = roots(L). Indeed, suppose that v ∈ L̃ is a (−2)-
vector. By considering −v and the Riemann-Roch theorem, we may assume that
v is represented by an effective divisor V on Xp. Since this V is perpendicular
to the pull back of an ample divisor on Y , our V is contractible to a point on Y ,
whence v = [V ] belongs to L. The assertion is proved. The rest of (3) follows from
Proposition 2.6 applied to the primitive embedding L̃ → Λ.

Finally, we prove Theorem 2.1, the direction (3) =⇒ (1). Define T as in Lemma
2.5. Then Propositions 2.6 (1a) and (1b) are satisfied by L̃ and T . By Proposition
2.6 (both assertions there), there is a primitive embedding L̃ → Λ into the unique
even p-elementary lattice of signature (1, 21) and discriminant −p2 such that T =
L̃⊥ in Λ. We have NS(Xp) = Λ. Take a primitive element v in T∨ such that
v2 < −2. Let h be a generator of v⊥ ∩ T∨. So h2 > 0. We claim that

(2.2) roots(h⊥ ∩ Λ) = roots(L̃).

It is clear that the left-hand side of (2.2) includes the right-hand side of (2.2). Let
u be in the left-hand side of (2.2). Write u = r′ + t′ with r′ ∈ L̃∨ and t′ ∈ T∨.
Then 0 = h.u = h.t′, whence t′ ∈ T∨ ∩ h⊥ = Z[v]. So t′ = mv for some integer
m. If m ̸= 0, then −2 = u2 = (r′)2 + (t′)2 ≤ m2v2 < −2, absurd. So m = 0
and u = r′ ∈ L̃∨ ∩ Λ = L̃ and hence u ∈ the right-hand side of (2.2). The
claim is proved. By considering −h and isometry of Λ, we may assume that a
positive multiple of h is represented by a nef and big Cartier divisor H on Xp

(see Rudakov-Shafarevich [13]). Note that |2H| is base point free (see Nikulin
[11], Proposition 0.1 and Saint-Donat [15], Corollary 3.2). Let f : Xp → Y be
the birational morphism onto a normal surface, which is the Stein factorization
of Φ|2H| : Xp → PN with N = dim |2H|. Then f is nothing but the contraction
of all the curves perpendicular to H. So by the genus formula and the Riemann-
Roch theorem, Ex(f) contains and consists of all curves representing elements in
roots(h⊥ ∩Λ) = roots(L̃) = roots(L(R)), whence Ex(f) is of Dynkin type R. Thus
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Y is a normal K3 surface with Sing(Y ) of Dynkin type R. Hence the assertion (1)
is true. This completes the proof of Theorem 2.1. ¤

The following result imposes on a Dynkin diagram R of rank 20 a necessary
condition for the set of R-supersingular K3 primes to be non-empty. The proof
follows from the proof of Dolgachev-Keum [6, Lemma 3.2]. We reprove it here for
the convenience of the readers.

Lemma 2.7. Let R be a Dynkin diagram of rank 20. If the set of R-supersingular
K3 primes is non-empty, then disc(R) is not a perfect square.

Proof. By the assumption, there exist a K3 surface X and 20 smooth rational
curves on X whose numerical equivalence classes span a sublattice L(R) ⊂ NS(X)
of Dynkin type R and which are contractible to rational double points on a normal
K3 surface Y . Since ρ(X) ≥ 1 + 20, we have ρ(X) = 22 and X is supersingular.
Let T denote the orthogonal complement of L(R) in NS(X). Then L(R) ⊕ T is a
sublattice of NS(X) of index a say. So we have:

(2.3) disc(R) disc(T ) = −a2p2σ(X),

where disc(NS(X)) = −p2σ(X) with σ(X) ∈ {1, 2, . . . , 10} the Artin invariant.
Suppose the contrary that disc(R) is a perfect square. Then (2.3) implies that

−disc(T ) is a perfect square too. By Conway-Sloane [4], Chapter 15, Section 3,
T represents zero: there is a non-zero vector t in T with t2 = 0. We may assume
that t is primitive in T . By the Riemann-Roch theorem, we may assume that t is
represented by an effective divisor. Applying Rudakov-Shafarevich [14], Chapter 3,
Proposition 3, there is a composite σ : NS(X) → NS(X) of reflections with respect
to (−2)-vectors such that σ(t) is represented by a general fibre F of an elliptic or
quasi-elliptic fibration ϕ : X → P1. There is a natural inclusion below where the
lattice F⊥ is the orthogonal in NS(X) of Z[F ]:

σ(L(R)) → F⊥/Z[F ].

Since rank(L(R)) = 20, we can write F⊥/Z[F ] ∼= K1 ⊕ · · · ⊕ Kr which includes
σ(L(R)) as a sublattice of finite index b say; whence

(2.4) disc(R) = b2
r∏

ℓ=1

disc(Kℓ);

moreover, each Kℓ is of Dynkin type An(ℓ), Dn(ℓ), or En(ℓ) so that ϕ has reducible
fibres of type K̃ℓ in the notation of Cossec-Dolgachev [5]; see the reasoning below
and the proof of Lemma 2.2 in Kondo [9]. Let j : J → P1 be the Jacobian
fibration of ϕ so that j and ϕ have the same type of singular fibres. We note that
ρ(J) = 2+20, J is supersingular, and J has a torsion Mordell-Weil group MW (j).
By Shioda [23], Theorem 1.3, we have

(2.5)
r∏

ℓ=1

disc(Kℓ) = −p2σ(J)|MW (j)|2,

where disc(NS(J)) = −p2σ(J) with σ(J) ∈ {1, 2, . . . , 10}. Now (2.5) and (2.4) imply
that p divides disc(R), a contradiction. Thus the lemma is proved. ¤
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3. Finite quadratic forms and prime integers

Let q and q′ be quadratic forms on a finite abelian group D. We denote by d

the order of D. In this section, we consider the set K(q, q′) of odd prime integers
p which are prime to d such that (D, pq) is isomorphic to (D, q′).

For a prime l, we put

Tl :=

{
(Z/8Z)× if l = 2,

{1,−1} if l ̸= 2,

and for an odd prime p ̸= l, we define τl(p) ∈ Tl by

τl(p) :=

{
p mod 8 if l = 2,(

p
l

)
if l ̸= 2.

We then put

Td :=
∏

l

Tl

where l runs through the prime divisors of d, and put

τd(p) := (τl(p)) ∈ Td

for an odd prime integer p prime to d.

Proposition 3.1. Let p1 and p2 be odd prime integers which are prime to d. If
τd(p1) = τd(p2), then saying p1 ∈ K(q, q′) is equivalent to saying p2 ∈ K(q, q′)

Proof. It is enough to prove that (D, p1q) and (D, p2q) are isomorphic. Let l be an
odd prime divisor of d, and let ν be the largest integer such that lν |d. It follows from
τl(p1) = τl(p2) that there exists an integer al such that p1 ≡ a2

l p2 mod lν holds.
Note that al is prime to l. Suppose that d is even. It follows from τ2(p1) = τ2(p2)
that there exists an integer a2 that satisfies p1 ≡ a2

2p2 mod 2µ+1, where µ is the
largest integer such that 2µ|d. Note that a2 is odd. By the Chinese Remainder
Theorem, we have an integer a that satisfies a ≡ al mod lν for each odd prime
divisor l of d, and

a ≡

{
a2 mod 2µ+1 if d is even,

1 mod 2 if d is odd.

Then we have p1 ≡ a2p2 mod 2d. Note that a is prime to d. Since b[q](x, x) =
q(x) mod Z, q(x) is contained in (1/d)Z/2Z ⊂ Q/2Z for any x ∈ D. Therefore we
have

p1q = a2p2q.

The multiplication by a induces an automorphism α of D. Since α∗(p2q) = p1q, we
see that p1q and p2q are isomorphic. ¤

Corollary 3.2. There exists a subset S(q, q′) of Td such that K(q, q′) is equal to
the set of odd prime integers p which are prime to d such that τd(p) ∈ S(q, q′).
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4. Algorithm

Let R be a Dynkin type of rank 20. We put

T (R) :=
∏

l

Tl,

where l runs through the set of prime divisors of disc(R), and for an odd prime p

that does not divide disc(R), we put

τ(p) := (τl(p))l ∈ T (R).

In this section, we present an algorithm to obtain a subset S(R) ⊂ T (R) with
the following property: an odd prime p that does not divide disc(R) is an R-
supersingular K3 prime if and only if τ(p) ∈ S(R).

4.1. Step 1. We first calculate the set L̃(R) of even overlattices of L(R) using
Proposition 1.4.1 of Nikulin [10]. For each even overlattice L̃ of L(R), we can
calculate the set roots(L̃) of roots of L̃ by the method described in [16], [18] or [20].
Comparing roots(L̃) with roots(L(R)) for each L̃, we make the set L(R).

4.2. Step 2. We calculate the discriminant group D
eL for each L̃ ∈ L(R), and make

the set L′(R) of all L̃ ∈ L(R) such that the length of D
eL is ≤ 2. For each L̃ ∈ L′(R),

we calculate the isomorphism class of the finite quadratic form (D
eL,−q

eL).

4.3. Step 3. For each L̃ ∈ L′(R), we do the following calculation. We put d :=
disc(L̃), which is a positive integer. First we make the list T (d) of isomorphism
classes of even indefinite lattices T ′ of rank 2 with discriminant −d using the clas-
sical theory of binary forms due to Gauss. (See [4, Chapter 15, §3.3].) For each
T ′ ∈ T (d) we calculate the discriminant group DT ′ of T ′. If DT ′ is isomorphic to
D

eL, then we calculate the set

S(L̃, T ′) :=
∏

l| disc(R)

Sl(L̃, T ′) ⊂ T (R)

such that (DT ′ , pqT ′) is isomorphic to (D
eL,−q

eL) if and only if τl(p) ∈ Sl(L̃, T ′)
for each prime divisor l of disc(R). In virtue of Proposition 3.1, we have to check
only a finite number of prime integers. (Note that the set of prime divisors of |D

eL|
is a subset of the set of prime divisors of disc(R) = |DL(R)|. If a prime divisor
l of disc(R) does not divide disc(L̃), then we put Sl(L̃, T ′) = Tl.) If DT ′ is not
isomorphic to D

eL, then we put S(L̃, T ′) = ∅.
The set S(R) is the union of all S(L̃, T ′), where L̃ runs through the set L′(R)

and T ′ runs through the set T (disc(L̃)).

5. Example

We will explain the case

R := D7 + A11 + 2A1
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in detail. The discriminant form of the negative-definite root lattice L(R) is ex-
pressed by the diagonal matrix

diag[−7/4,−11/12,−1/2,−1/2]

with respect to the basis of the discriminant group

DL(R)
∼= Z/4Z × Z/12Z × Z/2Z × Z/2Z

given in [16, Section 6]. There are eight isotropic vectors in DL(R):

0 := [0, 0, 0, 0], v1 := [0, 6, 1, 1], v2 := [1, 3, 0, 0], v3 := [1, 9, 0, 0], v4 := [2, 0, 1, 1],

v5 := [2, 6, 0, 0] = 2v2 = 2v3, v6 := [3, 3, 0, 0] = −v3, v7 := [3, 9, 0, 0] = −v2.

Let L(i) be the even overlattice of L(R) corresponding to the totally isotropic sub-
group of DL(R) generated by vi. The Dynkin type of roots(L(i)) is equal to R if
i ̸= 4, while it is A11 + D9 if i = 4. Hence the even overlattice L(H) of L(R) cor-
responding to an totally isotropic subgroup H satisfies roots(L(H)) = roots(L(R))
if and only if v4 /∈ H. The totally isotropic subgroups that do not contain v4 are
listed as follows:

H0 = {0}, H1 = {0, v1}, H2 = {0, v5}, H3 = {0, v2, v5, v7}, H4 = {0, v3, v5, v6}.

Let γ ∈ Aut(L(R)) be the isometry of L(R) = L(D7) ⊕ L(A11 + 2A1) that is the
multiplication by −1 on the factor L(D7) and the identity on L(A11 + 2A1). Then
the action of γ on DL(R) interchanges H3 and H4. Therefore the even lattices L(H3)
and L(H4) are isomorphic. The lengths of DL(H0) and DL(H2) are ≥ 3, while the
lengths of DL(H1) and DL(H3)

∼= DL(H4) are 2.
The discriminant form of L(H1) multiplied by (−1) is given by(

Z/4Z × Z/4Z,

[
7/4 0

0 3/4

])
×

(
Z/3Z,

[
2/3

])
.

There are four isomorphism classes of even indefinite lattices of rank 2 with dis-
criminant −48:

S± :=

[
±2 6

6 ∓6

]
, T± :=

[
±4 4

4 ∓8

]
.

The discriminant group of S± is isomorphic to Z/2Z × Z/8Z × Z/3Z, and hence is
not isomorphic to DL(H1). The discriminant forms of T± are(

Z/4Z × Z/4Z,

[
±1/4 0

0 ±5/4

])
×

(
Z/3Z,

[
±2/3

])
.

Hence we have the following equivalence for prime integers p ̸= 2, 3:

p ∈ K(−qL(H1), qT+) ⇐⇒ p mod 8 ≡ 3 or 7 and (p
3 ) = 1,

p ∈ K(−qL(H1), qT−) ⇐⇒ p mod 8 ≡ 1 or 5 and (p
3 ) = −1.
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There are two isomorphism classes of even indefinite lattices of rank 2 with dis-
criminant −12:

U± :=

[
±2 2

2 ∓4

]
.

By the same calculation as above, we have the following equivalence for prime
integers p ̸= 2, 3:

p ∈ K(−qL(H3), qU+) ⇐⇒ p mod 8 ≡ 1 or 5 and (p
3 ) = −1,

p ∈ K(−qL(H3), qU−) ⇐⇒ p mod 8 ≡ 3 or 7 and (p
3 ) = 1.

Thanks to the equalities

K(−qL(H1), qT+) = K(−qL(H3), qU−), K(−qL(H1), qT−) = K(−qL(H3), qU+),

the natural density of R-supersingular K3 primes is 1/2.
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