THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A RESULTANT HYPERSURFACE

ICHIRO SHIMADA
Dedicated to Professor Tatsuo Suwa on his sixtieth birthday

Abstract

We prove that the complement of a generalized resultant hypersurface has an abelian fundamental group.

1. Introduction

Let X be a non-singular irreducible complex projective variety of dimension $n \geq 1$, and let L_{0}, \ldots, L_{n} be very ample line bundles on X. We denote by V_{ν} the vector space $H^{0}\left(X, L_{\nu}\right)$, and set

$$
V:=V_{0} \times \cdots \times V_{n} .
$$

For $f_{\nu} \in V_{\nu}$, we put

$$
\left(f_{\nu}\right):=\left\{x \in X \quad \mid f_{\nu}(x)=0\right\}
$$

The resultant variety R of V is defined to be

$$
\left\{f=\left(f_{0}, \ldots, f_{n}\right) \in V \mid\left(f_{0}\right) \cap \cdots \cap\left(f_{n}\right) \neq \emptyset\right\}
$$

It is known that R is an irreducible hypersurface of V ([GKZ, Chapter 3, Proposition 3.1]). Therefore we will call R the resultant hypersurface .

When X is the n-dimensional projective space \mathbb{P}^{n}, the resultant hypersurface R is the classical resultant of $(n+1)$ forms in $(n+1)$ variables. See [GKZ] or [CLO] for other properties of the resultant hypersurfaces.

In this paper, we prove the following:
Theorem 1. The fundamental group of $V \backslash R$ is an infinite cyclic group.
In the case where $X=\mathbb{P}^{1}$, Theorem 1 follows from the result of $[\mathrm{C}]$, in which Choudary showed that the classical resultant hypersurface $R_{p, q}$ of polynomials of degree p and q has only normal crossings as its singularities in codimension 1 , and proved the commutativity of $\pi_{1}\left(\mathbb{C}^{p+q} \backslash R_{p, q}\right)$ by Zariski hyperplane section theorem $[\mathrm{Z}]$ and Fulton-Deligne's Theorem ([D], $[\mathrm{F}],[\mathrm{FL}]$) on Zariski conjecture.

The generalized resultant hypersurface R can have singularities in codimension 1 worse than normal crossings. For example, let $X \subset \mathbb{P}^{2}$ be a non-singular projective plane curve of degree $d \geq 3$, and let L_{0} and L_{1} be the line bundles corresponding to a hyperplane section of X in \mathbb{P}^{2}. Then a general fiber of the projection $R \rightarrow V_{0}$ consists of d hyperplanes in V_{1} passing through a fixed linear subspace of codimension 2.

In fact, as the proof in the next section shows, the case where we cannot apply Fulton-Deligne's Theorem in a straightforward way (combined with Nori's

[^0]lemma [N , Lemma $1.5(\mathrm{C})$] and Zariski hyperplane section theorem) is always reduced to this example.

The fundamental group of the complement to the discriminant hypersurface of a linear system $|L|$ on a non-singular complex projective variety X was studied by Dolgachev and Libgober in [DL]. We will explain the relation between the resultant hypersurface and the discriminant hypersurface in the case where $X=\mathbb{P}^{n}$ and $L=\mathcal{O}_{X}(d)$, where $n \geq 2$ and $d \geq 2$. We put $L_{0}:=L$ and $L_{i}:=\mathcal{O}_{X}(d-1)$ $(i=1, \ldots, n)$. The discriminant hypersurface $D \subset\left|L_{0}\right|$ is the projectivization of the hypersurface

$$
\widetilde{D}:=\left\{f_{0} \in V_{0} \mid f_{0}=0 \text { or }\left(f_{0} \neq 0 \text { and the divisor }\left(f_{0}\right) \text { is singular }\right)\right\}
$$

in the vector space V_{0} of homogeneous polynomials of degree d in $(n+1)$-variables. Let $\left(x_{0}: x_{1}: \cdots: x_{n}\right)$ be a homogeneous coordinate system of $X=\mathbb{P}^{n}$. We define a linear $\operatorname{map} \varphi$ from V_{0} to V by

$$
\varphi\left(f_{0}\right):=\left(f_{0}, \frac{\partial f_{0}}{\partial x_{1}}, \ldots, \frac{\partial f_{0}}{\partial x_{n}}\right)
$$

Then we have

$$
\widetilde{D}=\varphi^{-1}\left(\varphi\left(V_{0}\right) \cap R\right)
$$

that is, the discriminant hypersurface \widetilde{D} is a linear section of the resultant hypersurface R. Note that, since the image $\varphi\left(V_{0}\right)$ of φ is not a general linear subspace of V, the non-commutativity of $\pi_{1}\left(\left|L_{0}\right| \backslash D\right)$ for many n and d (for example, see [DL, Section 4]) does not contradict to our theorem.

The author would like to thank the referee for many helpful comments on the first version of this paper.

2. Proof of Theorem 1

First note that it is enough to prove that $\pi_{1}(V \backslash R)$ is abelian, because R is irreducible.

For ν with $0 \leq \nu \leq n$, we put

$$
V_{\nu}^{\prime}:=V_{0} \times \cdots \times V_{\nu}, \quad V_{\nu}^{\prime \prime}:=V_{\nu+1} \times \cdots \times V_{n}
$$

and denote by

$$
\bar{p}_{\nu}: V \rightarrow V_{\nu}^{\prime \prime}
$$

the natural projection. For a point g of $V_{\nu}^{\prime \prime}$, we denote by $R_{\nu}(g)$ the intersection of R with the fiber $\bar{p}_{\nu}^{-1}(g)$, and consider $R_{\nu}(g)$ as a Zariski closed subset of V_{ν}^{\prime}. When $\nu=n, V_{n}^{\prime \prime}$ is the zero-dimensional vector space $\{0\}$, and we have $R_{n}(0)=R$. Let

$$
p_{\nu}: V \backslash R \rightarrow V_{\nu}^{\prime \prime}
$$

be the restriction of \bar{p}_{ν} to $V \backslash R$. Then we have

$$
p_{\nu}^{-1}(g)=V_{\nu}^{\prime} \backslash R_{\nu}(g)
$$

Claim 2. If $g \in V_{\nu}^{\prime \prime}$ is general, the inclusion of $p_{\nu}^{-1}(g)$ into $V \backslash R$ induces a surjective homomorphism from $\pi_{1}\left(V_{\nu}^{\prime} \backslash R_{\nu}(g)\right)$ to $\pi_{1}(V \backslash R)$.

Proof of Claim 2. For $g=\left(g_{\nu+1}, \ldots, g_{n}\right) \in V_{\nu}^{\prime \prime}$, let $W_{\nu}(g)$ denote the subscheme of X defined by

$$
g_{\nu+1}=\cdots=g_{n}=0
$$

which is of dimension ν if g is general in $V_{\nu}^{\prime \prime}$. We consider the universal family

of the subschemes $W_{\nu}(g)$, where

$$
\mathcal{W}_{\nu}:=\left\{(g, x) \in V_{\nu}^{\prime \prime} \times X \mid g_{\nu+1}(x)=\cdots=g_{n}(x)=0\right\}
$$

The projection $\psi_{\nu}: \mathcal{W}_{\nu} \rightarrow X$ is smooth, and every fiber of ψ_{ν} is a linear subspace of $V_{\nu}^{\prime \prime}$ with codimension $n-\nu$. Hence \mathcal{W}_{ν} is non-singular, irreducible and of dimension equal to $\operatorname{dim} V_{\nu}^{\prime \prime}+\nu$. On the other hand, the projection $\phi_{\nu}: \mathcal{W}_{\nu} \rightarrow V_{\nu}^{\prime \prime}$ is surjective. Therefore there exists a Zariski closed subset Ξ of $V_{\nu}^{\prime \prime}$ with codimension ≥ 2 such that

$$
\operatorname{dim} W_{\nu}(g)=\nu \quad \text { for all } g \in V_{\nu}^{\prime \prime} \backslash \Xi
$$

If $g \in V_{\nu}^{\prime \prime} \backslash \Xi$, then $R_{\nu}(g)$ is a proper Zariski closed subset of V_{ν}^{\prime}.
A general fiber of $p_{\nu}: V \backslash R \rightarrow V_{\nu}^{\prime \prime}$ is irreducible. If $g \in V_{\nu}^{\prime \prime} \backslash \Xi$, then $p_{\nu}^{-1}(g)$ has at least one point at which p_{ν} is smooth. Therefore Claim 2 follows from Nori's lemma [N , Lemma 1.5 (C)].

We choose and fix a general point

$$
g=\left(g_{1}, \ldots, g_{n}\right)
$$

of $V_{0}^{\prime \prime}$. We put

$$
\begin{aligned}
d & :=c_{1}\left(L_{1}\right) c_{1}\left(L_{2}\right) \cdots c_{1}\left(L_{n}\right) \\
d^{\prime} & :=c_{1}\left(L_{0}\right) c_{1}\left(L_{2}\right) \cdots c_{1}\left(L_{n}\right)
\end{aligned}
$$

where c_{1} denote the first Chern class. Both of d and d^{\prime} are positive integers. Then $W_{0}(g)$ consists of d distinct points a_{1}, \ldots, a_{d} of X, and $R_{0}(g)$ consists of d distinct hyperplanes H_{1}, \ldots, H_{d} of $V_{0}^{\prime}=V_{0}$, where

$$
H_{i}:=\left\{f_{0} \in V_{0} \mid f_{0}\left(a_{i}\right)=0\right\} .
$$

If $d \leq 2$, then $\pi_{1}\left(V_{0} \backslash R_{0}(g)\right)$ is obviously abelian. Hence $\pi_{1}(V \backslash R)$ is abelian by Claim 2. Suppose that $\operatorname{dim} V_{\nu}=2$ for some ν. Then we have $n=1, X=\mathbb{P}^{1}$ and $\operatorname{deg}\left(L_{\nu}\right)=1$. Interchanging L_{ν} and L_{1}, we will have $d=1$, and can show the commutativity of $\pi_{1}(V \backslash R)$ by the above argument. From now on, we will assume

$$
\operatorname{dim} V_{\nu} \geq 3 \quad \text { for } \quad \nu=0, \ldots, n
$$

Moreover, by interchanging L_{0} and L_{1} if necessary, we can assume

$$
d^{\prime} \leq d
$$

By the above argument, we can also assume

$$
3 \leq d
$$

Suppose that $R_{0}(g)$ satisfies the following:

$$
a_{i} \neq a_{j} \neq a_{k} \neq a_{i} \quad \Longrightarrow \quad \operatorname{dim}\left(H_{i} \cap H_{j} \cap H_{k}\right)=\operatorname{dim} V_{0}-3
$$

Let $A \subset V_{0}$ be a general affine plane. Then $A \cap R_{0}(g)$ is a nodal affine plane curve consisting of d lines, no pairs of which are parallel. Hence $\pi_{1}\left(A \backslash\left(A \cap R_{0}(g)\right)\right)$ is abelian by Fulton-Deligne's Theorem ([D], [F], [FL]) on Zariski conjecture. By Zariski hyperplane section theorem [Z], the inclusion

$$
A \backslash\left(A \cap R_{0}(g)\right) \hookrightarrow V_{0} \backslash R_{0}(g)
$$

induces an isomorphism on the fundamental groups. Hence $\pi_{1}\left(V_{0} \backslash R_{0}(g)\right)$ is also abelian, and thus the commutativity of $\pi_{1}(V \backslash R)$ follows from Claim 2.

Suppose, conversely, that there exists three distinct points a_{i}, a_{j} and a_{k} of $W_{0}(g)$ such that

$$
\begin{equation*}
\operatorname{dim}\left(H_{i} \cap H_{j} \cap H_{k}\right)=\operatorname{dim} V_{0}-2 \tag{2.1}
\end{equation*}
$$

Let U be a Zariski open dense subset of $V_{0}^{\prime \prime}$ containing the point g such that the projection $\phi_{0}: \mathcal{W}_{0} \rightarrow V_{0}^{\prime \prime}$ is étale over U. We have the monodromy action

$$
\mu: \pi_{1}(U, g) \rightarrow \mathfrak{S}\left(W_{0}(g)\right)
$$

of $\pi_{1}(U, g)$ on the finite set $W_{0}(g)$, where $\mathfrak{S}\left(W_{0}(g)\right)$ is the full symmetric group of $W_{0}(g)$. Since the action μ is doubly transitive, and the image of μ contains a transposition, we see that μ is surjective ($[\mathrm{H}$, Uniform Position Lemma]). Since g is general in $V_{0}^{\prime \prime}$, we can conclude that (2.1) holds for any choice of distinct three points a_{i}, a_{j}, a_{k} of $W_{0}(g)$. This means that, if a divisor $D \in\left|L_{0}\right|$ of X contains distinct two points of $W_{0}(g)$, then D contains every point of $W_{0}(g)$.

When $n=1$, we put $h:=0 \in V_{1}^{\prime \prime}=\{0\}$ and $C:=X$. In this case, we have $p_{1}^{-1}(h)=V_{1}^{\prime} \backslash R_{1}(h)=V \backslash R$. When $n>1$, we put

$$
h:=\left(g_{2}, \ldots, g_{n}\right),
$$

which is a general point of $V_{1}^{\prime \prime}$, and put

$$
C:=W_{1}(h) .
$$

We show that

$$
\pi_{1}\left(p_{1}^{-1}(h)\right)=\pi_{1}\left(V_{1}^{\prime} \backslash R_{1}(h)\right)
$$

is abelian. The proof of Theorem 1 will then be completed by Claim 2.
First we will show that C is a projective plane curve. The curve C is non-singular and irreducible. The line bundles $\left.L_{0}\right|_{C}$ and $\left.L_{1}\right|_{C}$ on C are very ample of degree d^{\prime} and d, respectively. Since the restriction $\left.g_{1}\right|_{C}$ of g_{1} to C is a general element of $H^{0}\left(C,\left.L_{1}\right|_{C}\right)$, and $d^{\prime} \leq d$ has been assumed, we see from the above consideration that the following holds:

Let D_{1} be a general divisor in the complete linear system $\left|L_{1}\right|_{C} \mid$ on C. If a divisor D_{0} in the complete linear system $\left|L_{0}\right|_{C} \mid$ has at least two common points with D_{1}, then $D_{0}=D_{1}$ holds.
In particular, we have $d=d^{\prime}$ and $\left|L_{1}\right|_{C}\left|=\left|L_{0}\right|_{C}\right|$. We will denote by P the dual projective space of the complete linear system $\left|L_{1}\right|_{C}\left|=\left|L_{0}\right|_{C}\right|$, and let

$$
\Psi: C \rightarrow P
$$

be the embedding of C by $\left|L_{1}\right|_{C}\left|=\left|L_{0}\right|_{C}\right|$. Let H be a general hyperplane of P. If b_{1} and b_{2} are points of $\Psi^{-1}(H)$, then H is the only hyperplane containing $\Psi\left(b_{1}\right)$ and $\Psi\left(b_{2}\right)$. Therefore we have

$$
\operatorname{dim} P=2
$$

and C can be regarded as a non-singular projective plane curve on P via Ψ. The complete linear system $\left|L_{1}\right|_{C}\left|=\left|L_{0}\right|_{C}\right|$ is the linear system of intersections with lines in P.

We put

$$
V_{C}:=H^{0}\left(P, \mathcal{O}_{P}(1)\right)
$$

For $\lambda \in V_{C}$, let (λ) denote the linear subspace of P defined by $\lambda=0$. We denote by S the hypersurface

$$
\left\{\left(\lambda_{0}, \lambda_{1}\right) \in V_{C} \times V_{C} \mid\left(\lambda_{0}\right) \cap\left(\lambda_{1}\right) \cap C \neq \emptyset\right\}
$$

of $V_{C} \times V_{C}$, and put

$$
\left(V_{C} \times V_{C}\right)^{\circ}:=\left(V_{C} \times V_{C}\right) \backslash S
$$

The restriction map

$$
\left(f_{0}, f_{1}\right) \mapsto\left(\left.f_{0}\right|_{C},\left.f_{1}\right|_{C}\right)
$$

gives a morphism

$$
p_{1}^{-1}(h)=V_{1}^{\prime} \backslash R_{1}(h) \rightarrow\left(V_{C} \times V_{C}\right)^{\circ},
$$

which is locally trivial with fibers isomorphic to a vector space. Hence $\pi_{1}\left(p_{1}^{-1}(h)\right)$ is isomorphic to $\pi_{1}\left(\left(V_{C} \times V_{C}\right)^{\circ}\right)$. Therefore it is enough to show the following:
Claim 3. The fundamental group of $\left(V_{C} \times V_{C}\right)^{\circ}$ is abelian.
Proof of Claim 3. We denote by

$$
\rho:\left(V_{C} \times V_{C}\right)^{\circ} \rightarrow P \backslash C
$$

the morphism given by

$$
\rho\left(\lambda_{0}, \lambda_{1}\right):=\text { the intersection point of the lines }\left(\lambda_{0}\right) \text { and }\left(\lambda_{1}\right) .
$$

Then ρ is locally trivial, and its fiber is isomorphic to $G L(2, \mathbb{C})$. We choose a general line $L_{\infty} \subset P$, and fix affine coordinates (x, y) on $P \backslash L_{\infty}$. Then ρ has a section

$$
\sigma: P \backslash\left(C \cup L_{\infty}\right) \rightarrow\left(V_{C} \times V_{C}\right)^{\circ} \backslash \rho^{-1}\left(L_{\infty}\right)
$$

over the affine part $P \backslash\left(C \cup L_{\infty}\right)$ of $P \backslash C$ defined by

$$
\sigma(a, b):=(x-a, y-b)
$$

where $x-a$ and $y-b$ are considered as linear forms on P. In particular, the fundamental group of $\left(V_{C} \times V_{C}\right)^{\circ} \backslash \rho^{-1}\left(L_{\infty}\right)$ is the semi-direct product

$$
\pi_{1}(G L(2, \mathbb{C})) \rtimes \pi_{1}\left(P \backslash\left(C \cup L_{\infty}\right)\right)
$$

constructed from the monodromy action of $\pi_{1}\left(P \backslash\left(C \cup L_{\infty}\right)\right)$ on $\pi_{1}(G L(2, \mathbb{C}))$ associated with the section σ. Since $\pi_{1}(G L(2, \mathbb{C})) \cong \mathbb{Z}$ has a canonical positive generator, this monodromy action is trivial. Hence we have

$$
\pi_{1}\left(\left(V_{C} \times V_{C}\right)^{\circ} \backslash \rho^{-1}\left(L_{\infty}\right)\right) \cong \pi_{1}(G L(2, \mathbb{C})) \times \pi_{1}\left(P \backslash\left(C \cup L_{\infty}\right)\right)
$$

Since $C \cup L_{\infty}$ is a nodal curve, $\pi_{1}\left(P \backslash\left(C \cup L_{\infty}\right)\right)$ is abelian. Therefore

$$
\pi_{1}\left(\left(V_{C} \times V_{C}\right)^{\circ} \backslash \rho^{-1}\left(L_{\infty}\right)\right)
$$

is also abelian. Since the inclusion of $\left(V_{C} \times V_{C}\right)^{\circ} \backslash \rho^{-1}\left(L_{\infty}\right)$ into $\left(V_{C} \times V_{C}\right)^{\circ}$ induces a surjective homomorphism on the fundamental groups, we get the commutativity of $\pi_{1}\left(\left(V_{C} \times V_{C}\right)^{\circ}\right)$.

References

[C] A. D. R. Choudary, On the resultant hypersurface, Pacific J. Math. 142 (1990), no. 2, 259-263.
[CLO] D. Cox, J. Little, and D. O'Shea, Using algebraic geometry, Springer-Verlag, New York, 1998.
[DL] I. Dolgachev and A. Libgober, On the fundamental group of the complement to a discriminant variety Algebraic geometry (Chicago, Ill., 1980), Springer, Berlin, 1981, pp. 1-25.
[D] P. Deligne, Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton), Bourbaki Seminar, Vol. 1979/80, Springer, Berlin, 1981, pp. 1-10.
[F] W. Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), no. 2, 407-409.
[FL] W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980), Springer, Berlin, 1981, pp. 26-92.
[GKZ] I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston Inc., Boston, MA, 1994.
[H] J. Harris, The genus of space curves, Math. Ann. 249 (1980), no. 3, 191-204.
[N] M. V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305-344.
[Z] O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. $\mathbf{3 8}$ (1937), 131-141; Oscar Zariski: Collected Papers, Volume III, pp. 279-289.

Division of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, JAPAN

E-mail address: shimada@math.sci.hokudai.ac.jp

[^0]: 1991 Mathematics Subject Classification. 14F35, 14N05.

