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Abstract. By constructing explicit examples, we show that the method of

Quebbemann yields many isomorphism classes of extremal lattices of rank 64.
Many of these examples have no non-trivial automorphisms.

1. Introduction

By a lattice, we mean an integral positive-definite lattice. Let L be an even
unimodular lattice with the bilinear form 〈 , 〉L : L× L → Z. We put

min(L) := min{ 〈x, x〉L | x ∈ L, x 6= 0 }.
It is well-known that the rank n of L is divisible by 8, and that min(L) satisfies

(1.1) min(L) ≤ 2 + 2
⌊ n

24

⌋
.

We say that an even unimodular lattice L of rank n is extremal if the equality holds
in (1.1). Extremal lattices are an important research subject, because they give rise
to sphere packings of high density.

Not so many explicit examples of extremal lattices are known. Moreover, since
the construction of these examples involves very special algebraic objects, each of
the known examples has a large automorphism group. For example, the automor-
phism group O(Λ) of the Leech lattice Λ is of order 222 · 39 · 54 · 72 · 11 · 13 · 23.

On the other hand, it was shown in [7] that the number of isomorphism classes
of extremal lattices of rank 40 is > 8.45 × 1051. Since this bound was proved by
means of a mass formula, we do not obtain explicit examples of extremal lattices
of rank 40 from this result.

We consider extremal lattices of rank 64. Quebbemann [9] gave a method to
construct extremal lattices Q of rank 64 from certain ternary codes B. We call an
extremal lattice of rank 64 a Quebbemann lattice if it is obtained by (a generalization
of) this method. See Section 2 for the precise definition. A remarkable property of
Quebbemann’s construction is that the condition on the ternary code B required
in order for the lattice Q to be extremal is an open condition. Therefore we expect
that, by generating sufficiently general ternary codes B, we obtain many extremal
lattices of rank 64. Another nice feature of this construction is that we can calculate
the set Min(Q) of non-zero minimal-norm vectors of a Quebbemann lattice Q (that
is, the set of vectors v with 〈v, v〉Q = 6). It turns out that, by means of Min(Q), it is
possible to compute the automorphism group ofQ, and to compare the isomorphism
class of Q with isomorphism classes of other Quebbemann lattices.
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2 I. SHIMADA

The purpose of this note is to generalize Quebbemann’s construction slightly, and
to show that this method indeed yields many mutually non-isomorphic extremal
lattices of rank 64, by choosing the code B (pseudo-)randomly, and that their
automorphism groups are often very small. Our main result below is proved by
producing Quebbemann lattices Q explicitly.

Theorem 1.1. Quebbemann’s method yields

(1) at least 300 isomorphism classes of extremal lattices Q of rank 64 such that
O(Q) = {±1}, and

(2) at least 100 isomorphism classes of extremal lattices Q of rank 64 such that
O(Q) ∼= {±1} × Z/8Z.

See Section 2 for the method to produce Quebbemann lattices, Section 3.1 for a
method to enumerate minimal-norm vectors, Section 3.2 for a method to distinguish
isomorphism classes, and Section 3.3 for the computation of the automorphism
groups. We exhibit a few examples in detail in Section 4. The computation data of
a part of the lattices in Theorem 1.1 is available from the author’s web-page [11].
(The whole data is too large to be put on a website.) These data are written in the
Record format of GAP [12].

In Chapter 8.3 (d) of [2], Conway and Sloane constructed a Quebbemann lattice
that is different from the one given in Quebbemann’s original paper [9], and sug-
gested that there exist several isomorphism classes of Quebbemann lattices. In [8],
Quebbemann showed by means of a mass formula that there exist at least two iso-
morphism classes. The ease with which we can make non-isomorphic Quebbemann
lattices suggests that the number of isomorphism classes is very huge.

Unimodular lattices with no non-trivial automorphisms have been studied by
many authors since the work of Bannai [1]. In [5], an even unimodular lattice of
rank 64 without non-trivial automorphisms is constructed. This lattice is, however,
not extremal.

In [6], Nebe constructed an extremal lattice of rank 64 by a different method.
The order of the automorphism group is at least 587520. In [3] and [4], the existence
of extremal Type II Z2k-codes of length 64 was shown. The isomorphism classes
and the automorphism groups of the associated extremal lattices are, however, not
clear. In [10], another extremal lattice of rank 64 was constructed by means of a
generalized quadratic residue code. Its automorphism group is of order 119040.

Thanks are due to Professor Masaaki Harada and the anonymous referees for
their comments on the first version of this paper.

Conventions. Elements of a vector space or a lattice are written as row vectors.
For a lattice L or a quadratic space L, we denote by 〈 , 〉L the symmetric bilinear
form on L. The automorphism group O(L) of (L, 〈 , 〉L) acts on L from the right.

2. Quebbemann lattice

2.1. Quebbemann’s construction. We recall Quebbemann’s construction [9] of
extremal lattices of rank 64. See also Chapter 8.3 (d) of [2]. In fact, our construction
below is slightly more general than Quebbemann’s original.

Let E be the root lattice of type E8, that is, E is the lattice of rank 8 generated
by vectors e1, . . . , e8 with 〈ei, ei〉E = 2 that form the dual graph in Figure 2.1. It is
well-known that E is unimodular. We consider the F3-quadratic space U := E/3E.
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c e1
e2 e3 e4 e5 e6 e7 e8

c c c c c c c
Figure 2.1. Dynkin diagram of type E8

A subspace V of U is said to be maximal isotropic if dimV = 4 and 〈v, v〉U = 0
holds for all v ∈ V . There exists a direct sum decomposition

(2.1) U = V ⊕W, where V and W are maximal isotropic subspaces.

Let D be the set of ordered pairs (V,W ) of maximal isotropic subspaces of U
satisfying V ∩W = 0. Since 〈 , 〉U is non-degenerate, we have a natural isomorphism

(2.2) W ∼= Hom(V,F3) for each (V,W ) ∈ D.

Let S denote the orthogonal direct sum E8 of eight copies of E. Then S is uni-
modular of rank 64. For i = 1, . . . 8, we denote by Ui the ith-factor of S/3S = U8.
We choose and fix an element

∆ := ( (V1,W1), . . . , (V8,W8) )

of D8. We put T := {1, . . . , 8}, and for a subset J of T , we put

UJ :=
⊕
j∈J

Uj , VJ :=
⊕
j∈J

Vj , WJ :=
⊕
j∈J

Wj .

Then we have

S/3S = UT = VT ⊕WT .

We consider UT , VT and WT as F3-vector spaces. Let B be a linear subspace of VT

with dimB = 8. Note that WT can be regarded as the dual space of VT by (2.2).
We put

B⊥ := { z̄ ∈ WT | 〈z̄, ȳ〉UT
= 0 for all ȳ ∈ B }.

Then we have dimB⊥ = 24. Let π : S → S/3S = UT denote the natural projection.
For any elements x̄, x̄′ of B ⊕B⊥ ⊂ UT , we have 〈x̄, x̄′〉UT

= 0, and hence, for any
elements x, x′ of π−1(B⊕B⊥), we have 〈x, x′〉S ≡ 0 mod 3. We denote by Q(∆, B)
the lattice whose underlying Z-module is π−1(B ⊕ B⊥) and whose bilinear form
〈 , 〉Q is given by

〈 , 〉Q :=
1

3
〈 , 〉S .

Then Q := Q(∆, B) is an even lattice, and we have

detQ =

(
1

3

)64

detS · [S : Q]2 =

(
1

3

)64 ( |UT |
|B ⊕B⊥|

)2

= 1.

Definition 2.1. For J = {i, j} ⊂ T with |J | = 2, we denote by pJ : B → VJ

the projection to the J-factor. We say that B satisfies p2-condition if pJ is an
isomorphism for all J ⊂ T with |J | = 2.

Remark 2.2. If the projection pJ : B → VJ is an isomorphism, then the projection
pT\J : B

⊥ → WT\J to the (T \ J)-factor is also an isomorphism. Hence, if B

satisfies p2-condition, then B⊥ satisfies the following p6-condition: for all J ′ ⊂ T
with |J ′| = 6, the projection pJ′ : B⊥ → WJ′ to the J ′-factor is an isomorphism.
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It is obvious that p2-condition imposes an open condition on the Grassmannian
variety of 8-dimensional subspaces B of VT .

Proposition 2.3 (Quebbemann [9]). Let UT = VT ⊕WT be the decomposition of
UT = S/3S associated with an element ∆ of D8, and let B be an 8-dimensional
subspace of VT . Suppose that B satisfies p2-condition. Then min(Q(∆, B)) = 6
holds, that is, Q(∆, B) is an extremal lattice of rank 64.

Proof. We write x ∈ Q(∆, B) as x = (x1, . . . , x8), where xi ∈ E is the ith compo-
nent by the embedding Q(∆, B) ↪→ S = E8. We put

x̄ := π(x) = (x̄1, . . . , x̄8) ∈ B ⊕B⊥ ⊂ UT ,

where x̄i ∈ Ui is xi mod 3E. Decomposing each x̄i as ȳi + z̄i with ȳi ∈ Vi and
z̄i ∈ Wi, we obtain x̄ = ȳ + z̄, where

ȳ := (ȳ1, . . . , ȳ8) ∈ B, z̄ := (z̄1, . . . , z̄8) ∈ B⊥.

Suppose that 〈x, x〉Q ≤ 4. We show that x = 0. Since

(2.3) 〈x, x〉S =
∑

〈xi, xi〉E ≤ 12,

we see that at least two of the components xi are zero. Since at least two of ȳi are
zero, the assumption that B satisfy p2-condition implies ȳ = 0. Therefore we have
x̄ = z̄. In particular, each x̄i belongs to Wi. Since Wi is isotropic in U = E/3E, we
have 〈xi, xi〉E ≡ 0 mod 3 and hence 〈xi, xi〉E ≡ 0 mod 6. Combining this with (2.3),
we see that at most two of xi are non-zero. Since B⊥ satisfies p6-condition by
Remark 2.2, we see that z̄ = 0. Therefore x̄ = 0, and hence x ∈ 3S. If x were
non-zero, we would have 〈x, x〉S ≥ 18, which is a contradiction. □

Definition 2.4. An extremal lattice of rank 64 of the form Q(∆, B), where ∆ is
an element of D8 and B is an 8-dimensional subspace of VT satisfying p2-condition,
is called a Quebbemann lattice.

2.2. Maximal isotropic subspaces of U . Recall that the lattice E is equipped
with a basis e1, . . . , e8 in Figure 2.1. We write elements of E or of U = E/3E
as row vectors with respect to e1, . . . , e8. The automorphism group O(E) of E is
generated by the reflections

x 7→ x − 〈x, ei〉E ei

with respect to the vectors ei (i = 1, . . . , 8) of norm 2, and is of order 214 ·35 ·52 ·7.
The natural homomorphism O(E) → O(U) to the automorphism group of the F3-
quadratic space U is injective. Let V be the set of maximal isotropic subspaces V
of U . We can prove the following by the standard orbit stabilizer algorithm using
GAP [12].

Proposition 2.5. The size of V is 2240, and O(E) acts transitively on V. □
Let V0 ∈ V be the maximal isotropic subspace with basis v1, . . . , v4 in Table 2.1.

The stabilizer subgroup Stab(V0) of V0 in O(E) is of order 28 · 35 · 5. Let W(V0) be
the set of all W ∈ V such that V0 ∩W = 0. We have |W(V0)| = 729.

Proposition 2.6. The action of Stab(V0) decomposes W(V0) into two orbits of size
648 and 81. The orbit of size 648 contains W I with basis v∗I1 , . . . , v∗I4 in Table 2.1,
and the orbit of size 81 contains W II with basis v∗II1 , . . . , v∗II4 in Table 2.1. □
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v1 = (0, 0, 0, 0, 0, 0, 1, 2), v2 = (0, 0, 0, 1, 2, 0, 0, 0),
v3 = (0, 1, 0, 0, 1, 0, 0, 1), v4 = (1, 0, 2, 0, 0, 0, 0, 1).

v∗I1 = (1, 2, 1, 0, 2, 2, 0, 2), v∗I2 = (0, 1, 2, 0, 0, 0, 0, 0),
v∗I3 = (2, 2, 1, 0, 1, 0, 2, 2), v∗I4 = (1, 0, 2, 0, 1, 0, 2, 1).

v∗II1 = (1, 2, 1, 0, 2, 2, 0, 2), v∗II2 = (1, 1, 1, 0, 0, 0, 0, 1),
v∗II3 = (0, 2, 0, 0, 1, 0, 2, 0), v∗II4 = (1, 2, 2, 2, 1, 0, 2, 0).

Table 2.1. Bases of maximal isotropic subspaces V0,W
I,W II

Remark 2.7. The basis v∗1 , . . . , v
∗
4 of W above is dual to the basis v1, . . . , v4 of V0

by the canonical pairing (2.2).

Corollary 2.8. The action of O(E) decomposes D into two orbits. One orbit
contains (V0,W

I) with the stabilizer subgroup GI of order 480, and the other orbit
contains (V0,W

II) with the stabilizer subgroup GII of order 3840. □

2.3. Construction of Q(∆, B) with an automorphism of order 8. We fix a
pair (V,W ) ∈ D, and consider the 8-tuple

∆0 := ((V,W ), . . . , (V,W )) ∈ D8.

Let G be the stabilizer subgroup of (V,W ) in O(E), and let γ be an element of
order 8 in G. (The stabilizer subgroup GI (resp. GII) in Corollary 2.8 contains
120 elements (resp. 1360 elements) of order 8.) We define an automorphism γ̃ of
S = E8 by

x = (x1, . . . , x8) 7→ xγ̃ = (xγ
2 , . . . , x

γ
8 , x

γ
1).

The action of γ̃ on S/3S = UT preserves the decomposition UT = VT ⊕WT associ-
ated with ∆0 above. For v ∈ VT = V 8, we denote by B(γ, v) the linear subspace
of VT generated by the orbit of v under the action of 〈γ̃〉 ∼= Z/8Z. If B(γ, v) is
of dimension 8 and satisfies p2-condition, then Q(∆0, B(γ, v)) is a Quebbemann
lattice invariant under the action of 〈γ̃〉 on S. In particular, the automorphism
group O(Q) of Q := Q(∆0, B(γ, v)) contains an element

γ̃Q := γ̃|Q

of order 8.

3. Computations on Quebbemann lattices

We fix an 8-tuple ∆ = ((V1,W1), . . . , (V8,W8)) ∈ D8. Let B be an 8-dimensional
linear subspace of VT = V1 ⊕ · · · ⊕ V8 satisfying p2-condition, and we consider the
extremal lattice Q(∆, B) of rank 64.

3.1. Enumeration of minimal-norm vectors. In this section, we explain a
method to calculate the set

Min(Q(∆, B)) := {x ∈ Q(∆, B) | 〈x, x〉Q = 6 } = {x ∈ Q(∆, B) | 〈x, x〉S = 18 }
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a |N(a,E)| |N(a, U)|
0 1 1
2 240 240
4 2160 2160
6 6720 2240

Table 3.1. N(a,E) and N(a, U)

of all minimal-norm vectors. A norm-type is an 8-tuple [n1, . . . , n8] of non-negative
even integers ni such that

∑
ni = 18. For x = (x1, . . . , x8) ∈ Min(Q(∆, B)), we

put
ν(x) := [〈x1, x1〉E , . . . , 〈x8, x8〉E ],

and call it the norm-type of x. For a non-negative even integer a, we put

N(a,E) := { v ∈ E | 〈v, v〉E = a },
and let N(a, U) ⊂ U be the image of N(a,E) by the natural projection E → U .
(See Table 3.1.) A minimal-norm vector x ∈ Min(Q(∆, B)) is said to be of divisible
type if x ∈ 3S holds, or equivalently, if only one of x1, . . . , x8 (say xi) is non-zero
and xi is written as 3x′

i by some x′
i ∈ N(2, E), or equivalently, if the norm-type

ν(x) of x is obtained by a permutation of components from [0, . . . , 0, 18]. Since
|N(2, E)| = 240, there exist exactly 240×8 minimal-norm vectors of divisible type.

Proposition 3.1. Let x ∈ Q(∆, B) be a minimal-norm vector that is not of divisible
type. Then the norm-type ν(x) of x is obtained by a permutation of components
from one of the following:

(3.1)

[0, 0, 0, 0, 0, 6, 6, 6] (of type 0563),
[0, 2, 2, 2, 2, 2, 4, 4] (of type 012542),
[0, 2, 2, 2, 2, 2, 2, 6] (of type 012661),
[2, 2, 2, 2, 2, 2, 2, 4] (of type 2741).

Proof. As in the proof of Proposition 2.3, we see that x̄ := π(x) ∈ B ⊕ B⊥ is
decomposed uniquely as ȳ + z̄, where ȳ = (ȳ1, . . . , ȳ8) ∈ B and z̄ = (z̄1, . . . , z̄8) ∈
B⊥. Suppose that ȳ = 0. Since x is not of divisible type, we see that x̄ = z̄ is
not zero. Since B⊥ satisfies p6-condition, at most five of z̄1, . . . , z̄8 are zero. Since
x̄i = z̄i ∈ Wi, we have 〈xi, xi〉E ≡ 0 mod 3 and hence 〈xi, xi〉E ∈ {0, 6, 12, 18}.
Combining these, we see that ν(x) is of type 0563. Suppose that ȳ 6= 0. Since
B satisfies p2-condition, at most one of ȳ1, . . . , ȳ8 is zero. Hence at most one of
x1, . . . , x8 is zero. Therefore ν(x) is either of type 012542 or 012661 or 2741. □

For k = 1, . . . , 8, let e
(k)
1 , . . . , e

(k)
8 be the copy of the basis e1, . . . , e8 of E in the

kth factor of S = E8. We use the ordered set

(3.2) e
(1)
1 , . . . , e

(1)
8 , e

(2)
1 , . . . , e

(2)
8 , . . . . . . . . . , e

(8)
1 , . . . , e

(8)
8

of vectors as a basis of S and of S/3S = U8 = UT .

Proposition 3.2. The ternary code B⊕B⊥ ⊂ UT is generated by row vectors of a
32× 64 matrix of the echelon form as in Figure 3.1, where I8 is the identity matrix
of size 8, Ai are 4 × 8 matrices whose row vectors form a basis of Wi ⊂ U for
i = 3, . . . , 6, Cµν are some 8× 8 matrices, and the blank blocks are zero matrices.
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I8

I8

A3

A4

A5

A6

C13 C14 C15 C16 C17 C18

C23 C24 C25 C26 C27 C28

C37 C38

C47 C48

Figure 3.1. Echelon form of a generator matrix of B ⊕B⊥

Proof. Since the projection p12 : B → V1 ⊕ V2 to the (12)-factor and the projection
p 78 : B

⊥ → W1 ⊕ · · · ⊕ W6 to the (123456)-factor are both isomorphisms, the
projection

P12 : B ⊕B⊥ → U ⊕ U

to the (12)-factor is surjective, and its kernel KerP12 is mapped isomorphically to
W3 ⊕ · · · ⊕W6 by the projection

P3456 : KerP12 → U ⊕ U ⊕ U ⊕ U

to the (3456)-factor. □

We make the symmetric group S8 act on S = E8 by

(x1, . . . , x8)
σ := (xσ(1), . . . , xσ(8)) for σ ∈ S8.

For ∆ = ((V1,W1), . . . , (V8,W8)) ∈ D8, we put

∆σ := ((Vσ(1),Wσ(1)), . . . , (Vσ(8),Wσ(8))).

Then we have Q(∆, B)σ = Q(∆σ, Bσ) in S. If x ∈ Min(Q(∆, B)) is of norm-type
[n1, . . . , n8], then xσ ∈ Min(Q(∆σ, Bσ)) is of norm-type [nσ(1), . . . , nσ(8)].

Let n = [n1, . . . , n8] be a norm-type obtained by a permutation of components
from one of the norm-types in (3.1). We calculate the set M(n) of codewords
x̄ = π(x) ∈ B ⊕ B⊥ corresponding x ∈ Min(Q(∆, B)) with ν(x) = n by the
following method.

First we choose a permutation τ ∈ S8 such that nτ = [nτ(1), . . . , nτ(8)] satisfies

nτ(1) ≤ nτ(2) ≤ . . . ≤ nτ(8).

We then transform a generator matrix of (B ⊕B⊥)τ = Bτ ⊕Bτ⊥ into the echelon
form in Figure 3.1, and search for x̄1, . . . , x̄8 ∈ U satisfying conditions (3.3) below
by back track search; that is, if we find (x̄1, . . . , x̄i) satisfying the first i conditions
of (3.3), then we search for x̄i+1 satisfying the (i + 1)st condition of (3.3). Recall
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that N(ni, U) is the image of N(ni, E) by the natural map E → U .

(3.3)

x̄1 ∈ N(nτ(1), U),

x̄2 ∈ N(nτ(2), U),

x̄3 := x̄1C13 + x̄2C23 + ū3A3 ∈ N(nτ(3), U), where ū3 ∈ F4
3,

x̄4 := x̄1C14 + x̄2C24 + ū4A4 ∈ N(nτ(4), U), where ū4 ∈ F4
3,

x̄5 := x̄1C15 + x̄2C25 + ū5A5 ∈ N(nτ(5), U), where ū5 ∈ F4
3,

x̄6 := x̄1C16 + x̄2C26 + ū6A6 ∈ N(nτ(6), U), where ū6 ∈ F4
3,

x̄7 := x̄1C17 + x̄2C27 + (ū3, ū4)C37 + (ū5, ū6)C47 ∈ N(nτ(7), U),

x̄8 := x̄1C18 + x̄2C28 + (ū3, ū4)C38 + (ū5, ū6)C48 ∈ N(nτ(8), U).

If we find x̄ = (x̄1, . . . , x̄8) satisfying all conditions in (3.3), then x̄ belongs toM(nτ )
and hence

x̄τ−1

= (x̄τ−1(1), . . . , x̄τ−1(8))

is an element of M(n). All elements of M(n) are obtained in this way.
Using the maps N(a,E) → N(a, U), we can make from M(n) the set M(n) of

vectors x ∈ Min(Q(∆, B)) with ν(x) = n. Taking the union of these sets M(n)
together with the set of minimal-norm vectors of divisible type, we obtain the set
Min(Q(∆, B)) of all minimal-norm vectors of Q(∆, B).

Remark 3.3. Thanks to the permutation τ , we have |N(nτ(i), U)| ≤ |N(nτ(j), U)|
for i < j, and hence, in the back track search above, there exist few possibilities
of x̄i for small indexes i. By this trick, the enumeration of Min(Q(∆, B)) becomes
tractable.

Remark 3.4. We know that |Min(L)| = 2611200 for an extremal lattice L of rank
64 by the theory of theta series and modular forms. (See, for example, Chapter
7.7 of [2].) Hence we can confirm easily that we left no minimal-norm vectors
uncounted.

3.2. Isomorphism classes. In order to distinguish isomorphism classes of two
extremal lattices L and L′ of rank 64, we use the distribution of intersection patterns
of minimal-norm vectors. Let Min(L) be the set of vectors v ∈ L with 〈v, v〉L = 6.
For v, v′ ∈ Min(L), we have 〈v, v′〉L ∈ {0,±1,±2,±3,±6}. For k = 0, 1, 2, 3, 6, we
put

ak(v) :=
1

2
| { v′ ∈ Min(L) | 〈v, v′〉L = k or − k } |.

We have a6(v) = 1 and
∑

ak(v) = 1305600. The triple a(v) := [a1(v), a2(v), a3(v)]
is called the intersection pattern of v. For a triple a = [a1, a2, a3] of non-negative
integers with a1 + a2 + a3 + 1 ≤ 1305600, we put

AL(a) := { v ∈ Min(L) | a(v) = a }, AL(a) :=
1

2
|AL(a)|,

and call the function AL the distribution of intersection patterns. It is obvious that,
if AL 6= AL′ , then L and L′ are not isomorphic.

Remark 3.5. In fact, the calculation of intersection patterns a(v) of all elements v
of Min(Q(∆, B))/{±1} takes most of the computation time in the proof of Theo-
rem 1.1.
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0 0 2 0 1 0 0 1 1 0 2 2 1 0 0 1 1 0 2 1 0 2 2 2
1 1 0 2 2 0 0 1 0 1 0 1 1 0 0 2 0 1 1 0 2 0 1 2

1 0 2 0 0 2 0 0 2 1 0 1 1 0 1 1 1 2 1 2 0 2 1 1

2 1 0 0 1 1 1 1 1 0 1 0 2 1 0 0 1 2 0 0 0 2 2 0

1 1 0 0 2 0 1 2 1 0 2 2 0 0 2 2 2 1 0 1 1 1 2 2

2 0 1 0 2 0 0 1 1 0 0 2 0 2 0 0 1 1 1 0 1 0 1 2
1 0 2 1 2 2 2 1 1 2 2 2 1 1 1 2 1 1 1 2 1 2 2 1
2 2 1 1 2 0 2 2 1 0 2 1 1 0 1 1 1 1 2 1 0 0 2 0


Table 4.1. Matrix G′

0

3.3. Automorphism group. Let L be an extremal lattice of rank 64, and let
Γ be a subgroup of O(L). We will apply Proposition 3.7 below to Γ = {±1} or
Γ = {±1} × 〈γ̃Q〉, where γ̃Q is the automorphism of Q(∆0, B(γ, v)) introduced in
Section 2.3.

Definition 3.6. An ordered list (v1, . . . , v64) of vectors in Min(L) is said to be a
Γ-rigidifying basis if the following hold:

(a) The vectors v1, . . . , v64 form a basis of L⊗Q.
(b) The group Γ acts on the set AL(a(v1)) transitively.
(c) Suppose that i > 1. Then the set

{ v′ ∈ AL(a(vi)) | 〈v′, vj〉L = 〈vi, vj〉L for all j < i }
consists of a single element vi.

Proposition 3.7. If a Γ-rigidifying basis exists, then O(L) coincides with Γ.

Proof. Note that O(L) preserves each subset set AL(a) of Min(L) for any a. In
particular, we have vg ∈ AL(a(v)) for any g ∈ O(L) and any v ∈ L. Let g be
an arbitrary element of O(L). By (b), there exists an element g′ ∈ Γ such that

vg1 = vg
′

1 . By (c), we can prove that vgi = vg
′

i holds for all i = 1, . . . , 64 by induction
on i. Then (a) implies that g = g′. □

4. Examples

4.1. Examples without non-trivial automorphisms. Let V0 be the maximal
isotropic subspace of U with basis v1, . . . , v4 in Table 2.1. By this basis, an element
of V0 is expressed by a vector in F4

3, and hence an element of V 8
0 is expressed by

a vector in F32
3 . Let G0 be the 8 × 32 matrix with components in F3 of the form

[ I8 |G′
0 ], where I8 is the identity matrix of size 8 and G′

0 is given in Table 4.1.
(This matrix G′

0 was produced by choosing components pseudo-randomly.) Let
B0 be the linear subspace of V 8

0 generated by the row vectors of G0. Then B0

satisfies p2-condition. Recall that we have given maximal isotropic subspaces W I

and W II in Table 2.1. Let QI (resp. QII ) be the Quebbemann lattice Q(∆I, B0)
(resp. Q(∆II, B0)), where

∆I = ((V0,W
I), . . . , (V0,W

I)) ∈ D8, ∆II = ((V0,W
II), . . . , (V0,W

II)) ∈ D8.

Then the distributions of intersection patterns of QI and QII are as in Table 4.2.
(The left table is of QI and the right is of QII.) In these tables, the intersection
patterns a = [a1, a2, a3] are sorted by the lexicographic order. We can readily see
that QI and QII are not isomorphic. Both of QI and QII have {±1}-rigidifying
basis, and hence O(QI) and O(QII) are equal to {±1}.
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no. a1 a2 a3 AQI (a)

1 568092 40191 612 1

2 568290 40155 606 1
3 568356 40143 604 3

4 568488 40119 600 2

5 568554 40107 598 2
6 568620 40095 596 3

7 568686 40083 594 2

8 568752 40071 592 6
9 568818 40059 590 6

10 568884 40047 588 9
. . .

110 579840 38055 256 5333

111 579906 38043 254 6275
112 579972 38031 252 7616

113 580038 38019 250 8752

114 580104 38007 248 10065
115 580170 37995 246 11511

116 580236 37983 244 13332

117 580302 37971 242 15370
118 580368 37959 240 17252

119 580434 37947 238 19533

120 580500 37935 236 22294
. . .

170 583800 37335 136 17
171 583866 37323 134 9

172 583932 37311 132 6

173 583998 37299 130 5
174 584130 37275 126 3

175 584196 37263 124 2

176 584262 37251 122 1

total 1305600

no. a1 a2 a3 AQII (a)

1 568422 40131 602 1

2 568488 40119 600 2
3 568554 40107 598 1

4 568620 40095 596 3

5 568686 40083 594 7
6 568752 40071 592 5

7 568818 40059 590 8

8 568884 40047 588 8
9 568950 40035 586 11

10 569016 40023 584 11
. . .

110 580104 38007 248 9761

111 580170 37995 246 11289
112 580236 37983 244 13121

113 580302 37971 242 15330

114 580368 37959 240 17148
115 580434 37947 238 19598

116 580500 37935 236 22119

117 580566 37923 234 24532
118 580632 37911 232 27067

119 580698 37899 230 29774

120 580764 37887 228 32471
. . .

170 584064 37287 128 2
171 584130 37275 126 1

172 584196 37263 124 2

173 584262 37251 122 1
174 584328 37239 120 1

total 1305600

Table 4.2. Distributions of intersection patterns of QI and QII

γ :=



2 1 2 4 3 2 2 1

1 1 1 1 1 1 1 1
−1 −1 −2 −2 −2 −2 −2 −1

−1 0 0 −1 0 0 0 0

0 −1 −1 −1 −1 0 0 0
2 2 3 4 3 2 1 0

−3 −2 −4 −6 −5 −4 −2 −1
2 1 3 4 3 2 1 1


, γ′ :=



1 1 2 2 1 1 1 0

−2 −1 −2 −4 −3 −2 −2 −1
3 2 4 6 5 3 2 1

−2 −2 −4 −5 −4 −3 −2 −1

1 1 2 3 3 3 2 1
−1 −1 −1 −2 −2 −2 −1 0

−1 0 −1 −1 −1 −1 −1 −1

2 1 2 3 2 2 1 1


Table 4.3. Elements of O(E) of order 8

4.2. Examples with an automorphism of order 8. Let γ be an element of
O(E) represented by the matrix in Table 4.3 with respect to the basis e1, . . . , e8 of
E. Then γ is of order 8 and belongs to the stabilizer subgroup GI of (V0,W

I) ∈ D.
Let v = (v1, . . . , v8) ∈ V 8

0 be(
2210 0120 0201 1001 0201 0222 0122 0122

)
,
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no. a1 a2 a3 AQ(a)

1 568026 40203 614 8

2 568092 40191 612 16
3 568290 40155 606 24

4 568356 40143 604 16

5 568422 40131 602 16
. . .

100 580104 38007 248 11240
101 580170 37995 246 12984
102 580236 37983 244 14840

103 580302 37971 242 16712
104 580368 37959 240 18800

105 580434 37947 238 20808
106 580500 37935 236 23184
107 580566 37923 234 25304
108 580632 37911 232 27416

109 580698 37899 230 29720
110 580764 37887 228 32472

. . .
155 583734 37347 138 40

156 583800 37335 136 24
157 583866 37323 134 16
158 583932 37311 132 8

total 1305600

no. a1 a2 a3 AQ′ (a)

1 568092 40191 612 8

2 568224 40167 608 24
3 568290 40155 606 8

4 568488 40119 600 8

5 568686 40083 594 16
. . .

100 580104 38007 248 10688
101 580170 37995 246 12344
102 580236 37983 244 14656

103 580302 37971 242 16064
104 580368 37959 240 19240

105 580434 37947 238 20104
106 580500 37935 236 22984
107 580566 37923 234 25128
108 580632 37911 232 28064

109 580698 37899 230 29128
110 580764 37887 228 32304

. . .
155 583734 37347 138 32

156 583800 37335 136 48
157 583866 37323 134 24
158 583932 37311 132 24

159 583998 37299 130 16

160 584064 37287 128 8
161 584196 37263 124 8

total 1305600

Table 4.4. Distributions of intersection patterns of Q and Q′

where each component vi is written with respect to the basis of V0 in Table 2.1.
Then the subspace B(γ, v) of V 8

0 satisfies p2-condition, and we obtain a Quebbe-
mann lattice Q := Q(∆I, B(γ, v)) with an automorphism γ̃Q of order 8, where
∆I ∈ D8 is given in the previous subsection. By the method of Γ-rigidifying basis,
we see that O(Q) = {±1} × 〈γ̃Q〉. The action of O(Q) decomposes Min(Q) into
2611200/16 = 163200 orbits. The distribution of intersection patterns is given in
Table 4.4 (left).

Let γ′ be an element of O(E) given in Table 4.3, which is of order 8 and belongs
to the stabilizer subgroup GII of (V0,W

II) ∈ D. Let v′ ∈ V 8
0 be(

2220 0102 2120 2220 2202 1202 2220 2112
)
.

Then B(γ′, v′) satisfies p2-condition, and we obtain a Quebbemann lattice Q′ :=
Q(∆II, B(γ′, v′)). We see that O(Q′) = {±1} × 〈γ̃Q′〉, and its action decomposes
Min(Q′) into 163200 orbits. The distribution of intersection patterns is given in
Table 4.4 (right).
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