RATIONAL DOUBLE POINTS ON ENRIQUES SURFACES: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. Introduction

The computational data for the results of the paper [2] is contained in the folder

```
RDPEnriquesFolder.
```

These data is presented in GAP format [1]. The zip-file of this folder is available from the webpage
http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.
The total data is large (more than 20 MB when unzipped). The data Table, which is less than 2 MB and gives more detailed information of Table 1.1 of [2], may be enough for geometric investigation of Enriques surfaces. In the following, we use the notation fixed in the paper [2].

2. GEneral rules on lattices and discriminant forms

2.1. Lattice. Let L be an even lattice of rank n with a Gram matrix GramL with respect to a basis b_{1}, \ldots, b_{n}. An element of L is written as a row vector with respect to b_{1}, \ldots, b_{n}, and hence we have

$$
\langle x, y\rangle=x \cdot \operatorname{GramL} \cdot{ }^{t} y .
$$

An element of $\mathrm{O}(L)$, which acts on L from the right, is expressed by an $n \times n$ matrix M that satisfies

$$
M \cdot \operatorname{GramL} \cdot{ }^{t} M=\operatorname{GramL} .
$$

2.2. Discriminant form. Suppose that a basis b_{1}, \ldots, b_{n} of an even lattice L is fixed. The discriminant form q_{L} of L is then expressed by the record discL with the following items.

- discL.discg $=\left[a_{1}, \ldots, a_{l}\right]$ indicates that the discriminant group $A_{L}=$ L^{\vee} / L of L is isomorphic to

$$
\begin{equation*}
\mathbb{Z} / a_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / a_{l} \mathbb{Z} \tag{2.1}
\end{equation*}
$$

When $A_{L}=L^{\vee} / L$ is trivial, discL.discg is the empty list [].

- discL.reps is an $l \times n$ matrix with components in \mathbb{Q} such that the i th row vector λ_{i} of discL.reps is an element of $L^{\vee} \subset L \otimes \mathbb{Q}$, expressed in terms of the basis b_{1}, \ldots, b_{n} of $L \otimes \mathbb{Q}$, whose class $\bar{\lambda}_{i}:=\lambda_{i} \bmod L \in A_{L}$ generates the i th cyclic factor $\mathbb{Z} / a_{i} \mathbb{Z}$ of (2.1).
- discL.discf is an $l \times l$ matrix whose (i, j)-component is a rational number $\alpha_{i j}$ such that

$$
\begin{cases}\alpha_{i i} \equiv q_{L}\left(\bar{\lambda}_{i}\right) \bmod 2 \mathbb{Z} & \text { if } i=j \\ \alpha_{i j} \equiv b_{L}\left(\bar{\lambda}_{i}, \bar{\lambda}_{j}\right) \quad \bmod \mathbb{Z} & \text { if } i \neq j\end{cases}
$$

where $b_{L}: A_{L} \times A_{L} \rightarrow \mathbb{Q} / \mathbb{Z}$ is the bilinear form associated with q_{L}. Hence we have

$$
\text { discL.reps } \cdot \text { GramL } \cdot{ }^{t} \text { discL.reps } \equiv \text { discL.discf }
$$

where $M \equiv M^{\prime}$ means that all components of $M-M^{\prime}$ are integers and that the diagonal components of $M-M^{\prime}$ are even.

- discL.proj is an $n \times l$ matrix such that the natural projection $L^{\vee} \rightarrow A_{L}$ is given by

$$
v \mapsto v \cdot \text { discL.proj } \bmod \left[a_{1}, \ldots, a_{l}\right]
$$

with respect to the basis b_{1}, \ldots, b_{n} of $L \otimes \mathbb{Q}$ and the generators $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{l}$ of A_{L}. Here we use the notation

$$
\begin{aligned}
& \quad\left(v_{1}, \ldots, v_{l}\right) \bmod \left[a_{1}, \ldots, a_{l}\right]:=\left(v_{1} \bmod a_{1}, \ldots, v_{l} \bmod a_{l}\right) \\
& \text { for }\left(v_{1}, \ldots, v_{l}\right) \in \mathbb{Z}^{l}
\end{aligned}
$$

2.2.1. Subspaces of a discriminant form. Suppose that a record discL of q_{L} is fixed, and that discL.discg is $\left[a_{1}, \ldots, a_{l}\right]$, so that $A_{L}=\mathbb{Z} / a_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / a_{l} \mathbb{Z}$. Then an element $x_{1} \bar{\lambda}_{1}+\cdots+x_{l} \bar{\lambda}_{l}$ of A_{L} is expressed as a row vector

$$
\left[x_{1}, \ldots, x_{l}\right] i n \mathbb{Z}^{l}
$$

A subgroup H of A_{L} is expressed by a list $\left[\xi_{1}, \ldots, \xi_{k}\right]$ of vectors $\xi_{i} \in \mathbb{Z}^{l}$ such that the elements

$$
\bar{\xi}_{1}:=\xi_{1} \bmod \left[a_{1}, \ldots, a_{l}\right], \ldots, \bar{\xi}_{k}:=\xi_{k} \bmod \left[a_{1}, \ldots, a_{l}\right]
$$

of A_{L} generate H.
Each subspace H of A_{L} has a unique standard generating list of elements defined as follows:

Definition 2.1. A standard generating matrix of a subspace H of $A_{L}=\mathbb{Z} / a_{1} \mathbb{Z} \times$ $\cdots \times \mathbb{Z} / a_{l} \mathbb{Z}$ is an $l \times l$ matrix M with integer components such that

- M is in a Hermite normal form, and
- the row vectors of M form a basis of the inverse image \widetilde{H} of H by the natural projection $\mathbb{Z}^{l} \rightarrow A_{L}$.
A_{l}

\qquad

Figure 2.1. Dynkin diagrams of type ADE

For example, if $H=0$, then its standard generating matrix is the diagonal matrix with diagonal components a_{1}, \ldots, a_{l}.
2.2.2. Automorphisms of a discriminant form. Let A_{L} and $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{l}$ be as above. An automorphism γ of the finite abelian group A_{L} is expressed by an $l \times l$ matrix whose i th row vector modulo $\left[a_{1}, \ldots, a_{l}\right]$ expresses $\bar{\lambda}_{i}^{\gamma}$. Suppose that $g \in O(L)$ is given by a matrix M as in Section 2.1. Then g induces an automorphism of q_{L} given by the matrix

$$
\text { discL.reps • } M \cdot \text { discL.proj. }
$$

2.3. Overlattices. Let L^{\prime} be an even overlattice of L. Then a basis $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ of L^{\prime} is specified by an $n \times n$ matrix emb such that $v \mapsto v \cdot \mathrm{emb}$ is the canonical embedding $L \hookrightarrow L^{\prime}$ with respect to the basis b_{1}, \ldots, b_{n} of L and the basis $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ of L^{\prime}. Namely, the row vectors of emb ${ }^{-1}$ are the vector representations of $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ with respect to the basis b_{1}, \ldots, b_{n} of $L \otimes \mathbb{Q}$.

Let H be an isotropic subspace of q_{L}, and let L^{\prime} be the corresponding even overlattice of L. Then the matrix emb that describes $L \hookrightarrow L^{\prime}$ can be easily calculated from discL.reps and the generating matrix of H.
2.4. Negative-definite root lattices. An ADE-type is expressed as a list of indecomposable ADE-types
"A1", "A2", ..., , "D4", "D5", ..., "E6", "E7", "E8".

Each ADE-type is sorted by the ordering

```
"A1" < "A2" < . . < "D4" <"D5" < ... < "E6" < "E7" < "E8".
```

For example, an ADE-type $t=E_{6}+3 A_{4}+A_{1}+D_{7}$ is expressed as
["A1", "A4", "A4", "A4", "D7", "E6"].

The following data are available.

- The record GramADE contains the following data. For each indecomposable ADE-type y, the Gram matrix GramADE. y of the negative-definite root lattice $R(y)$ of type y is given with respect to the basis given in Figure 2.1. For example, we have

$$
\operatorname{GramADE.D4}=\left[\begin{array}{cccc}
-2 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 \\
1 & 1 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

The record GramADE is given only for indecomposable ADE-types of rank ≤ 9; that is, for $A_{l}(l \leq 9), D_{m}(4 \leq m \leq 9)$, and E_{6}, E_{7}, E_{8}.

- The record discADE is the record such that, for an indecomposable ADEtype y of rank ≤ 9, discADE. y is the record that describes the discriminant form of the negative-definite root lattice of type y.

Definition 2.2. Let $t=\left[y_{1}, \ldots, y_{m}\right]$ be an ADE-type, where y_{1}, \ldots, y_{m} are indecomposable ADE-types sorted as above. Then an ADE-basis of the negativedefinite root lattice $R(t)$ of type t is an ordered basis such that the Gram matrix with respect to this basis is equal to the block-diagonal matrix whose diagonal blocks are

$$
\text { GramADE. } y_{1}, \ldots, \operatorname{GramADE} . y_{m}
$$

For example, if $t=2 A_{1}+A_{2}=$ ["A1", "A1", "A2"], then the Gram matrix of the negative-definite root lattice of type t with respect to an ADE-basis is

$$
\left[\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

The Gram matrix of the negative-definite root lattice $R(t)$ of type t is constructed from GramADE, and the discriminant form of $R(t)$ is constructed from discADE.

3. The lattice L_{10}

GramL10 is the Gram matrix of L_{10} with respect to the fixed basis e_{1}, \ldots, e_{10}. In the following, every element of $\mathrm{O}^{+}\left(L_{10}\right)$ is expressed by a 10×10 matrix with respect to the basis e_{1}, \ldots, e_{10}.

Each element $\Sigma=\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$ of \mathcal{S} is expressed by the list $\left[i_{1}, \ldots, i_{n}\right]$ of indices such that $1 \leq i_{1}<\cdots<i_{n} \leq 10$.

SigmasList is the list of all $\Sigma \in \mathcal{S}$.
Sigmas is the list of 1021 records. Each record Sigma in this list contains the following data of $\Sigma \in \mathcal{S}$. The list Sigmas is sorted according to SigmasList.

- Sigma.vects is the list $\left[i_{1}, \ldots, i_{n}\right]$ such that $1 \leq i_{1}<\cdots<i_{n} \leq 10$ and $\Sigma=\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$.
- Sigma.type is the ADE-type $\tau(\Sigma)$ of Σ.
- Sigma.ADEbasis is a permutation $\left[j_{1}, \ldots, j_{n}\right]$ of $\left[i_{1}, \ldots, i_{n}\right]$ such that the vectors $e_{j_{1}}, \ldots, e_{j_{n}}$ form an ADE-basis of the negative-definite root lattice $\langle\Sigma\rangle$.
- Sigma.embSigmaL10 is the matrix of the embedding $\langle\Sigma\rangle \hookrightarrow L_{10}$ with respect to the ADE-basis of $\langle\Sigma\rangle$ given by Sigma.ADEbasis and the basis e_{1}, \ldots, e_{10} of L_{10}.
- Sigma.Gram is the Gram matrix of $\langle\Sigma\rangle$ with respect to the ADE-basis $e_{j_{1}}, \ldots, e_{j_{n}}$.
- Sigma. AutGenerators is a generating set of $\operatorname{Aut}(\Sigma)$, which is a list of matrices in $\mathrm{O}(\langle\Sigma\rangle)$ with respect to the ADE-basis of $\langle\Sigma\rangle$ fixed by Sigma. ADEbasis. When $\operatorname{Aut}(\Sigma)$ is trivial, this list contains only the identity matrix of size n.
- Sigma.opposite is the isometry $\xi \in \mathrm{O}^{+}\left(L_{10}\right)$ such that Δ_{0}^{ξ} is the Vinberg chamber opposite to Δ_{0} with respect to the face F_{Σ} of Δ_{0}.
- Sigma.partners is the list $\left[\nu_{1}, \ldots, \nu_{K}\right]$ with $1 \leq \nu_{1}<\cdots<\nu_{K} \leq 1021$ such that the set of indices $\{\mathrm{i} \mid$ SigmasList[i].type $=\tau(\Sigma)\}$ is equal to $\left\{\nu_{1}, \ldots, \nu_{K}\right\}$.
- Sigma.isomto is the first index ν_{1} of Sigma. partners, which indicates the representative element Σ_{0} of the set $\left\{\Sigma^{\prime} \in \mathcal{S} \mid \tau\left(\Sigma^{\prime}\right)=\tau(\Sigma)\right\}$, which can be identified with the orbit of the action of $\mathrm{O}^{+}\left(L_{10}\right)$ on \mathcal{N} containing Σ.
- Sigma.isomby is an isometry $g \in \mathrm{O}^{+}\left(L_{10}\right)$ such that $\langle\Sigma\rangle^{g}=\left\langle\Sigma_{0}\right\rangle$.
- Sigma.kappatildeGSigma is the list of elements of $\tilde{\kappa}\left(\mathcal{G}_{\Sigma}\right)$, which generates $\operatorname{Stab}\left(\Sigma, L_{10}\right)$. Each element of Sigma.kappatildeGSigma is a matrix in $\mathrm{O}^{+}\left(L_{10}\right)$. When $\operatorname{Stab}\left(\Sigma, L_{10}\right)$ is trivial, this list contains only the identity matrix of size 10 .
- Sigma.HSigmaGenerators is the list of elements of $\kappa\left(\operatorname{res}\left(\mathcal{G}_{\Sigma}\right)\right)=\operatorname{res}\left(\tilde{\kappa}\left(\mathcal{G}_{\Sigma}\right)\right)$, which generates the subgroup H_{Σ} of $\operatorname{Aut}(\Sigma)$. Each element of this list is a matrix in $\mathrm{O}(\langle\Sigma\rangle)$ with respect to the ADE-basis of $\langle\Sigma\rangle$. When H_{Σ} is trivial, this list contains only the identity matrix of size n.

4. Even overlattices of $\langle\Phi\rangle$

PhisList is the list of ADE-types $\tau(\Phi)$ of ADE-configurations Φ with $|\Phi|<10$.
Phis is a list of records. Each record Phi in Phis contains the following data of an ADE-configuration Φ whose type is in PhisList. The list Phis is sorted according to PhisList. We put $n:=|\Phi|<10$.

- Phi.type is the ADE-type $\tau(\Phi)$ of Φ.
- Phi. Gram is the Gram matrix of the negative-definite root lattice $\langle\Phi\rangle$ with respect to the ADE-basis Φ of $\langle\Phi\rangle$.
- Phi.disc is the record of the discriminant form $q_{\langle\Phi\rangle}$ of $\langle\Phi\rangle$. Let $\left[a_{1}, \ldots, a_{l}\right]$ be the item Phi.disc.discg, so that $A_{\langle\Phi\rangle} \cong \mathbb{Z} / a_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / a_{l} \mathbb{Z}$.
- Phi. AutGenerators is a generating set of $\operatorname{Aut}(\Phi)$, which is a list of matrices in $\mathrm{O}(\langle\Phi\rangle)$ with respect to the ADE-basis of $\langle\Phi\rangle$. When $\operatorname{Aut}(\Phi)$ is trivial, this list contains only the identity matrix of size n.
- Phi.discAutGenerators is the set of images of elements of the generating set Phi.AutGenerators of $\operatorname{Aut}(\Phi)$ by the natural homomorphism $\mathrm{O}(\langle\Phi\rangle) \rightarrow \mathrm{O}\left(q_{\langle\Phi\rangle}\right)$. Each automorphism in Phi.discAutGenerators is expressed by an $l \times l$ matrix with respect to the generators of $A_{\langle\Phi\rangle}$ fixed by Phi.disc. When the image of $\operatorname{Aut}(\Phi)$ by $\mathrm{O}(\langle\Phi\rangle) \rightarrow \mathrm{O}\left(q_{\langle\Phi\rangle}\right)$ is trivial, this list contains only the identity matrix of size l. (When Phi.type is ["E8"] (that is, Phi.disc.discg is the empty list []), Phi.discAutGenerators is the empty list.)
- Phi.overlattices is the list of representatives of orbits of the action of $\operatorname{Aut}(\Phi)$ on the set $\mathcal{L}(\Phi)$ of even overlattices of $\langle\Phi\rangle$. Each element of this list is a record Rbar that describes the following data of an even overlattice \bar{R} of $\langle\Phi\rangle$:
- Rbar.isotropicspace is the standard generating matrix of the isotropic subspace $\bar{R} /\langle\Phi\rangle \subset A_{L}$ of $q_{\langle\Phi\rangle}$.
- Rbar.torsion $=\left[b_{1}, \ldots, b_{m}\right]$ indicates that the finite abelian group $\bar{R} /\langle\Phi\rangle$ is isomorphic to $\mathbb{Z} / b_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / b_{m} \mathbb{Z}$. When $\bar{R}=\langle\Phi\rangle$, we have Rbar.torsion= [].
- Rbar.embRRbar is an $n \times n$ matrix that describes the embedding $\langle\Phi\rangle \hookrightarrow$ \bar{R} with respect to the ADE-basis Φ of $\langle\Phi\rangle$. This matrix Rbar .embRRbar is used to fix a basis v_{1}, \ldots, v_{n} of \bar{R} by the remark in Section 2.3. (See also Remark 4.1 below.)
- Rbar. Gram is the Gram matrix of \bar{R} with respect to the basis of \bar{R} fixed by Rbar.embRRbar.
- Rbar.StabGenerators is a generating set of the stabilizer subgroup $\operatorname{Stab}(\bar{R}, \Phi)$ of \bar{R} in $\operatorname{Aut}(\Phi)$. Each element of Rbar. StabGenerators is expressed as a matrix in $\mathrm{O}(\langle\Phi\rangle)$ with respect to the $A D E$-basis Φ of $\langle\Phi\rangle$. If $\operatorname{Stab}(\bar{R}, \Phi)$ is trivial, this list contains only the identity matrix of size n.
- Rbar. IsADE indicates whether \bar{R} is a negative-definite root lattice or not. If \bar{R} is not a negative-definite root lattice, then Rbar. IsADE is false. If \bar{R} is a negative-definite root lattice, then Rbar. IsADE is the ADE-type $\tau(\bar{R})$ of \bar{R}.

Remark 4.1. Let b_{1}, \ldots, b_{n} be the ADE-basis Φ of $\langle\Phi\rangle$, and let v_{1}, \ldots, v_{n} be the basis of \bar{R} fixed by the matrix Rbar. embRRbar. Suppose that \bar{R} is a negative-definite root lattice. Then the basis v_{1}, \ldots, v_{n} of \bar{R} is chosen so that v_{1}, \ldots, v_{n} form an

ADE-basis of \bar{R}, and that the image of the connected component

$$
\left\{x \in\langle\Phi\rangle \otimes \mathbb{R} \mid\left\langle x, b_{i}\right\rangle>0 \text { for } i=1, \ldots, n\right\}
$$

of $(\langle\Phi\rangle \otimes \mathbb{R})^{\circ}$ by the embedding $v \mapsto v \cdot$ Rbar.embRRbar contains the connected component

$$
\left\{y \in \bar{R} \otimes \mathbb{R} \mid\left\langle y, v_{i}\right\rangle>0 \text { for } i=1, \ldots, n\right\}
$$

of $(\bar{R} \otimes \mathbb{R})^{\circ}$.
Remark 4.2. The natural homomorphism $\operatorname{Stab}(\bar{R}, \Phi) \rightarrow \mathrm{O}(\bar{R})$ can be easily calculated by Rbar.embRRbar.

5. The equivalence classes of embeddings

The data EmbsList is the list of pairs $(\tau(\Phi), \Sigma)$, where $\tau(\Phi)$ is the ADE-type of an ADE-configuration Φ with $n:=|\Phi|<10$, and $\Sigma=\left[i_{1}, \ldots, i_{n}\right]$ is an element of \mathcal{S} with $1 \leq i_{1}<\cdots<i_{n} \leq 10$ such that $\langle\Sigma\rangle$ is isomorphic to an even overlattice \bar{R} of $\langle\Phi\rangle$. Each pair gives a representative embedding $f: \Phi \hookrightarrow L_{10}$ of the single element of

$$
\overline{\operatorname{emb}}([\bar{R}],[\Sigma])=\operatorname{Stab}(\bar{R}, \Phi) \backslash \mathrm{O}(\langle\Sigma\rangle) / \operatorname{Stab}\left(\langle\Sigma\rangle, L_{10}\right)=H_{\Phi} \backslash \operatorname{Aut}(\Sigma) / H_{\Sigma} .
$$

Therefore EmbsList gives the set $\operatorname{Aut}(\Phi) \backslash \operatorname{Emb}(\Phi) / \mathrm{O}^{+}\left(L_{10}\right)$.
The data Embs is a list of records. A member f of Embs gives the following data of an embedding $f: \Phi \hookrightarrow L_{10}$ such that $\bar{R}_{f}=\langle\Sigma\rangle$. The list Embs is sorted according to EmbsList. Let Phi be the member of Phis that describes $\Phi=\left\{r_{1}, \ldots, r_{n}\right\}$, and let Sigma be the member of Sigmas that describes $\Sigma=\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\}$. Recall that $\Phi_{f}=\left\{r_{1}^{+}, \ldots, r_{n}^{+}\right\}$.

- f.Phi is the ADE-type $\tau(\Phi)$ of $\Phi=\left\{r_{1}, \ldots, r_{n}\right\}$.
- f.SigmaRecord is a copy of the record Sigma. Hence, for example, the ADE-type $\tau(\Sigma)$ of Σ is given by f .SigmaRecord.type.
- f.GramPhi is the Gram matrix of $\langle\Phi\rangle$ with respect to the ADE-basis Φ.
- f.GramSigma is the Gram matrix of $\langle\Sigma\rangle$ with respect to the ADE-basis given by f.SigmaRecord.ADEbasis.
- f.Rbar is a record that describes the even overlattice \bar{R} of $\langle\Phi\rangle$ corresponding to the even overlattice \bar{R}_{f} of R_{f} via $f:\langle\Phi\rangle \cong R_{f}$. This record is a copy of the member of Phi.overlattices that describes \bar{R}. By Remark 4.1, the row vectors of (f.Rbar.embRRbar) ${ }^{-1}$ are the vector representations of an ADE-basis of \bar{R} with respect to the ADE-basis Φ of $\langle\Phi\rangle \otimes \mathbb{Q}$. Identifying this ADE-basis of \bar{R} with the ADE-basis f . SigmaRecord.ADEbasis of $\langle\Sigma\rangle$ gives an element $g_{0} \in \operatorname{Isom}(\bar{R},\langle\Sigma\rangle)$ explicitly. Using g_{0} as a reference point, we identify $\operatorname{Isom}(\bar{R},\langle\Sigma\rangle)$ with $\mathrm{O}(\langle\Sigma\rangle)$, and regard $\operatorname{Stab}(\bar{R}, \Phi)$ as a subgroup of $\mathrm{O}(\langle\Sigma\rangle)$.
- f.embPhiSigma is the $n \times n$ matrix whose i th row vector is the vector representation of $r_{i}^{+} \in\langle\Sigma\rangle$ with respect to the ADE-basis $e_{j_{1}}, \ldots, e_{j_{n}}$ of $\langle\Sigma\rangle$. By the identification g_{0}, we have f .embPhiSigma is equal to f .Rbar. embRRbar.
- f.embSigmaL10 is the $n \times 10$ matrix whose row vectors are $e_{j_{1}}, \ldots, e_{j_{n}}$.
- f.embPhiL10 is the $n \times 10$ matrix whose i th row vectors is the vector representation of r_{i}^{+}with respect to the basis e_{1}, \ldots, e_{10} of L_{10}. Hence f.embPhiL10 is equal to (f.embPhiSigma) • (f.embSigmaL10).
- f.HPhiGenerators is the image of elements of the generating set f.Rbar.StabGenerators of $\operatorname{Stab}(\bar{R}, \Phi)$ by the homomorphism

$$
\operatorname{Stab}(\bar{R}, \Phi) \rightarrow \mathrm{O}(\bar{R}) \cong \mathrm{O}(\langle\Sigma\rangle) \rightarrow \operatorname{Aut}(\Sigma)
$$

where $\mathrm{O}(\bar{R}) \cong \mathrm{O}(\langle\Sigma\rangle)$ is induced by $g_{0}: \bar{R} \cong\langle\Sigma\rangle$ and $\mathrm{O}(\langle\Sigma\rangle) \rightarrow \operatorname{Aut}(\Sigma)$ is the quotient homomorphism by $W(\langle\Sigma\rangle)$. Each element of f.HPhiGenerators is a matrix in $\mathrm{O}(\langle\Sigma\rangle)$ with respect to the ADE-basis $e_{j_{1}}, \ldots, e_{j_{n}}$ of $\langle\Sigma\rangle$.
The fact that $\overline{\mathrm{emb}}([\bar{R}],[\Sigma])$ consists of a single element (Theorem 3.22 of [2]) is proved by confirming the following fact: Every element of the finite group $\operatorname{Aut}(\Sigma)$ generated by f .SigmaRecord.AutGenerators is written as $h_{\Phi} h_{\Sigma}$, where h_{Φ} is an element of H_{Φ} generated by the elements of f .HPhiGenerators and h_{Σ} is an element of H_{Σ} generated by the elements of f.SigmaRecord.HSigmaGenerators.

6. Geometric realizability

Let f be a member of Embs as in the previous section. The record f also contains the following data of geometric realizability of $f: \Phi \hookrightarrow L_{10}$.

- f.StabPhiL10Generators is a generating set of $\operatorname{Stab}\left(\Phi_{f}, L_{10}\right)$. Each element of f .StabPhiL10Generators is a matrix in $\mathrm{O}^{+}\left(L_{10}\right)$ with respect to the basis e_{1}, \ldots, e_{10}. When $\operatorname{Stab}\left(\Phi_{f}, L_{10}\right)$ is trivial, this list contains only the identity matrix I_{10} of size 10 .
- f.varpiB is the matrix of the embedding $\varpi^{*}: L_{10} \hookrightarrow B_{\Phi}$ with respect to the basis e_{1}, \ldots, e_{10} of L_{10} and the basis

$$
\begin{equation*}
\varpi^{*}\left(e_{1}\right), \ldots, \varpi^{*}\left(e_{10}\right), \varphi\left(r_{1}^{-}\right), \ldots, \varphi\left(r_{n}^{-}\right) \tag{6.1}
\end{equation*}
$$

of B_{Φ}; that is, the $10 \times(10+n)$ matrix $\left[I_{10} \mid O\right]$.

- $\mathrm{f} . \mathrm{GramB}$ is the Gram matrix of B_{Φ} with respect to the basis (6.1) of B_{Φ}; that is, the block-diagonal matrix with diagonal blocks $2 \cdot$ GramL10 and $2 \cdot f . G r a m P h i$.
- f. involB is the matrix representation of the involution ε of B_{Φ} that acts as the identity on $\varpi^{*} L_{10}$ and as the scalar multiplication by -1 on its orthogonal complement; that is, f.involB is the block-diagonal matrix with diagonal blocks I_{10} and $-I_{n}$.
- f.discB is the record that describes the discriminant form of B_{Φ}.
- f.Lifts is the list of lifts $r_{1}^{\prime}, \ldots, r_{n}^{\prime} \in B_{\Phi} \otimes \mathbb{Q}$ written with respect to the basis (6.1) of B_{Φ}.
- f.embBMf is a matrix of the embedding $B_{\Phi} \hookrightarrow M_{f}$ with respect to the basis (6.1) of B_{Φ}. This matrix is used to fix a basis of M_{f} by the remark in Section 2.3.
- f.GramMf is the Gram matrix of M_{f} with respect to the basis fixed by f.embBMf.
- f.UGenerators is a generating set of the subgroup $U\left(M_{f}\right) \subset \mathrm{O}^{+}\left(M_{f}\right)$, each element of which is written as a matrix with respect the basis (6.1) of B_{Φ} (not with respect the basis of M_{f} fixed by f.embBMf).
- f.UGeneratorsDisc is a generating set of the image of $U\left(M_{f}\right) \subset \mathrm{O}\left(B_{\Phi}\right)$ by the natural homomorphism $\mathrm{O}\left(B_{\Phi}\right) \rightarrow \mathrm{O}\left(q_{B_{\Phi}}\right)$. Each element of this list is written with respect to the basis of the discriminant group of B_{Φ} fixed by f.discB.
- f.Mfisotropicspace is the standard generating matrix of the isotropic subspace M_{f} / B_{Φ} of $q_{B_{\Phi}}$.
- f.varpiMf is the matrix of $\varpi^{*}: L_{10} \hookrightarrow M_{f}$ with respect to the basis e_{1}, \ldots, e_{10} of L_{10} and the basis of M_{f} fixed by f.embBMf
- f.involMf is the matrix representation of the involution ε of M_{f} with respect the basis of M_{f} fixed by f .embBMf.

Let $\mathcal{L}^{\prime}\left(M_{f}\right)$ be the set of even overlattices of M_{f} that satisfy the conditions (C 2), (C3), (C4). This set is calculated as the set of isotropic subspaces of $q_{B_{\Phi}}$ containing M_{f} / B_{Φ}. The orbits of the action of $U\left(M_{f}\right)$ on $\mathcal{L}^{\prime}\left(M_{f}\right)$ is calculated by means of the action of the finite group generated by f .UGeneratorsDisc on the set of all isotropic subspaces of $q_{B_{\Phi}}$ containing M_{f} / B_{Φ}.

- f.Mfbars is the list of records Mfbar that describe the representatives of orbits of the action of $U\left(M_{f}\right)$ on $\mathcal{L}^{\prime}\left(M_{f}\right)$. Each record Mfbar contains the following data of an even overlattice \bar{M}_{f} of M_{f} that satisfies the conditions (C2), (C3), (C4).
- Mfbar.embBMfbar is a matrix of the embedding $B_{\Phi} \hookrightarrow \bar{M}_{f}$ with respect to the basis (6.1) of B_{Φ}. This matrix is used to fix a basis of \bar{M}_{f} by the remark in Section 2.3.
- Mfbar.embMfMfbar is a matrix of the embedding $M_{f} \hookrightarrow \bar{M}_{f}$ with respect to the basis of M_{f} fixed by f.embBMf and the basis of \bar{M}_{f} fixed by f.embBMfbar.
- Mfbar. Gram is the Gram matrix of \bar{M}_{f} with respect to the basis fixed by f.embBMfbar.
- Mfbar .varpi is the matrix of $\varpi^{*}: L_{10} \hookrightarrow \bar{M}_{f}$ with respect to the basis e_{1}, \ldots, e_{10} of L_{10} and the basis of \bar{M}_{f} fixed by Mbar.embBMfbar
- Mfbar.invol is the matrix representation of the involution ε of \bar{M}_{f} respect the basis of \bar{M}_{f} fixed by Mfbar .embBMfbar.
- Mfbar.isotropicspace is the standard generating matrix of the isotropic subspace \bar{M}_{f} / B_{Φ} of the discriminant form of B_{Φ}.
- Mfbar. Q is the finite abelian group $Q:=\bar{M}_{f} / M_{f}$. Mfbar. $\mathrm{Q}=\left[b_{1}, \ldots, b_{m}\right]$ means that Q is isomorphic to $\mathbb{Z} / b_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / b_{m} \mathbb{Z}$. When Q is trivial, we have Mfbar. $\mathrm{Q}=[$].
- Mfbar.disc is the record that describes the discriminant form of \bar{M}_{f}, which is used to determine whether \bar{M}_{f} satisfies (C1) or not.
- Mfbar.C1 tells whether \bar{M}_{f} satisfies the condition (C1). This data is true if \bar{M}_{f} satisfies (C1), whereas it is false otherwise.

7. TABLE

The data Table is a list of records. This list gives more detailed information of Table 1.1 of [2]. Each record tablerow in Table contains the following data of each row of Table 1.1 of [2].

- tablerow. No is the number.
- tablerow. Phi is the ADE-type $\tau\left(\Phi_{f}\right)$ of Φ_{f}.
- tablerow.SigmaType is is the ADE-type $\tau\left(\bar{R}_{f}\right)$ of $\bar{R}_{f}=\langle\Sigma\rangle$.
- tablerow. SigmaVects is the vector representations of elements of Σ with respect to e_{1}, \ldots, e_{10}. These vectors are sorted in such a way that they form an ADE-basis of $\bar{R}_{f}=\langle\Sigma\rangle$.
- tablerow.embPhiSigma is the matrix of the embedding $f:\left\langle\Phi_{f}\right\rangle \hookrightarrow \bar{R}_{f}=$ $\langle\Sigma\rangle$ with respect to the $A D E$-bases Φ_{f} and Σ.
- tablerow.embSigmaL10 is the matrix of the embedding $\langle\Sigma\rangle \hookrightarrow L_{10}$ with respect to the $A D E$-basis Σ sorted as tablerow. SigmaVects and the basis e_{1}, \ldots, e_{10} of L_{10}. This matrix is identical with tablerow. SigmaType.
- tablerow.embPhiL10 is the matrix of the embedding $f:\left\langle\Phi_{f}\right\rangle \hookrightarrow L_{10}$ with respect to the $A D E$-basis Φ_{f} and the basis e_{1}, \ldots, e_{10} of L_{10}. Hence this matrix is equal to (tablerow.embPhiSigma) • (tablerow.embSigmaL10).
- tablerow.varpiB is the matrix of the embedding $\varpi^{*}: L_{10} \hookrightarrow B_{\Phi}$ with respect to the basis e_{1}, \ldots, e_{10} of L_{10} and the basis (6.1) of B_{Φ}; that is, tablerow. varpiB is equal to $\left[I_{10} \mid O\right]$.
- tablerow.embBMf is the matrix of the embedding $B_{\Phi} \hookrightarrow M_{f}$ with respect to the basis (6.1) of B_{Φ}. This matrix fixes a basis of M_{f} by the remark in Section 2.3.
- tablerow. GramPhi is the Gram matrix of $\langle\Phi\rangle$ with respect to the ADEbasis Φ.
- tablerow. GramSigma is the Gram matrix of $\bar{R}_{f}=\langle\Sigma\rangle$ with respect to the ADE-basis tablerow.SigmaVects.
- tablerow. GramMf is the Gram matrix of M_{f} with respect to the basis of M_{f} fixed by tablerow.embBMf.
- tablerow. StrongEquivClasses is the list of representatives of strong equivalence classes of RDP-Enriques surfaces that geometrically realize the embedding $f: \Phi \hookrightarrow L_{10}$; that is, tablerow. StrongEquivClasses is the list of representatives \bar{M}_{f} of the orbits of the action of $U\left(M_{f}\right)$ on the set of even overlattices of M_{f} that satisfy the conditions (C1), ..., (C4). Each record strongequiv of tablerow. StrongEquivClasses contains the following data of an even overlattice \bar{M}_{f}.
- strongequiv.embMfMfbar is a matrix of the embedding $M_{f} \hookrightarrow \bar{M}_{f}$ with respect to the basis of M_{f} fixed by tablerow.embBMf. This matrix fixes a basis of \bar{M}_{f} by the remark in Section 2.3.
- strongequiv. GramMfbar is the Gram matrix of \bar{M}_{f} with respect to the basis of $\bar{M}_{f} \cong S_{X}$ fixed by tablerow. embMfMfbar.
- strongequiv.involMfbar is the matrix representation of the Enriques involution ε on $\bar{M}_{f} \cong S_{X}$.
- strongequiv. Q is the finite abelian group $Q:=\bar{M}_{f} / M_{f}$.
strongequiv. $\mathrm{Q}=\left[b_{1}, \ldots, b_{m}\right]$ means that $Q=\bar{M}_{f} / M_{f}$ is isomorphic to $\mathbb{Z} / b_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / b_{m} \mathbb{Z}$. When Q is trivial, strongequiv. \mathbb{Q} is an empty list [].

References

[1] The GAP Group. GAP - Groups, Algorithms, and Programming. Version 4.7.9; 2015 (http://www.gap-system.org).
[2] Ichiro Shimada. Rational double points on Enriques surfaces, preprint, 2017, http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

E-mail address: ichiro-shimada@hiroshima-u.ac.jp

