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Abstract. We investigate reducible plane curves whose irreducible compo-

nents are a general smooth quartic curve, some of its bitangents, and some of

its 4-tangent conics. We show that the deformation types of plane curves of
this type coincide with the homeomorphism types. The number of deforma-

tion types grows as the 62nd power of the degree of the plane curves when the

degree tends to infinity. Thus we obtain Zariski multiples of large sizes.

1. Introduction

By a plane curve, we mean a reduced, possibly reducible, complex projective
plane curve. We say that two plane curves C and C ′ have the same combinatorial
type if there exist tubular neighbourhoods T (C) of C and T (C ′) of C ′ such that
(T (C), C) and (T (C ′), C ′) are homeomorphic, whereas we say that C and C ′ have
the same homeomorphism type if (P2, C) and (P2, C ′) are homeomorphic.

A Zariski N -ple is a set of plane curves {C1, . . . , CN} such that the curves Ci have
the same combinatorial type, but their homeomorphism types are pairwise different.
The notion of Zariski N -ples was introduced by Artal-Bartolo [1] in reviving a
classical example of 6-cuspidal curves of degree 6 due to Zariski. Since then, this
notion has been studied by many people from various points of view. Some of
the tools that have been used in this investigation are: Alexander polynomials,
characteristic varieties, fundamental groups of complements, topological invariants
of branched coverings, and so on. See the survey paper [3]. Recently, Bannai et
al. [4, 5, 6] have investigated Zariski N -ples such that each member is a union of a
smooth quartic curve and some of its bitangents.

In this paper, we introduce 4-tangent conics of a smooth quartic curve, and
consider Zariski N -ples Z1, . . . , ZN such that each Zi is a union of a smooth quartic
curve, some of its bitangents, and some of its 4-tangent conics.

Let Q be a smooth quartic curve. A bitangent of Q is a line whose intersection
multiplicity with Q is even at each intersection point. It is well known that every
smooth quartic curve has exactly 28 bitangents. We say that a bitangent l̄ of Q is
ordinary if l̄ is tangent to Q at distinct 2 points. A smooth conic c̄ ⊂ P2 is called
a 4-tangent conic of Q if c̄ is tangent to Q at 4 distinct points. Every smooth
quartic curve has 63 one-dimensional connected families of 4-tangent conics (see
Theorem 4.1).

Definition 1.1. Let m and n be non-negative integers such that m ≤ 28. We say
that a plane curve Z is a Q(m,n)-curve if Z is of the form

(1.1) Z = Q+ l̄1 + · · ·+ l̄m + c̄1 + · · ·+ c̄n,
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2 I. SHIMADA

where Q is a smooth quartic curve, l̄1, . . . , l̄m are distinct bitangents of Q, and
c̄1, . . . , c̄n are distinct 4-tangent conics of Q, and they satisfy that

(i) the bitangents l̄1, . . . , l̄m are ordinary,
(ii) the intersection of any three of Q, l̄1, . . . , l̄m, c̄1, . . . , c̄n is empty, and
(iii) the intersection of any two of l̄1, . . . , l̄m, c̄1, . . . , c̄n is transverse.

It is obvious that any two Q(m,n)-curves have the same combinatorial type.
We construct a non-singular variety Z(m,n) parameterizing all Q(m,n)-curves in
Section 5.

Definition 1.2. We say that two Q(m,n)-curves have the same deformation type if
they belong to the same connected component of the parameter space Z(m,n).

It is obvious that Q(m,n)-curves of the same deformation type have the same
homeomorphism type. Our main results are the following:

Theorem 1.3. If two Q(m,n)-curves have the same homeomorphism type, then they
have the same deformation type.

We put

(1.2) d(m,n) :=

(
28

m

)
·
(
n+ 62

62

)
,

which grows as O(n62) when n→ ∞.

Theorem 1.4. The number N (m,n) of deformation types of Q(m,n)-curves satisfies

(1.3) d(m,n)/1451520 ≤ N (m,n) ≤ d(m,n).

The main ingredient of the proof of these results is the monodromy argument of
Harris [9] (see Theorem 3.1). This argument converts the problem of enumerating
deformation types of Q(m,n)-curves to an easy combinatorial problem of count-
ing orbits of an action of the Weyl group W (E7) on a certain finite set. In Ta-
bles 1.1, 1.2, 1.3, we give a list of N (m,n) for some (m,n). See Section 5.2 for more
detail.

To each Q(m,n)-curve Z, we associate a discrete invariant g(Z), which we call an
intersection graph. This invariant is similar to the splitting graph defined in [19].
Note that each of the bitangents l̄1, . . . , l̄m and a 4-tangent conics c̄1, . . . , c̄n of
the smooth quartic curve Q ⊂ Z splits by the double covering Y → P2 branched
along Q. This data g(Z) describes how the irreducible components of these pull-
backs intersect on Y . See Section 8 for the precise definition. In Tables, we also
present the number G of non-isomorphic intersection graphs obtained from Q(m,n)-
curves. When n = 0, the intersection graph g(Z) is the two-graph studied in [5],
in which Bannai and Ohno studied Q(m,0)-curves for m ≤ 6, and enumerated
their homeomorphism types that can be distinguished by the two-graphs. See
Sections 9.1 and 9.2 for the details.

The 4-tangent conics of a smooth quartic curve Q are related to the 2-torsion
points of the Jacobian of Q (see Remark 4.3). A similar idea applied to plane
cubic curves enabled us to construct in [15] certain equisingular families of plane
curves with many connected components. In [15], it was also shown that these
connected components cannot be distinguished by the fundamental groups of the
complements, because they are all abelian. Then it was shown in [8] and [18] that
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m 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N 1 1 2 3 5 10 16 23 37 54 70 90 101 103
G 1 1 2 3 5 9 16 23 37 54 70 90 101 103

Table 1.1. N (m,0) = N (28−m,0)

n 1 2 3 4 5 6 7 8 9 10

N 1 3 9 30 112 501 2483 13791 81404 490750
G 1 3 7 22 71 306 1585 9831 64790 425252

Table 1.2. N (0,n)

(m,n) (1, 1) (1, 2) (2, 1) (1, 3) (2, 2) (3, 1) (1, 4) (2, 3) (3, 2) (4, 1)

N 2 8 4 33 23 9 162 132 66 20
G 2 8 3 30 17 8 140 95 57 17

(m,n) (1, 5) (2, 4) (3, 3) (4, 2) (5, 1) (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1)

N 901 889 508 190 45 5674 6503 4348 1854 531 103
G 753 670 430 164 42 4829 5259 3812 1649 501 96

Table 1.3. N (m,n)

the homeomorphism types of distinct connected components of these families can
be distinguished by the invariant called linking numbers.

The embedding topology of reducible plane curves whose irreducible components
are tangent to each other was also investigated by Artal Bartolo, Cogolludo, and
Tokunaga in [2] from the view point of dihedral covering of the plane branched
along the curve. In this case, the complement can have a non-abelian fundamental
group. See [2, Corollary 1].

It would be an interesting problem to study the fundamental groups of the
complements of Q(m,n)-curves, and their related invariants such as linking numbers
and/or (non-)existence of finite coverings of the plane with prescribed Galois groups.

Via the cyclic covering of the plane of degree 4 branched along a smooth quartic
curve, the geometry of Q(m,n)-curves is related to the geometry of K3 surfaces.
By considering the double covering branched along a singular sextic curve and
employing Torelli theorem for complex K3 surfaces, we have investigated in [16]
Zariski N -ples of plane curves of degree 6 with only simple singularities. We expect
that a similar idea can be applied to Zariski N -ples associated with singular quartic
curves.

This paper is organized as follows. In Section 2, we introduce cyclic coverings
Xu → Yu → P2 branched over a smooth quartic curve Qu, and fix some notation.
In Section 3, we recall the result of Harris [9]. In Section 4, we construct the family
of 4-tangent conics. In Section 5, we construct the space Z(m,n) parameterizing all
Q(m,n)-curves, and prove Theorems 1.3 and 1.4. In Section 6, we further study the
family of 4-tangent conics in detail. The geometry of the K3 surface Xu is closely
investigated. In Section 7, we study the configurations of lifts in Yu of bitangents
and 4-tangent conics, and we define the intersection graph g(Z) in Section 8. In
Section 9, we examine some examples for small m and n.



4 I. SHIMADA

Acknowledgement. Thanks are due to Professor Shinzo Bannai and Professor
Taketo Shirane for discussions and comments. The author also thanks the anony-
mous referee for his/her valuable comments on the first version of this paper.

2. Coverings of P2

For a positive integer d, we put

Γ(d) := H0(P2,O(d)).

Let U denote the space of smooth quartic curves, which is a Zariski open subset of
P∗(Γ(4)). Let u be a point of U . We denote by Qu ⊂ P2 the smooth quartic curve
corresponding to the point u. We consider the following branched coverings:

γu : Xu
ηu−→ Yu

πu−→ P2,

where πu is the double covering of P2 branched along Qu, ηu is the double covering
of Yu branched along π−1

u (Qu), and γu = πu ◦ ηu is the cyclic covering of degree 4
of P2 branched along Qu. We put

SYu := H2(Yu,Z),
which is a unimodular lattice of rank 8 with the cup-product ⟨ , ⟩Y . Let hu ∈ SYu
be the class of the pull-back of a line on P2 by πu. It is well known that Yu is a del
Pezzo surface of degree 2 with the anti-canonical class hu. (See [7, Chapters 6 and 8]
about del Pezzo surfaces.) On the other hand, the surface Xu is a K3 surface. Let

⟨ , ⟩X denote the cup product of H2(Xu,Z), and let h̃u be the class η∗u(hu). Then

h̃u is an ample class of degree ⟨h̃u, h̃u⟩X = 4.
It is classically known that every smooth quartic curve Qu has exactly 28 bitan-

gents. Moreover, if u is general in U , all bitangents l̄ of Qu are ordinary, that is, l̄
is tangent to Qu at distinct two points.

Definition 2.1. A reduced conic c̄ ⊂ P2 is called a splitting conic of Qu if the
intersection multiplicity of Qu and c̄ is even at each intersection point.

A smooth conic c̄ is splitting if and only if π∗
u(c̄) ⊂ Yu has two irreducible

components. A singular reduced conic c̄ is splitting if and only if c̄ is a union of
two distinct bitangents.

It is easy to see that a smooth conic c̄ = {g = 0} defined by g ∈ Γ(2) is a splitting
conic of Qu = {φ = 0} defined by φ ∈ Γ(4) if and only if there exist polynomials
f ∈ Γ(2) and q ∈ Γ(2) such that φ = fg + q2. By an easy dimension counting, we
see the following:

Lemma 2.2. Suppose that u is general in U . Let c̄ ⊂ P2 be a smooth splitting
conic of Qu. Then the intersection multiplicities of Qu and c̄ are either (2, 2, 2, 2)
or (4, 2, 2). □

Definition 2.3. A smooth splitting conic c̄ ⊂ P2 of Qu is called a 4-tangent conic
(resp. a 3-tangent conic) of Qu if the intersection multiplicities of Qu and c̄ are
(2, 2, 2, 2) (resp. (4, 2, 2)).

The following is easy to verify. The results are summarized in Table 2.1.

Proposition 2.4. (1) Let l̄ be an ordinary bitangent of Qu. Then π∗
u(l̄) is a union

of two smooth rational curves l and l′ on Yu with self-intersection −1 that intersect
at two points transversely, and γ∗u(l̄) is a union of two smooth rational curves l̃
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P2 Yu Xu

l̄ π∗
u(l̄) = l + l′ γ∗

u(l̄) = l̃ + l̃′

⟨l, l⟩Y = ⟨l′, l′⟩Y = −1 ⟨l̃, l̃⟩X = ⟨l̃′, l̃′⟩X = −2

⟨l, l′⟩Y = 2 ⟨l̃, l̃′⟩X = 4

⟨hu, l⟩Y = ⟨hu, l
′⟩Y = 1 ⟨h̃u, l̃⟩X = ⟨h̃u, l̃

′⟩X = 2

c̄ π∗
u(c̄) = c+ c′ γ∗

u(c̄) = c̃+ c̃′

⟨c, c⟩Y = ⟨c′, c′⟩Y = 0 ⟨c̃, c̃⟩X = ⟨c̃′, c̃′⟩X = 0

⟨c, c′⟩Y = 4 ⟨c̃, c̃′⟩X = 8

⟨hu, c⟩Y = ⟨hu, c
′⟩Y = 2 ⟨h̃u, c̃⟩X = ⟨h̃u, c̃

′⟩X = 4

Table 2.1. Pull-backs of bitangents and 4-tangent conics

and l̃′ on Xu with self-intersection −2 that intersect at two points with intersection
multiplicities (2, 2).

(2) Let c̄ be a 4-tangent conic of Qu. Then π∗
u(c̄) is a union of two smooth

rational curves c and c′ on Yu with self-intersection 0 that intersect at four points
transversely, and γ∗u(c̄) is a union of two smooth elliptic curves c̃ and c̃′ on Xu

with self-intersection 0 that intersect at four points with intersection multiplicities
(2, 2, 2, 2). □

Definition 2.5. A curve l on Yu is called a Y -lift of a bitangent l̄ of Qu if πu maps
l to l̄ isomorphically. We also say that a curve c on Yu is a Y -lift of a splitting conic
c̄ of Qu if πu maps c to c̄ isomorphically.

3. Monodromy

Let u be a point of U . It is well known that the lattice SYu = H2(Yu,Z) is
isomorphic to the lattice of rank 8 whose Gram matrix is the diagonal matrix
diag(1,−1, . . . ,−1), and that the orthogonal complement

Σu := (Zhu ↪→ SYu)
⊥

of the ample class hu in SYu is isomorphic to the negative-definite root lattice of
type E7. The deck transformation

ιu : Yu → Yu

of πu : Yu → P2 acts on Σu as −1. Note that the group O(Σu) of isometries of Σu

is equal to the Weyl group W (E7), which is of order 2903040. Hence there exists
an injective homomorphism

(3.1) O(SYu, hu) := { g ∈ O(SYu) |hgu = hu } ↪→ W (E7).

It is easy to check that the action on Σu of each of the standard generators of
W (E7) lifts to an isometry of SYu that fixes hu. Hence the homomorphism (3.1)
is in fact an isomorphism. The family of lattices {SYu |u ∈ U } forms a locally
constant system

SY → U .
Let b be a general point of U , which will serve as a base point of U . The monodromy
action of π1(U , b) on the lattice SYb preserves hb ∈ SYb.
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Theorem 3.1 (Harris [9]). The monodromy homomorphism

(3.2) π1(U , b) → O(SYb, hb) ∼=W (E7)

is surjective.

The original statement in [9] is not on the monodromy action on the lattice SYb,
but on the Galois group W (E7)/{±1} ∼= GO6(F2) of bitangents of Qb. Moreover
the proof in [9] is via the proof of a similar result on cubic surfaces with E7 replaced
by E6. Hence we give a direct and simple proof of Theorem 3.1 below.

For the proof, we prepare some more notation, which will be used throughout
this paper. We denote by Lu the set of bitangents of Qu, and Lu the set of Y -lifts
of bitangents of Qu. Let Σ∨

u denote the dual lattice of Σu. By identifying l ∈ Lu

with its class [l] ∈ SYu, we have an identification

Lu = { v ∈ SYu | ⟨v, hu⟩Y = 1, ⟨v, v⟩Y = −1 }(3.3)
∼= { v ∈ Σ∨

u | ⟨v, v⟩Y = −3/2 },

where the second bijection is obtained by the orthogonal projection SYu → Σ∨
u .

We put SY u := SYu/⟨ιu⟩, and consider the commutative diagram

Lu ↪→ SYu

↓ ↓
Lu ↪→ SY u,

(3.4)

where vertical arrows are quotient maps by the involution ιu. Since the action of
π1(U , b) on SYb commutes with ιb, we have a monodromy action of π1(U , b) on SY b.
Thus we obtain a diagram

L ↪→ SY
↓ ↓
L ↪→ SY

(3.5)

of locally constant systems over U parameterizing the diagram (3.4) over U , where
vertical arrows are quotient maps by the family of involutions

ιU := { ιu |u ∈ U }.

Note that L is the space parameterizing all bitangents of smooth quartic curves.

Proof of Theorem 3.1. Let L
{7}
u (resp. L

[7]
u ) be the set of non-ordered 7-tuples

{l1, . . . , l7} (resp. ordered 7-tuples [l1, . . . , l7]) of elements l1, . . . , l7 ∈ Lu such that

⟨li, lj⟩Y = 0 for i ̸= j. By (3.3), we can enumerate all elements of L
{7}
u . It turns

out that |L{7}
u | = 576, and hence

(3.6) |L[7]
u | = 576 · 7! = 2903040 = |W (E7)|.

(See also Remark 6.6.) For 7-tuples λ = [l1, . . . , l7] and λ′ = [l′1, . . . , l
′
7] in L

[7]
u ,

there exists a unique isometry gλ,λ′ ∈ O(SYu ⊗Q) such that

gλ,λ′(hu) = hu, gλ,λ′(li) = l′i (i = 1, . . . , 7).

It is enough show that, when u = b, these elements gλ,λ′ are contained in the image
of the monodromy (3.2). Indeed, by (3.6), this claim implies that these isometries
gλ,λ′ constitute the whole group O(SYb, hb) ∼= W (E7). To prove this claim, it
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is enough to show that π1(U , b) acts on L
[7]
b transitively by the monodromy, or

equivalently, to show that the total space L[7] of the locally constant system

L[7] → U

obtained from the family {L[7]
u |u ∈ U } is connected.

Let λ = [l1, . . . , l7] be a point of L[7] over u ∈ U . Contracting the (−1)-curves
l1, . . . , l7, we obtain a birational morphism

blλ : Yu → Pλ

to a projective plane Pλ. We put βλ := [blλ(l1), . . . ,blλ(l7)]. Conversely, we fix
a projective plane P, and let P[7] denote the set of ordered 7-tuples [p1, . . . , p7] of
distinct points of P. For a general point β = [p1, . . . , p7] of P

[7], let

blβ : Y β → P

be the blowing-up at the points p1, . . . , p7. Then Y
β is a del Pezzo surface of degree

2, and the complete linear system of the anti-canonical divisor on Y β gives a double
covering Y β → P2 branched along a smooth quartic curve Qβ such that each of the
7 exceptional curves over p1, . . . , p7 is a Y -lift of a bitangent of Qβ . Hence there
exist a point λ ∈ L[7] and an isomorphism Pλ

∼= P that maps βλ to β.
We put

I :=

{
(λ, γ, β)

∣∣∣∣ λ ∈ L[7], β ∈ P[7], and γ is an isomorphism
Pλ

∼= P that maps βλ to β

}
.

Then the projection I → L[7] is surjective with fibers isomorphic to PGL3(C),
whereas the projection I → P[7] is dominant with fibers isomorphic to PGL3(C).
Since P[7] and PGL3(C) are connected, we see that L[7] is connected. □

4. Family of 4-tangent conics

In this section, we construct a space C parameterizing all 4-tangent conics of
smooth quartic curves.

Let Cu denote the set of 4-tangent conics of Qu, and let Cu be the set of Y -lifts
of 4-tangent conics of Qu. We put

(4.1) Fu := { v ∈ SYu | ⟨v, hu⟩Y = 2, ⟨v, v⟩Y = 0 } ∼= { v ∈ Σu | ⟨v, v⟩Y = −2 },

where the second bijection is given by the orthogonal projection SYu → Σ∨
u . As

was shown in Table 2.1, we have [c] ∈ Fu for any c ∈ Cu. Note that |Fu| = 126, the
number of roots of the root lattice Σu of type E7. We put

Fu := Fu/⟨ιu⟩ ⊂ SY u.

Then we have a commutative diagram

(4.2)

Cu
Φu−→ Fu ↪→ SYu

↓ ↓ ↓
Cu

Φu−→ Fu ↪→ SY u

where Φu : Cu → Fu is given by c 7→ [c] ∈ SYu, and the vertical arrows are quotient
by the involution ιu : Yu → Yu. We have locally constant systems F → U and
F → U obtained from the families {Fu |u ∈ U } and {Fu |u ∈ U }.
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Theorem 4.1. There exists a commutative diagram

(4.3)

C ΦU−→ F ↪→ SY
↓ ↓ ↓
C ΦU−→ F ↪→ SY

of morphisms over U that parameterizes the diagrams (4.2) over U . The morphisms
ΦU : C → F and ΦU : C → F are smooth and surjective, and every fiber of them is
a Zariski open subset of P1.

For the proof, we use the double covering ηu : Xu → Yu of Yu by the K3 surface
Xu. We consider the Néron-Severi lattice

SXu := H2(Xu,Z) ∩H1,1(Xu)

with the intersection form ⟨ , ⟩X . Then ηu induces a embedding of the lattice

η∗u : SYu(2) ↪→ SXu,

where SYu(2) is the lattice obtained from SYu by multiplying the intersection form
by 2. Let ju : Xu → Xu be a generator of the cyclic group Gal(Xu/P2) of order 4.
Then ηu : Xu → Yu is the quotient morphism by j2u. Hence j2u acts on the image of
η∗u : SYu(2) ↪→ SXu trivially.

Proof of Theorem 4.1. Note that the family of involutions ιU = { ιu |u ∈ U } acts
on F over U without fixed points. Hence, if the parameterizing space ΦU : C → F
of Φu : Cu → Fu is constructed, then ΦU : C → F is constructed as a quotient of
ΦU : C → F by ιU .

Let u be an arbitrary point of U , and let v be an element of Fu ⊂ SYu. We put
ṽ := η∗u(v) ∈ SXu. We can easily confirm that there exist exactly 6 pairs {li, l′i}
(i = 1, . . . , 6) of Y -lifts of bitangents of Qu such that ⟨li, l′i⟩Y = 1 and v = [li]+ [l′i],
and that these 12 curves l1, l

′
1, . . . , l6, l

′
6 are distinct. Hence the complete linear

system on the K3 surface Xu corresponding to ṽ ∈ SXu has no fixed components.
The class ṽ is primitive in SXu with ⟨ṽ, ṽ⟩X = 0 and ⟨h̃u, ṽ⟩X = 4. Therefore there
exists an elliptic fibration on Xu such that the class of a fiber is equal to ṽ. We
denote this elliptic fibration by ϕv : Xu → P1 .

If c ∈ Cu, then η∗u(c) is an elliptic curve, and hence η∗u(c) is a smooth fiber
of an elliptic fibration of ϕv : Xu → P1, where v = [c]. Conversely, suppose that
(u, v) ∈ F , and let f be a smooth fiber of the elliptic fibration ϕv : Xu → P1. We
denote by a ⊂ P2 the plane curve γu(f) with the reduced structure. Let d be the

degree of a, and δ the mapping degree of γu|f : f → a. Since ⟨h̃u, f⟩X = 4 and
γu : Xu → P2 is Galois, we have (d, δ) = (1, 4), (2, 2), or (4, 1). If (d, δ) = (1, 4),
then f = γ−1

u (a) is invariant under the action of Gal(Xu/P2) = ⟨ju⟩, and hence

the class [f ] ∈ SXu is a non-zero multiple of h̃u, which contradicts ⟨f, f⟩X = 0.
If (d, δ) = (4, 1), then f , ju(f), j

2
u(f), j

3
u(f) are distinct curves that intersect over

the points of a ∩ Qu. On the other hand, since [f ] = η∗u(v) ∈ Im η∗u, we have
j∗2u ([f ]) = [f ]. This contradicts ⟨f, f⟩X = 0. Hence (d, δ) = (2, 2), and we see that
a is a smooth splitting conic. Note that a is 4-tangent, because otherwise f would
be singular. Thus we have proved that c 7→ η∗u(c) gives a bijection from Cu to the
union of the sets of smooth fibers of elliptic fibrations ϕv : Xu → P1, where v runs
through Fu.

Let X → U be the universal family of {Xu |u ∈ U }, and let πF : F ×U X → F
be the pull-back of X → U by F → U . Let M be a line bundle on F ×U X
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such that the class [M|Xu] ∈ SXu of the line bundle M|Xu on π−1
F (u, v) = Xu

is equal to v ∈ Fu. Then πF∗M → F is a vector bundle of rank 2. The fiber
over (u, v) ∈ F of the P1-bundle P∗(πF∗M) → F is identified with the base curve
of the elliptic fibration ϕv : Xu → P1. We can construct C as the open subset of
P∗(πF∗M) consisting of non-critical points of ϕv : Xu → P1. □

The non-singular varieties C and C parameterize all pairs (u, c) and (u, c̄), respec-
tively, where u ∈ U and c ∈ Cu, c̄ ∈ Cu. Since Φu and Φu have connected fibers,
we can regard Fu as the set of connected families of Y -lifts of 4-tangent conics of
Qu, and Fu as the set of connected families of 4-tangent conics. The following
observation obtained in the proof of Theorem 4.1 will be used in the next section.

Proposition 4.2. Every connected family [c] ∈ Fu of Y -lifts of splitting conics is
a pencil with no base points. □

Remark 4.3. A line section Λu of Qu ⊂ P2 is a canonical class of the genus 3 curve
Qu. Let Pic0(Qu) be the Picard group of line bundles of degree 0 of Qu, and let
Pic0(Qu)[2] be the subgroup of 2-torsion points of Pic0(Qu). For a 4-tangent conic
c̄ of Qu, let Θu(c̄) be the reduced part of the divisor c̄ ∩ Qu of Qu. Then the
class of the divisor Θu(c̄)−Λu of degree 0 is a point of Pic0(Qu)[2]− {0}, and this
correspondence gives a bijection Fu

∼= Pic0(Qu)[2]− {0}.

5. Proof of the main results

In this section, we construct the space Z(m,n) parameterizing all Q(m,n)-curves,
and prove Theorems 1.3 and 1.4.

5.1. Deformation types. We fix some notation. For a set A, let Sk(A) denote
the symmetric product Ak/Sk, where A

k = A × · · · × A (k times), and let Sk
0 (A)

denote the complement in Sk(A) of the image of the big diagonal in Ak.
For a morphism A → U , let Sk(A) denote the symmetric product Ak/Sk, where

Ak := A×U · · · ×U A (k times), and let Sk
0 (A) denote the complement in Sk(A) of

the image of the big diagonal in Ak. Note that, if A is smooth over U with relative
dimension 1, then Sk(A) is smooth over U with relative dimension k.

Recall that L → U and C → U are the spaces parameterizing all bitangents and
all 4-tangent conics of smooth quartic curves, respectively. We put

Z ′(m,n) := Sm
0 (L)×U Sn

0 (C),
which is the space parameterizing all curves Z ′, where Z ′ is a union of a smooth
quartic curve Q, m distinct bitangents of Q, and n distinct 4-tangent conics of Q.
Now we can construct the parameter space

ϖ : Z(m,n) → U
ofQ(m,n)-curves as the open subvariety of Z ′(m,n) consisting of points corresponding
to plane curves Z ′ satisfying conditions (i), (ii), (iii) in Definition 1.1. For a point
ζ ∈ Z(m,n), we denote by Zζ the Q(m,n)-curve corresponding to ζ.

For u ∈ U , we put

P (m,n)
u := Sm

0 (Lu)× Sn(Fu) ⊂ Sm
0 (SY u)× Sn(SY u).

The size of P
(m,n)
u is equal to d(m,n) defined by (1.2). Then we obtain a finite étale

covering
ρ : P(m,n) := Sm

0 (L)×U Sn(F) → U
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of degree d(m,n) parameterizing the family {P (m,n)
u |u ∈ U }. Using ΦU : C → F in

Theorem 4.1, we have a morphism θ′ : Z ′(m,n) → P(m,n). Restricting θ′ to the open
subvariety Z(m,n) ⊂ Z ′(m,n), we obtain a morphism

θ : Z(m,n) → P(m,n),

which maps ζ ∈ Z(m,n) to

(5.1) θ(ζ) := ({l̄1, . . . , l̄m}, [[c̄1], . . . , [c̄n]]) ∈ P
(m,n)
ϖ(ζ) ,

where Zζ has the irreducible components as in (1.1). Thus we obtain the following
commutative diagram.

Z(m,n)
θ−→ P(m,n)

ϖ ↘ ↙ ρ

U
To investigate the image of θ, we put

U ′ :=

{
u ∈ U

∣∣∣∣ every bitangent of Qu is ordinary, and their union
has only ordinary nodes as its singularities

}
,

which is a Zariski open dense subset of U .

Lemma 5.1. The morphism θ : Z(m,n) → P(m,n) is smooth with each non-empty
fiber being an irreducible variety of dimension n. The image of θ contains ρ−1(U ′).
In particular, the morphism θ is dominant.

Proof. Since ΦU : C → F is smooth and surjective with each fiber being a Zariski
open subset of P1, the morphism θ′ : Z ′(m,n) → P(m,n) is smooth and surjective
with each fiber being an irreducible variety of dimension n. Suppose that u ∈ U ′,

and let p := ({l̄1, . . . , l̄m}, [[c̄1], . . . , [c̄n]]) be a point of P
(m,n)
u . By Proposition 4.2

and Bertini’s theorem, if we choose each 4-tangent conic c̄′j in the connected family

[c̄j ] ∈ Fu generally, the curve Qu +
∑
l̄i +

∑
c̄′j satisfies conditions (ii) and (iii) in

Definition 1.1. Hence θ−1(p) = θ′−1(p) ∩ Z(m,n) is non-empty. □

Proof of Theorem 1.4. By Lemma 5.1, the connected components of Z(m,n) are in
bijective correspondence with the connected components of P(m,n), and hence with

the π1(U , b)-orbits in P (m,n)
b . By Theorem 3.1, the number N (m,n) of π1(U , b)-orbits

in P
(m,n)
b satisfies (1.3), because |W (E7)/{±1}| = 1451520. □

5.2. Computation of N (m,n). Recall that Σb is a negative-definite root lattice of
type E7. Let Σ be the negative-definite root lattice of type E7 with the standard
basis, and let Σ∨ be its dual. According to (3.3) and (4.1), we define the subsets

L := { v ∈ Σ∨ | ⟨v, v⟩ = −3/2 }/{±1}

of Σ
∨
:= Σ∨/{±1}, and

F := { v ∈ Σ | ⟨v, v⟩ = −2 }/{±1}
of Σ := Σ/{±1}. We then put

P (m,n) := Sm
0 (L)× Sn(F ).

The group W (E7) is generated by seven standard reflections. The permutations
on L and on F induced by these generators are easily calculated. Hence the per-
mutations on P (m,n) induced by these generators are also calculated. Thus we
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can compute the orbit decomposition of P (m,n) by W (E7), and obtain the number
N (m,n) of deformation types of Q(m,n)-curves.

Example 5.2. The size d(4,0) of P (4,0) is 20475. The group W (E7) decomposes
this set into three orbits of sizes 315, 5040, 15120. Hence N (4,0) = 3.

Example 5.3. The size d(0,4) of P (0,4) is 720720. The group W (E7) decomposes
this set into 30 orbits as follows:

720720 = 63 + 945× 3 + 1008× 2 + 1890 + 2016 + 3780× 2 + 5040× 2 + 10080 +

+11340 + 15120× 5 + 22680 + 30240× 5 + 45360× 2 + 90720 + 120960× 2.

Hence N (0,4) = 30.

Example 5.4. The size d(2,2) of P (2,2) is 762048. The group W (E7) decomposes
this set into 23 orbits as follows:

762048 = 378 + 1890 + 3780× 3 + 6048 + 7560× 2 + 12096× 2 + 15120 + 22680 +

+30240× 3 + 45360× 2 + 60480× 4 + 120960× 2.

Hence N (2,2) = 23.

Remark 5.5. For the computation, we used GAP [20], which is good at computations
of permutation groups.

5.3. Real quartic curves.

Definition 5.6. Note that H2(P2,Z) ∼= Z has a canonical generator, that is, the
class of a line. Let C and C ′ be plane curves with the same homeomorphism
type. A homeomorphism σ : (P2, C) ∼−→ (P2, C ′) is said to be orientation-preserving
(resp. orientation-reversing) if the action of σ on H2(P2,Z) is the identity (resp. the
multiplication by −1).

Example 5.7. Suppose that Q(m,n)-curves Zζ and Zζ′ are of the same deformation

type. Let α : I → Z(m,n) be a path from ζ to ζ ′, where I := [0, 1] ⊂ R. By the
parallel transport along α, we obtain a homeomorphism α∗ : (P2, Zζ)

∼−→ (P2, Zζ′).
It is obvious that α∗ is orientation-preserving.

Proposition 5.8. Every Q(m,n)-curve Zζ admits an orientation-reversing self-
homeomorphism (P2, Zζ)

∼−→ (P2, Zζ).

For the proof of Proposition 5.8, we use a classical result on real quartic curves.
We give a structure of the R-scheme to P2. We denote by ΓR(d) the space of
homogeneous polynomials of degree d on P2 with real coefficients, and consider the
real projective space P∗(ΓR(4)) as a closed subset of P∗(Γ(4)). We then put

UR := U ∩ P∗(ΓR(4)).

The topological types of smooth real quartic curves are classified by Zeuthen and
Klein, and the result is summarized in [12, Theorem 1.7]. Using this result, we
obtain the following:

Theorem 5.9 (Zeuthen (1873) and Klein (1876)). There exists a unique connected
component UR,4 of UR consisting of points u ∈ UR such that the real plane curve
Qu(R) is a union of 4 ovals. If u ∈ UR,4, the ovals in Qu(R) are pairwise non-
nested, and every bitangent of Qu is defined over R. □
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Remark 5.10. For beautiful pictures of real plane quartic curves with real 28 bi-
tangents, see [11] and [14, Section 10.5]. These pictures are in fact defined over Q,
and were obtained by the theory of Mordell-Weil lattices.

For an algebraic variety V defined over R, we denote byH∗(V,Z) the cohomology
ring of the topological space V (C) of C-valued points of V , by

τV : V (C) ∼−→V (C)
the self-homeomorphism of V (C) obtained by the complex conjugation, and by VC
the variety V ⊗R C defined over C. Let S be an algebraic surface defined over
R, and let C be a reduced irreducible curve on SC. Then there exists a unique
reduced irreducible curve C ′ on SC such that τS induces an orientation-reversing
homeomorphism C(C) ∼−→C ′(C). We denote this curve C ′ by τS [C]. Then we have

[τS [C]] = −τ∗S([C])
in H2(S,Z). If C is also defined over R, then τS [C] = C, and hence τ∗S([C]) = −[C].
IfH2(S,Z) is generated by classes of curves defined over R, then τS acts onH2(S,Z)
as the multiplication by −1, and hence, for any curve C (not necessarily defined
over R), we have [τS [C]] = [C] in H2(S,Z).

Lemma 5.11. Let r be a point of UR,4. If c̄ is a 4-tangent conic of Qr, then the
4-tangent conic τP2 [c̄] of τP2 [Qr] = Qr is in the same connected family as c̄.

Proof. Note that, for φ ∈ ΓR(4) and x ∈ P2(R), the sign of φ(x) is well-defined,
because λ4 > 0 for any λ ∈ R×. We choose a defining equation φ ∈ ΓR(4) of
Qr in such a way that φ(x) > 0 for any point x of P2(R) in the outside of the
ovals of Qr(R). We let Yr be defined over R by w2 = φ, and consider the self-
homeomorphism τY : Yr(C) ∼−→Yr(C) given by the complex conjugation. For any
bitangent l̄ of Qr, each of its Y -lifts l satisfies τY [l] = l, because φ(x) ≥ 0 for any
point x of l̄(R). Since the classes of these curves l span SYr = H2(Yr,Z), we see
that τY acts on SYr as the multiplication by −1. Therefore, for any curve C on
Yr, we have [τY [C]] = [C]. In particular, if c ⊂ Yr is a Y -lift of c̄, then τY [c] is a
Y -lift of the 4-tangent conic τP2 [c̄]. Then [τY [c]] = [c] in SYr implies that τP2 [c̄] and
c̄ belong to the same connected family of 4-tangent conics. □

Proof of Proposition 5.8. Since UR,4 is open in P∗(ΓR(4)), it follows that UR,4 is
Zariski dense in U , and hence there exists a point r ∈ UR,4∩U ′. By Lemma 5.1, we

see that ϖ−1(r) intersects every connected component of Z(m,n). Let ξ be a point
of ϖ−1(r) that belongs to the same connected component as ζ, and let

Zξ = Qr + l̄′1 + · · ·+ l̄′m + c̄′1 + · · ·+ c̄′n

be the decomposition of Zξ into irreducible components. Remark that Qr and all
of its bitangents are defined over R by the definition of UR,4 (see Theorem 5.9). We

choose a path α : I → Z(m,n) from ζ to ξ. Then we obtain an orientation-preserving
homeomorphism

α∗ : (P2, Zζ)
∼−→ (P2, Zξ).

For simplicity, we write τ instead of τP2 . We have an orientation-reversing homeo-
morphism

τ : (P2, Zξ)
∼−→ (P2, τ [Zξ])

obtained by the complex conjugation. Since

τ [Zξ] = Qr + l̄′1 + · · ·+ l̄′m + τ [c̄′1] + · · ·+ τ [c̄′n],
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and, for j = 1, . . . , n, the 4-tangent conic τ [c̄′j ] of τ [Qr] = Qr belongs to the same

connected family as c̄′j by Lemma 5.11, we see that Q(m,n)-curves τ [Zξ] and Zξ have
the same deformation type, and we have an orientation-preserving homeomorphism

β∗ : (P2, τ [Zξ])
∼−→ (P2, Zξ).

Composing α∗, τ , β∗ and α
−1
∗ , we obtain an orientation-reversing self-homeomorphism

of (P2, Zζ). □

5.4. Homeomorphism types. Let ζ be a point of Z(m,n) such that Zζ has the
decomposition

Z = Q+ l̄1 + · · ·+ l̄m + c̄1 + · · ·+ c̄n.

We consider another point ζ ′ ∈ Z(m,n) with the decomposition

Zζ′ = Qu′ + l̄′1 + · · ·+ l̄′m + c̄′1 + · · ·+ c̄′n.

Recall that the involution ιu of Yu acts on the orthogonal complement Σu of hu ∈
SYu as −1. Let g : SYu

∼−→SYu′ be an isometryof lattices. Suppose that g maps
hu to hu′ . Then we have g ◦ ιu = ιu′ ◦ g. Moreover, by definitions (3.3) and (4.1),
the isometry g maps Lu to Lu′ and Fu to Fu′ . Therefore g induces a bijection

P
(m,n)
u

∼−→P
(m,n)
u′ .

Theorem 1.3 is an immediate consequence of the following:

Theorem 5.12. The following are equivalent:

(i) ζ and ζ ′ belong to the same connected component of Z(m,n),
(ii) θ(ζ) and θ(ζ ′) belong to the same connected component of P(m,n),
(iii) there exists an isometry g : SYu

∼−→SYu′ of lattices that maps hu to hu′ and

such that the induced bijection P
(m,n)
u

∼−→P
(m,n)
u′ maps θ(ζ) to θ(ζ ′), and

(iv) there exists a homeomorphism (P2, Zζ)
∼−→ (P2, Zζ′).

Proof. By Proposition 5.8, condition (iv) is equivalent to the following:

(iv)
′
there exists an orientation-preserving homeomorphism (P2, Zζ)

∼−→ (P2, Zζ′).

We will show that (i), (ii), (iii) and (iv)
′
are equivalent. The implication (i) ⇐⇒ (ii)

follows from Lemma 5.1, and (i) =⇒ (iv)′ follows from Example 5.7.
We show (iv)′ =⇒ (iii). Suppose that σ : (P2, Zζ)

∼−→ (P2, Zζ′) is an orientation-
preserving homeomorphism. We can assume, after renumbering the curves, that σ
induces homeomorphisms l̄i

∼−→ l̄′i and c̄j
∼−→ c̄′j that preserve the orientation. We

have a homeomorphism σY : Yu
∼−→Yu′ that covers σ, and σY induces an isometry

σSY : SYu
∼−→SYu′ ,

which maps hu to hu′ . If li ⊂ Yu is a Y -lift of a bitangent l̄i ⊂ Zζ , there exists a
Y -lift l′i ⊂ Yu′ of the bitangent l̄′i ⊂ Zζ′ such that σY induces a homeomorphism
li

∼−→ l′i preserving the orientation. In particular, we have σSY ([li]) = [l′i]. The
same holds for a Y -lift cj ⊂ Yu of a 4-tangent conic c̄j ⊂ Zζ . Hence the bijection

P
(m,n)
u

∼−→P
(m,n)
u′ induced by the isometry σSY maps θ(ζ) to θ(ζ ′). Thus (iii) holds.

We show (iii) =⇒ (ii). Suppose that (iii) holds. We choose a path β : I → U
from u to the base-point b and a path β′ : I → U from u′ to b, and consider the
isometries

β∗ : SYu
∼−→SYb, β′

∗ : SYu′
∼−→SYb
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obtained by the parallel transports along β and β′. Note that β∗(hu) = hb and
β′
∗(hu′) = hb. Hence β′

∗ ◦ g ◦ β−1
∗ is an element of O(SYb, hb). By Theorem 3.1,

there exists a loop α : I → U with the base point b such that

α∗ = β′
∗ ◦ g ◦ β−1

∗ .

Therefore the isometry g : SYu
∼−→SYu′ is equal to the parallel transport γ∗ along

the path γ := β′−1αβ from u to u′. Let

γ̃ : I → P(m,n)

be the lift of γ such that γ̃(0) = θ(ζ). Since g = γ∗ maps θ(ζ) to θ(ζ ′), we see that
γ̃(1) = θ(ζ ′). Therefore θ(ζ) and θ(ζ ′) are in the same connected component of
P(m,n). □

6. Geometry of the K3 surface Xu

We investigate the connected families of 4-tangent conics more closely for a
general point u ∈ U . Our main result of this section is as follows.

Theorem 6.1. Suppose that u ∈ U is general. Then each connected family of 4-
tangent conics c̄ of Qu is parameterized by a rational curve minus 12+ 6 points. A
member c̄ of this family becomes a 3-tangent conic at each of 12 punctured points,
and c̄ degenerates into a union of two distinct bitangents at each of the remaining
6 punctured points.

For the proof, we add the following easy result to Proposition 2.4.

Proposition 6.2. Let c̄ be a 3-tangent conic of Qu. Then γ∗u(c̄) is a union of two
one-nodal rational curves. □

Recall that the double covering ηu : Xu → Yu induces a primitive embedding of
lattices η∗u : SYu(2) ↪→ SXu.

Proposition 6.3. If u ∈ U is general, then η∗u is an isomorphism.

Proof. Kondo [10] studied the moduli of genus-3 curves by considering the periods
of K3 surfaces X that are cyclic covers of P2 of degree 4 branched along quartic
curves Q ⊂ P2. Let j denote the generator of Gal(X/P2) ∼= µ4 that acts on H

2,0(X)
as

√
−1. Kondo exhibits an action of the cyclic group µ4 on the K3 lattice

L := E⊕2
8 ⊕ U⊕3

that is obtained by a marking H2(X,Z) ∼= L. Let LS and LT be the kernel of
j∗2 − 1 and of j∗2 + 1 on L, respectively. Then LS is of rank 8, and, via the
marking, equal to the image of the pull-back of H2(Y,Z)(2) by the double covering
X → Y := X/⟨j2⟩. The period H2,0(X) is a point of P∗(V√−1), where V

√
−1 is

the kernel of j∗ −
√
−1 on LT ⊗ C. We have dimP∗(V√−1) = 6. The result of [10]

implies that, when Q varies, the point H2,0(X) of P∗(V√−1) sweeps an open subset
of P∗(V√−1).

We fix a marking H2(Xu,Z) ∼= L. Since u ∈ U is general, the period H2,0(Xu) is
general in P∗(V√−1). Since LT ⊗ C = V√−1 ⊕ V√−1, the minimal Z-submodule M

of L such that M ⊗ C contains H2,0(Xu) is equal to LT , and hence its orthogonal
complement M⊥ = SXu is equal to LS = η∗u(SYu(2)). □

Let Rats(Xu) denote the set of rational curves on Xu, and Ells(Xu) the set of
elliptic fibrations on Xu.
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Proposition 6.4. Suppose that u ∈ U is general. Then Rats(Xu) is equal to the

set L̃u := { η∗u(l) | l ∈ Lu } of 56 smooth rational curves on Xu.

This proposition is proved by Proposition 6.3 and [13, Proposition 98]. See
also [13, Remark 99]. We give a proof, however, because the argument is also used
in the proof of Proposition 6.5 below. Recall from the proof of Theorem 4.1 that,
for v ∈ Fu, there exists an elliptic fibration ϕv : Xu → P1 such that the class of a
fiber of ϕv is η∗u(v).

Proposition 6.5. Suppose that u ∈ U is general. Then v 7→ ϕv gives a bijection
Fu

∼= Ells(Xu). Each fibration ϕv has no section. The singular fibers of ϕv consist
of 6 fibers of type I2 and 12 fibers of type I1.

Proof of Propositions 6.4 and 6.5. The space

{ v ∈ SXu ⊗ R | ⟨v, v⟩X > 0 }

has two connected components. Let Pu be the connected component containing
the ample class h̃u. For a vector v ∈ SXu ⊗ R with ⟨v, v⟩X < 0, let [v]⊥ be the
hyperplane of SXu ⊗ R defined by ⟨x, v⟩X = 0, and we put (v)⊥ := [v]⊥ ∩ Pu. We
then put

Nu := { v ∈ Pu | ⟨v,Γ⟩X ≥ 0 for all curves Γ ⊂ Xu }.

It is well known that Nu is equal to

{ v ∈ Pu | ⟨v,Γ⟩X ≥ 0 for all Γ ∈ Rats(Xu) },

and that each Γ ∈ Rats(Xu) defines a wall of the coneNu, that is, (Γ)
⊥∩Nu contains

a non-empty open subset of (Γ)⊥. Let Nu be the closure of Nu in SXu ⊗ R. For
the proof of Proposition 6.4, it is enough to show that Nu is equal to

N
′
u := { v ∈ SXu ⊗ R | ⟨v, l̃⟩X ≥ 0 for all l̃ ∈ L̃u }.

A face of the cone N
′
u is a closed subset F of N

′
u of the form F = V ∩N ′

u, where

V is an intersection of some of the hyperplanes [l̃]⊥ (l̃ ∈ L̃u) such that F contains
a non-empty open subset of V . We say that V is the supporting linear subspace of
the face F , and put dimF := dimV . A ray is a 1-dimensional face. For the proof
of Nu = N

′
u, it is enough to show that all rays of N

′
u are contained in Nu. We can

calculate all the faces F of N
′
u by descending induction on d := dimF using linear

programming method (see [17, Section 2.2]). The result is as follows. Suppose that
d ≥ 2. Then a linear subspace

(6.1) V = [l̃1]
⊥ ∩ · · · ∩ [l̃k]

⊥

with l̃1, . . . , l̃k ∈ L̃u is the supporting linear subspace of a face F with dimF = d if
and only if k = 8− d and l̃1, . . . , l̃k are disjoint from each other, that is, their dual
graph is the Dynkin diagram of type (8− d)A1. Suppose that d = 1. Then a linear
subspace V as (6.1) is the supporting linear subspace of a ray F if and only if one
of the following holds:

(7A1) k = 7 and the dual graph of l̃1, . . . , l̃7 is the Dynkin diagram of type 7A1.

In this case, F is generated by a vector v ∈ SXu with ⟨h̃u, v⟩X = 6 and
⟨v, v⟩X = 2. There exist exactly 576 rays of this type.
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dimF 7 6 5 4 3 2 1
# 56 756 4032 10080 12096 6048 576 + 126

Table 6.1. Numbers of faces F

(6Ã1) k = 12 and the dual graph of l̃1, . . . , l̃12 is the Dynkin diagram of type 6Ã1,

where Ã1 is c c. In this case, F is generated by a primitive vector ṽ with
⟨h̃u, ṽ⟩X = 4 and ⟨ṽ, ṽ⟩X = 0. There exist exactly 126 rays of this type,
and these generators ṽ are equal to η∗u(v) for some v ∈ Fu.

In Table 6.1, the numbers of faces of N
′
u are given.

Suppose that there exists a ray F of N
′
u not contained in Nu. Then the gener-

ating class v ∈ SXu of F given above is effective but not nef. Let D be an effective
divisor of Xu such that [D] = v. Then D contains a smooth rational curve Γ

with ⟨Γ, v⟩X < 0 as an irreducible component. Since h̃u is ample, the (−2)-vector

r = [Γ] satisfies ⟨h̃u, r⟩X < ⟨h̃u, v⟩X ≤ 6. We make the set of all (−2)-vectors

r′ ∈ SXu with ⟨h̃u, r′⟩X = 1, . . . , 5, and confirm that this set is equal to the set of

classes of L̃u. In particular, it contains no element r′ satisfying ⟨r′, v⟩X < 0. This

contradiction shows N
′
u = Nu, and Rats(Xu) = L̃u is proved.

It is well known that there exists a bijection between Ells(Xu) and the set of
rays contained in Nu ∩ ∂ Pu. Hence we have |Ells(Xu)| = 126, and v 7→ ϕv gives a
bijection from Fu to Ells(Xu). Therefore, as was shown in the proof of Theorem 4.1,
every fiber f of any elliptic fibration ϕv is a double cover of a splitting conic of Qu.
The class of f is equal to η∗u(v). Since no element l̃ ∈ Rats(Xu) satisfies ⟨f, l̃⟩X = 1,

the fibration ϕv has no section. Since the dual graph of the set of l̃ ∈ Rats(Xu)

with ⟨f, l̃⟩X = 0 is of type 6Ã1, the fibration ϕv has exactly 6 reducible fibers, each

of which is either of type I2 or of type III. If l̃i, l̃j ∈ Rats(Xu) are in the same

fiber of ϕv, then they satisfy ⟨l̃i, l̃j⟩X = 2 and hence l̄i := γu(l̃i) and l̄j := γu(l̃j)
are distinct bitangents of Qu by Table 2.1. Since u ∈ U is general, the intersection
point of l̄i and l̄j is not on Qu. Hence every reducible fiber of ϕv is of type I2.
The irreducible singular fibers are either of type I1 or of type II. By Lemma 2.2
and Proposition 6.2, we see that all irreducible singular fibers must be of type I1.
Calculating the Euler number, we conclude that the number of singular fibers of
type I1 is 12. □

Remark 6.6. The set of 576 rays of type 7A1 is in bijective correspondence with

the set L
{7}
u in the proof of Theorem 3.1. A ray F of type 7A1 corresponds to a

7-tuple {l1, . . . , l7} ∈ L
{7}
u as follows. The generator v of F with ⟨v, v⟩X = 2 is the

class of the pull-back of a line of a plane P by the double covering Xu → Yu → P,
where Yu → P is the blowing down of the (−1)-curves l1, . . . , l7.

Proof of Theorem 6.1. In fact, the proof was already given in the last paragraph of
the proof of Proposition 6.5. □

7. Configurations of Y -lifts

Throughout this section, let u be a general point of U .
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7.1. Lemmas on quartic polynomials. Let [d1, . . . , dm] be a list of positive
integers satisfying d1 + · · ·+ dm = 4. We put

Γ(d1, . . . , dm : 2) := Γ(d1)× · · · × Γ(dm)× Γ(2),

and denote by ψ[d1,...,dm] : Γ(d1, . . . , dm : 2) → Γ(4) the morphism

(f1, · · · , fm, q) 7→ f1 · · · fm + q2.

Lemma 7.1. The morphism ψ[d1,...,dm] is dominant.

Proof. It is enough to show that ψ[1,1,1,1] is dominant, and then, it suffices to find
a point P of Γ(1, 1, 1, 1: 2) at which the differential of ψ := ψ[1,1,1,1] is of rank
dimΓ(4) = 15. By choosing points P randomly and calculating the rank of dPψ,
we can easily find such a point. □

Definition 7.2. For [d1, . . . , dm] with d1 + · · · + dm = 4, we have an open dense
subset V[d1,...,dm] ⊂ Γ(d1, . . . , dm : 2) and a dominant morphism

Ψ[d1,...,dm] : V[d1,...,dm] → U
such that, for p = (f1, . . . , fm, q) ∈ V[d1,...,dm], the quartic curve corresponding

Ψ[d1,...,dm](p) ∈ U is defined by f1 · · · fm + q2 = 0.

Lemma 7.3. If Qu is defined by f + q2 = 0 with f ∈ Γ(4) and q ∈ Γ(2), then Yu
has a divisor that is mapped isomorphically to the divisor {f = 0} of P2.

Proof. The surface Yu is defined by w2 = f + q2, where w is a new variable, and
hence contains a divisor defined by f = w − q = 0. It is obvious that πu maps this
divisor to the divisor {f = 0} of P2 isomorphically. □

7.2. Triangles of bitangents. Recall that Lu is the set of Y -lifts l of bitangents
l̄ ∈ Lu of Qu.

Definition 7.4. A triangle on Yu is a subset {l1, l2, l3} of Lu such that ⟨l1, l2⟩Y =
⟨l2, l3⟩Y = ⟨l3, l1⟩Y = 1. A liftable triangle of bitangents of Qu is a subset {l̄1, l̄2, l̄3}
of Lu that is the image of a triangle on Yu by πu.

Let l̄1, l̄2, l̄3 be bitangents of Qu. We choose Y -lifts l1, l2, l3 ∈ Lu of l̄1, l̄2, l̄3 in
such a way that ⟨l1, l2⟩Y = ⟨l2, l3⟩Y = 1. Then {l̄1, l̄2, l̄3} is liftable if and only if
⟨l3, l1⟩Y = 1.

Let Tu be the set of triangles on Yu. We have calculated Lu ⊂ SYu explicitly.
Using this data, we enumerate Tu, and see that |Tu| = 2520. Let

Tu := Tu/⟨ιu⟩
be the set of liftable triangles of bitangents of Qu.

Corollary 7.5. There exist exactly |Tu| = 1260 liftable triangles. □

By Theorem 3.1, we obtain the following:

Proposition 7.6. By the monodromy, π1(U , b) acts transitively on Tb and hence
on T b. □

Proposition 7.7. Let l̄1, l̄2, l̄3 be bitangents of Qu. Suppose that l̄i is defined
by fi = 0 for i = 1, . . . , 3, where fi ∈ Γ(1). Then {l̄1, l̄2, l̄3} is liftable if and
only if there exist polynomials f4 ∈ Γ(1) and q ∈ Γ(2) such that Qu is defined by
f1f2f3f4 + q2 = 0.
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Proof. The if-part follows from Lemma 7.3. Let τ̄ : T → U be the finite étale
covering obtained from the family {Tu |u ∈ U }. Then T is irreducible by Propo-
sition 7.6. Let p := (f ′1, . . . , f

′
4, q

′) be a point of V[1,1,1,1], and we put

u′ := Ψ[1,1,1,1](p) ∈ U

where V[1,1,1,1] and Ψ[1,1,1,1] are given in Definition 7.2. Let l̄′i ⊂ P2 be the line

{f ′i = 0}. By the if-part, we have {l̄′1, l̄′2, l̄′3} ∈ Tu′ . By p 7→ {l̄′1, l̄′2, l̄′3}, we obtain a
morphism ΨT : V[1,1,1,1] → T . Since τ̄ ◦ΨT = Ψ[1,1,1,1], τ̄ is étale, T is irreducible,
and Ψ[1,1,1,1] is dominant, we conclude that ΨT is dominant. Since u ∈ U is general,
we obtain the proof. □

Corollary 7.8. There exists a set Ru consisting of 315 subsets {l̄a, l̄b, l̄c, l̄d} ⊂ Lu

of size 4 with the following properties: a subset {l̄i, l̄j , l̄k} ⊂ Lu of size 3 is liftable

if and only if there exists an element {l̄a, l̄b, l̄c, l̄d} ∈ Ru containing {l̄i, l̄j , l̄k}. □

7.3. Pairs of splitting conics. Recall that Fu ⊂ SYu is the set of classes [c] of
Y -lifts c of 4-tangent conics c̄ of Qu, and that Fu = Fu/⟨ιu⟩ is regarded as the set of
connected families of 4-tangent conics of Qu, or equivalently as the set of connected
families of splitting conics of Qu. For a splitting conic c̄, let [c̄] ∈ Fu denote the
connected family containing c̄. By Theorem 3.1, we obtain the following:

Proposition 7.9. By the monodromy, π1(U , b) acts transitively on Fb and hence
on F b. □

Definition 7.10. Let c̄ be a splitting conic of Qu. We say that a decomposition
π∗
u(c̄) = c+ c′ is normal if each of c and c′ is a Y -lift of c̄.

Note that, if c̄ is smooth, then the decomposition π∗
u(c̄) = c + c′ is normal,

whereas if c̄ is a sum of two bitangents l̄ + l̄′, then π∗
u(c̄) = c + c′ being normal

means that c = l + l′ with ⟨l, l′⟩Y = 1.

Definition 7.11. Let c̄1 and c̄2 be splitting conics of Qu, and let π∗
u(c̄1) = c1 + c′1

and π∗
u(c̄2) = c2 + c′2 be the normal decompositions. We put

I([c̄1], [c̄2]) :=

[
⟨c1, c2⟩Y ⟨c1, c′2⟩Y
⟨c′1, c2⟩Y ⟨c′1, c′2⟩Y

]
.

Since we can make switchings c1 ↔ c′1 and c2 ↔ c′2, the matrix I([c̄1], [c̄2]) is
well-defined only up to the transpositions of the two rows and of the two columns.

We have calculated Fu ⊂ Su explicitly. Using this data, we see that the matrix
I([c̄1], [c̄2]) is one of the following:

IA :=

[
0 4
4 0

]
or

[
4 0
0 4

]
,

IB :=

[
2 2
2 2

]
,

IC :=

[
1 3
3 1

]
or

[
3 1
1 3

]
.

Proposition 7.12. Let c̄1 = {g1 = 0} and c̄2 = {g2 = 0} be splitting conics of Qu.
Consider the following conditions:

(i) [c̄1] = [c̄2], that is, c̄1 and c̄2 belong to the same connected family.
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(ii) The matrix I([c̄1], [c̄2]) is equal to IA.
(iii) There exists a polynomial q ∈ Γ(2) such that Qu is defined by g1g2 + q2 = 0.

Then we have (iii) =⇒ (ii) ⇐⇒ (i). If (i) holds and c̄1 and c̄2 are general in the
connected family [c̄1] = [c̄2] ∈ Fu of splitting conics, then (iii) holds.

Proof. The implication (i) =⇒ (ii) follows immediately from Table 2.1, and the
implication (iii) =⇒ (ii) follows from Lemma 7.3. Suppose that (ii) holds. Let
π∗
u(c̄1) = c1+ c

′
1 and π∗

u(c̄2) = c2+ c
′
2 be the normal decompositions. Interchanging

c2 and c′2 if necessary, we can assume that ⟨c1, c2⟩Y = 0. We put f1 := η∗u(c1)
and f2 := η∗u(c2). Note that f1 is a fiber of the elliptic fibration ϕ1 ∈ Ells(Xu)
corresponding to the class [c1] ∈ Fu of c1 by Fu

∼= Ells(Xu). Since ⟨f1, f2⟩X =
2⟨c1, c2⟩Y = 0, we conclude that f2 is a fiber of ϕ1, that is, the elliptic fibration
corresponding to [c2] ∈ Fu

∼= Ells(Xu) is equal to ϕ1. Therefore c̄1 and c̄2 belong to
the same connected family of splitting conics, and (i) holds. Thus (iii) =⇒ (ii) ⇐⇒
(i) is proved.

Suppose that [c̄1] = [c̄2]. Let σ : F → U be the finite étale covering defined by
the family {Fu |u ∈ U }. By Proposition 7.9, we see that F is irreducible. Let
p := (g′1, g

′
2, q

′) be a point of V[2,2], and we put u′ := Ψ[2,2](p) ∈ U ;

Qu′ = {g′1g′2 + q′ 2 = 0}.

Let c̄′i be the splitting conic {g′i = 0} of Qu′ for i = 1, 2. By the implication
(iii) =⇒ (i), we have [c̄′1] = [c̄′2] in Fu′ . By p 7→ [c̄′1], we obtain a morphism
ΨF : V[2,2] → F . By the same argument as in the proof of Proposition 7.7, we see
that ΨF is dominant. Since u is general in U , the point (u, [c̄1]) = (u, [c̄2]) is general

in F and the fiber W of ΨF over (u, [c̄1]) is of dimension

dimΓ(2, 2: 2)− dimU = 18− 14 = 4.

Let S := { c̄(t) | t ∈ P1 } be the connected family of splitting conics containing c̄1 and
c̄2. If (g

′
1, g

′
2, q

′) is a point of the fiber W , then we have two members c̄′1 = {g′1 = 0}
and c̄′2 = {g′2 = 0} of S, and thus we have a morphism W → P1 × P1, where P1 is
the base curve of the family S. If two points (g′1, g

′
2, q

′) and (g′′1 , g
′′
2 , q

′′) of W are
mapped to the same point of P1 × P1, then there exist scalars λ1, λ2 ∈ C× such
that g′′1 = λ1g

′
1 and g′′2 = λ2g

′
2. By the dimension reason, we see that W → P1×P1

is dominant. Hence, if c̄1 = {g1 = 0} and c̄2 = {g2 = 0} are general members of
the family S, there exists a polynomial q ∈ Γ(2) such that (g1, g2, q) ∈ W , that is,
Qu is defined by g1g2 + q2 = 0. □

The following two propositions are confirmed by direct computation.

Proposition 7.13. Among the 1953 non-ordered pairs {[c̄1], [c̄2]} of distinct ele-
ments [c̄1], [c̄2] of Fu, exactly 945 pairs satisfy I([c̄1], [c̄2]) = IB, and the remaining
1008 pairs satisfy I([c̄1], [c̄2]) = IC . When u = b, these two sets of pairs are the or-
bits of the monodromy action of π1(U , b) on the set of non-ordered pairs of elements
of F b. □

Recall that each connected family [c] ∈ Fu of Y -lifts of splitting conics contains
exactly 6 reducible members, and the irreducible components l, l′ of a reducible
member satisfy ⟨l, l′⟩Y = 1. We have a surjective map

{ {l, l′} | l, l′ ∈ Lu, ⟨l, l′⟩Y = 1 } → Fu
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defined by {l, l′} 7→ [l] + [l′]. Each fiber of size 6. The following gives how the cases
I([c̄1], [c̄2]) = IB and I([c̄1], [c̄2]) = IC are distinguished.

Proposition 7.14. Let [c1] and [c2] be elements of Fu, and let [c̄1] and [c̄2] be
their images by Fu → Fu. Then I([c̄1], [c̄2]) = IB holds if and only if there exists a
triangle {l1, l2, l3} on Yu such that [c1] = [l1] + [l3] and [c2] = [l2] + [l3]. □

7.4. Pairs of a bitangent and a splitting conic. Let l̄ be a bitangent of Qu with
π∗
u(l̄) = l + l′, and let c̄ be a splitting conic of Qu with the normal decomposition
π∗
u(c̄) = c+ c′. We put

J(l̄, [c̄]) :=

[
⟨l, c⟩Y ⟨l, c′⟩Y
⟨l′, c⟩Y ⟨l′, c′⟩Y

]
.

The matrix J(l̄, [c̄]) is one of the following:

Jα :=

[
0 2
2 0

]
or

[
2 0
0 2

]
,

Jβ :=

[
1 1
1 1

]
.

By direct computation, we confirm the following:

Proposition 7.15. Let l̄ be a bitangent of Qu, and c̄ a splitting conic of Qu. Then
J(l̄, [c̄]) is equal to Jα if and only if the connected family [c̄] ∈ Fu of splitting conics
has a singular member containing l̄ as an irreducible component.

When u = b, the monodromy action of π1(U , b) acts on the set of pairs (l̄, [c̄]) ∈
Lb×F b with J(l̄, [c̄]) = Jα transitively, and the set of pairs (l̄, [c̄]) with J(l̄, [c̄]) = Jβ
also transitively. □

8. Intersection graph

Definition 8.1. An intersection graph is a pentad (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄) such that

• Vl̄ and Vc̄ are finite sets,
• T is a subset of S3

0(Vl̄),
• Ec̄c̄ is a map S2(Vc̄) → {A,B,C}, and
• El̄c̄ is a map Vl̄ × Vc̄ → {α, β}.

Two intersection graphs (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄) and (V ′
l̄
, V ′

c̄ , T
′, E′

c̄c̄, E
′
l̄c̄
) are isomorphic

if there exists a pair of bijections Vl̄
∼= V ′

l̄
and Vc̄ ∼= V ′

c̄ that induces T ∼= T ′,
Ec̄c̄

∼= E′
c̄c̄, and El̄c̄

∼= E′
l̄c̄
.

Definition 8.2. For a Q(m,n)-curve Z as in (1.1), we define an intersection graph

g(Z) := (Vl̄, Vc̄, T, Ec̄c̄, El̄c̄)

by the following:

• Vl̄ is {l̄1, . . . , l̄m} and Vc̄ is {c̄1, . . . , c̄n},
• T is the set of liftable triangles {l̄i, l̄j , l̄k} ⊂ {l̄1, . . . , l̄m},
• Ec̄c̄(c̄i, c̄j) is the type of the matrix I([c̄i], [c̄j ]) defined in Section 7.3, and
• El̄c̄(l̄i, c̄j) is the type of the matrix J(l̄i, [c̄j ]) defined in Section 7.4.

Remark 8.3. By Proposition 7.12, the relation

c̄i ∼ c̄j ⇐⇒ Ec̄c̄(c̄i, c̄j) = A
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i |oi| |T | a0 a1 a2

1 2016 0 0 0 0
2 1008 0 0 0 0
3 30240 4 0 0 6
4 60480 6 0 6 9
5 22680 8 2 10 16
6 181440 8 2 14 12
7 5040 8 4 12 12
8 12096 10 0 30 15
9 60480 10 2 24 19
10 1260 12 6 30 30

Table 9.1. The orbit decomposition for (m,n) = (6, 0)

is an equivalence relation on Vc̄, and the functions Ec̄c̄ and El̄c̄ are compatible with
this equivalence relation.

Remark 8.4. When n = 0, the intersection graph equal to the two-graph in [5].

It is obvious that, if ζ and ζ ′ are in the same connected component of Z(m,n),
the intersection graphs g(Zζ) and g(Zζ′) are isomorphic. The converse is not true
in general, as examples in the next section show.

9. Examples

9.1. The case (m,n) = (6, 0). We have |P (6,0)
b | = 376740. The action of W (E7)

decomposes P
(6,0)
b into orbits as in Table 9.1. For each orbit oi ⊂ P

(6,0)
b , we choose

a point ζ ∈ oi and indicate the following data of the intersection graph g(Zζ) of
Zζ = Qu + l̄1 + · · · + l̄6: |T | = k is the number of the liftable triangles t1, . . . , tk
in {l̄1, . . . , l̄6}, and aν is the number of pairs {ti, tj} of liftable triangles such that
|ti ∩ tj | = ν. The orbit o1 and o2 cannot be distinguished by the two-graph (Vl̄, T ),

but they belong to different W (E7)-orbits, and hence the corresponding Q(6,0)-
curves are of different homeomorphism types.

9.2. The case n = 0. We continue to consider the case where n = 0. From the
two-graph g = (Vl̄, T ), we can construct a graph g̃ whose set of vertices is T and
whose edge connecting tµ, tν ∈ T has weight |tµ ∩ tν |. If the graphs g̃ and g̃′ are
not isomorphic as graphs with weighted edges, then the two-graphs g and g′ are
not isomorphic. Using this method, we prove the following:

Proposition 9.1. Except for the two orbits o1 and o2 in the case m = 6 described

in Section 9.1, all W (E7)-orbits of P
(m,0)
b are distinguished by their two-graphs. □

Example 9.2. Let o′1 and o′2 be the orbits in P
(22,0)
b containing 22-tuples obtained

by taking the complement in Lb of 6-tuples in the orbits o1 ⊂ P
(6,0)
b and o2 ⊂ P (6,0)

above, respectively. Let g′1 and g
′
2 be the two-graphs of o

′
1 and o

′
2. We have |T | = 600

for both g′1 and g′2. The associated graphs g̃′1 and g̃′2 with weighted edges are not
isomorphic. The graph g̃′1 has exactly 8203640 triples {tλ, tµ, tν} of liftable triangles
with weight |tλ ∩ tµ| = |tµ ∩ tν | = |tν ∩ tλ| = 0, whereas the number of such triples
in g̃′2 is 8203760.
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i edge labels orbit sizes

1 AAA 63
2 ABB 1890
3 ACC 2016
4 BBB 3780 + 315
5 BBC 15120
6 BCC 15120
7 CCC 5040 + 336

Table 9.2. The orbit decomposition for (m,n) = (0, 3)

i El̄c̄ Ec̄c̄ orbit sizes

1 [[α, α], [α, α]] A 3780 + 378
2 [[α, α], [α, α]] B 3780 + 1890
3 [[α, α], [α, α]] C 15120
4 [[α, α], [α, β]] B 60480
5 [[α, α], [α, β]] C 60480 + 12096
6 [[α, α], [β, β]] A 12096
7 [[α, α], [β, β]] B 30240
8 [[α, α], [β, β]] C 60480
9 [[α, β], [α, β]] B 45360 + 7560
10 [[α, β], [α, β]] C 30240
11 [[α, β], [β, α]] B 60480
12 [[α, β], [β, α]] C 30240 + 6048
13 [[α, β], [β, β]] B 120960
14 [[α, β], [β, β]] C 120960
15 [[β, β], [β, β]] A 7560
16 [[β, β], [β, β]] B 22680 + 3780
17 [[β, β], [β, β]] C 45360

Table 9.3. The orbit decomposition for (m,n) = (2, 2)

9.3. The case (m,n) = (0, 3). By Remark 8.3, the three edges of the graph

(Vc̄, Ec̄c̄) are labelled as in the second column of Table 9.2. The set P
(0,3)
b of size

43680 is decomposed into nine W (E7)-orbits with sizes given in the third column
of Table 9.2.

9.4. The case (m,n) = (2, 2). There exist 17 intersection graphs indicated in
Table 9.3, where Ec̄c̄ is shown by the type of I([c̄1], [c̄2]), and

El̄c̄ := [[J(l̄1, [c̄1]), J(l̄1, [c̄2])], [J(l̄2, [c̄1]), J(l̄2, [c̄2])]].

The set P
(2,2)
b of size 762048 is decomposed into 23 orbits by the action of W (E7),

and their sizes are given in the 4th column of Table 9.3.
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