
ON ZARISKI-VAN KAMPEN THEOREM

ICHIRO SHIMADA

Abstract. Let f : E → B be a dominant morphism, where E and B are
smooth irreducible complex quasi-projective varieties, and let F b be a general

fiber of f . We present conditions under which the homomorphism π 1(Fb) →
π1(E) induced by the inclusion is injective.

1. Introduction

We work over the complex number field C.
Let E and B be smooth irreducible quasi-projective varieties, and let

f : E → B

be a dominant morphism. For a point a ∈ B, we denote by Fa the fiber f−1(a).
We choose a general point b of B, and a point b̃ of Fb. Let

i : Fb ↪→ E

denote the inclusion morphism.
In [5], Nori proved the following:

Proposition 1.1 ([5], Lemma 1.5 (C)). Suppose that there exists a Zariski closed
subset Ξ of B with codimension ≥ 2 such that, if a ∈ B \ Ξ, then Fa is irreducible
and possesses at least one point at which f is smooth. Then the sequence

π1(Fb, b̃)
i∗−→ π1(E, b̃)

f∗−→ π1(B, b) −→ 1

is exact. �
We will study the kernel of i∗. When f has a global section, the classical Zariski-

van Kampen theorem describes Ker i∗ in terms of the monodromy relations in
π1(Fb). The purpose of this paper is to investigate Ker i∗ in a situation where only
local monodromies are available. More precisely, we will show that, in some cases,
the triviality of the local monodromies on the fundamental groups of fibers implies
the injectivity of i∗.

In order to define the local monodromy on the fundamental group of a fiber, let
us assume that the the condition in Proposition 1.1 is satisfied.

Definition 1.2 ([5], Lemma 1.5 (A)). The topological discriminant locus Σf of f
is the minimal Zariski closed subset of B among the Zariski closed subsets Σ of B
with the following properties;

• Σ contains the locus f(Sing f) of critical values of f , and
• f is locally trivial over B \Σ as a continuous map in the complex topology.
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Let Σ(1)
f , . . . , Σ(k)

f be the irreducible components of Σf with codimension 1 in

B. Let xi be a general point of Σ
(i)
f , and Ui a sufficiently small open ball in B with

the center xi. Since Ξ is of codimension ≥ 2 in B, we have Σ(i)
f �⊂ Ξ, and hence

xi /∈ Ξ. Therefore we have a holomorphic local section

si : Ui → f−1(Ui)

of f defined on Ui. We fix local coordinates (z1, . . . , zm) on Ui with the origin xi
such that Σf is defined by z1 = 0. We put

ai := (ε, 0, . . . , 0) ∈ Ui \ (Ui ∩Σf),

where ε is a sufficiently small positive real number, and consider the loop

λi : (I, ∂I) → (Ui \ (Ui ∩Σf ), ai)

defined by
λi(t) := (ε exp(2π

√−1t), 0, . . . , 0),
which we will call a simple loop around the hypersurface Σ(i)

f . Using the local
section si, we can define the monodromy

µi : π1(Fai , si(ai))
∼→ π1(Fai , si(ai))

along the loop λi. We call µi a local monodromy around Σ(i)
f . In §2, we will show

that the condition for µi to be trivial does not depend on the choice of the local
section si (Corollary 2.5).
Theorem 1.3. Suppose that the following conditions are satisfied:
(T1) The quasi-projective variety B is either a non-compact Riemann surface or

an affine space AN .
(T2) The morphism f is flat.
(T3) There exists a Zariski closed subset Ξ of B with codimension ≥ 2 such that,

if a ∈ B \Ξ, then Fa is irreducible and possesses at least one point at which
f is smooth.

(T4) The local monodromy µi around Σ(i)
f is trivial for i = 1, . . . , k.

Then, for a general point b of B, the sequence

(1.1) 1 −→ π1(Fb, b̃)
i∗−→ π1(E, b̃)

f∗−→ π1(B, b) −→ 1

is exact.
By Proposition 1.1, the condition (T3) implies that the sequence (1.1) is exact

except for the injectivity of i∗. Hence all we have to show is that i∗ is injective.
The condition (T1) of Theorem 1.3 suggests the following:

Problem 1.4. Suppose that the conditions (T2)-(T4) of Theorem 1.3 are satisfied.
Can one define a homomorphism ∂ : π2(B) → π1(Fb) such that Ker i∗ = Im ∂ holds?

In [11], we studied the homotopy lifting property of f , and gave a partial answer
to Problem 1.4.

In view of Theorem 1.3, it is important to know whether a given local monodromy
is trivial or not. In the second half of this paper, we present some algebro-geometric
conditions under which a given local monodromy is trivial. As a corollary, we obtain
a simple proof of [6, Theorem 1], many applications of which have been given ([7],
[8], [9], [10]). As another application of the results in this paper, we will prove in
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[12] a hyperplane section theorem of Zariski type for the fundamental groups of
Zariski open subsets of Grassmannian varieties.

This paper is organized as follows. In §2, we review the classical Zariski-van
Kampen theorem; that is, we study Ker i∗ in a situation where a global section
exists ([13], [14], see also [2] and [4]). In §3, we prove Theorem 1.3. In §4, we study,
in various settings, the problem when a local monodromy is trivial. In §5, we apply
Situation (C) in §4 to a morphism from a smooth irreducible quasi-projective surface
to a variety on which an algebraic group acts.
Notation and terminologies.
(1) Let α : I → X and β : I → X be paths on a topological space X. We define

the order of the conjunction of paths in such a way that the path αβ is defined only
when α(1) = β(0). By this notation, the monodromy action of the fundamental
group of the base space on the fundamental group of a fiber is from right.

(2) For a morphism φ : X → Y with X and Y smooth, we denote by Singφ ⊂ X
the Zariski closed subset of critical points of φ.

(3) We say that a morphism φ : X → Y is locally trivial if it is locally trivial as
a continuous map in the complex topology.

2. The classical Zariski-van Kampen theorem

For a subset S of a group G, we denote by NCG(S) the normal closure of S in
G; that is, NCG(S) is the smallest normal subgroup of G containing S.

Suppose that a group H acts on a group N from right. We write this action by

n �→ nh (n ∈ N, h ∈ H).

The semi-direct product N �H is the set N ×H equipped with a structure of the
group by

(n1, h1)(n2, h2) := (n1n
(h−1

1 )
2 , h1h2).

We have a natural exact sequence

1 −→ N
ι−→ N �H

ρ−→ H −→ 1

with a natural section σ : H → N � H of ρ. Conversely, suppose that an exact
sequence

1 −→ N
ι−→ G

ρ−→ H −→ 1
and a section σ : H → G of ρ are given. Then an action of H on N from right is
defined by

ι(nh) := σ(h)−1ι(n)σ(h) (n ∈ N, h ∈ H),
and G is isomorphic to the semi-direct product N �H constructed by this action.

For a subset T of H, we put

Rel(T ) := { n−1nh | n ∈ N, h ∈ T } ⊂ N.

The following is easy to prove:
Lemma 2.1. Let T be a subset of H. Then ι−1(NCN�H(σ(T ))) coincides with
NCN(Rel(NCH(T ))). �

Let X be a path-connected topological space, and b a point of X. We denote
by [S1, X] the set of homotopy classes of continuous maps from the circle S1 to X.
Then there exists a natural bijection between [S1, X] and the set Conj(π1(X, b)) of
conjugate classes of π1(X, b).
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Let M be a connected complex manifold, and D a reduced hypersurface of M .
Let Di be an irreducible component of D, and let p be a point of Di not contained
in SingD. There exist local coordinates (z1, . . . , zm) of M with the origin p such
that D is defined by z1 = 0 locally around p. Let

u : S1 → M \D
be a continuous map given by (cos t, sin t) �→ (ε exp(2π

√−1t), 0, . . . , 0) in terms
of the local coordinates (z1, . . . , zm), where ε is a sufficiently small positive real
number. The homotopy class [u] ∈ [S1,M \ D] of this continuous map does not
depend on the choice of p, the local coordinates, and ε. We call [u] ∈ [S1,M \D]
the homotopy class of simple free loops around Di.

Definition 2.2. Let b̃ be a point of M \D. A loop

v : (I, ∂I) → (M \D, b̃)
with the base point b̃ is called a simple loop around Di if its homotopy class [v] ∈
π1(M \D, b̃) is contained in the conjugate class that corresponds to the homotopy
class of simple free loops around Di via the natural bijection between [S1,M \D]
and Conj(π1(M \D, b̃)).

We will consider the homomorphism j∗ : π1(M \ D, b̃) → π1(M, b̃) induced by
the inclusion j :M \D ↪→M . The following lemma is well-known:

Lemma 2.3. Suppose that D consists of a finite number of irreducible components
D1, . . . , Dk. Let vi be a simple loop around Di with the base point b̃, and let V be
the subset {[v1], . . . , [vk]} of π1(M \D, b̃). Then Ker j∗ coincides with the normal
closure NCπ1(M\D,b̃)(V ) of V . �

Let U be a complex manifold, and let

g : M → U

be a surjective holomorphic map. For a point a of U , we denote by Ga the fiber
g−1(a). Suppose that there exists a hypersurface Γ of U such that g is locally trivial
over U \ Γ as a continuous map. Suppose also that Γ consists of a finite number
of irreducible components Γ1, . . . , Γk. We assume that there exists a continuous
global section

s : U → M

of g. We choose a point b ∈ U \ Γ, and put

b̃ := s(b) ∈ Gb.

Using the section s, we can define the monodromy action of π1(U \Γ, b) on π1(Gb, b̃)
from right. For each irreducible component Γi of Γ, we choose a simple loop

wi : (I, ∂I) → (U \ Γ, b)
around Γi, and put

W := {[w1], . . . , [wk]} ⊂ π1(U \ Γ, b), and W̃ := NCπ1(U\Γ,b)(W ).

Recall that Rel(W̃ ) is the subset {n−1nh | n ∈ π1(Gb, b̃), h ∈ W̃} of π1(Gb, b̃),
which is called the set of monodromy relations.
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Proposition 2.4. Suppose that s is holomorphic at each point of Γ. Suppose also
that g−1(Γi) is an irreducible hypersurface of M for i = 1, . . . , k. Then the kernel of
the homomorphism i∗ : π1(Gb, b̃) → π1(M, b̃) induced by the inclusion i : Gb ↪→M
coincides with the normal closure

NCπ1(Gb,b̃)
(Rel(W̃ ))

of the set of monodromy relations in π1(Gb, b̃).

Proof. We put U◦ := U \ Γ and M◦ := M \ g−1(Γ). Let g◦ : M ◦ → U ◦ and
s◦ : U ◦ → M ◦ denote the restrictions of g and s, respectively. We also denote by
i◦ : Gb ↪→M ◦ the inclusion. Because of the section s◦ of g◦, we get a short exact
sequence

1 −→ π1(Gb, b̃)
i◦∗−→ π1(M◦, b̃)

g◦∗−→ π1(U◦, b) −→ 1

with the section s◦∗ of g◦∗ from the homotopy exact sequence of the locally trivial
fiber space g◦. Note that the monodromy action of π1(U◦, b) on π1(Gb, b̃) coincides
with the composite of s◦∗ and the inner-automorphism of π1(M◦, b̃); that is, we have

i◦∗([u]
[v]) = [s◦ ◦ v]−1 · [u] · [s◦ ◦ v] in π1(M◦, b̃),

where u is a loop in Gb with the base point b̃, and v is a loop in U ◦ with the
base point b. Hence π1(M◦, b̃) is canonically isomorphic to the semi-direct prod-
uct π1(Gb, b̃) � π1(U◦, b) constructed from the monodromy action of π1(U◦, b) on
π1(Gb, b̃). Since s is holomorphic at each point of Γ, the loop s◦ ◦ wi in M ◦ is a
simple loop around the irreducible hypersurface g−1(Γi) ofM . Therefore the kernel
of the homomorphism

j∗ : π1(M◦, b̃) → π1(M, b̃)

induced by the inclusion j : M◦ ↪→ M coincides with NCπ1(M◦,b̃)(s
◦
∗(W )) by

Lemma 2.3. Since i = j ◦ i◦, and i◦∗ is injective, we have

Ker i∗ = (i◦∗)
−1(Ker j∗) = NCπ1(Gb,b̃)

(Rel(W̃ ))

by Lemma 2.1. �

When U is simply connected, the normal closure W̃ ofW in π1(U \Γ, b) coincides
with π1(U \ Γ, b). Hence we obtain the following:

Corollary 2.5. Suppose that g−1(Γi) is irreducible for i = 1, . . . , k, that s is holo-
morphic at each point of Γ, and that U is simply connected. Then the following two
conditions are equivalent:

(i) The monodromy action of π1(U \Γ, b) on π1(Gb, b̃) associated to the section
s is trivial.

(ii) The inclusion Gb ↪→M induces an injective homomorphism from π1(Gb, b̃)
to π1(M, b̃).

In particular, if the monodromy action of π1(U \Γ, b) on π1(Gb, b̃) is trivial for one
section, then it is trivial for any section. �
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Figure 3.1. The one-dimensional CW -complex K

3. Proof of Theorem 1.3

3.1. The case of a non-compact Riemann surface. Suppose that B is a non-
compact Riemann surface. Let B be the smooth compactification of B. We put

P := B \B.
In this case, the topological discriminant locus Σf consists of a finite number of
points of B. We put

Σf = {q1, . . . , qk}.
For each qi ∈ Σf , we put a sufficiently small closed disc ∆i on B with the center
qi. We have a finite one-dimensional CW -complex K on B \ (Σf ∪ P ) containing
b such that K ∩∆i consists of a single point ri ∈ ∂∆i for i = 1, . . . , k, and that
K ∪ ∂∆1 ∪ · · · ∪ ∂∆k is a strong deformation retract of B \ (Σf ∪ P ). Figure 3.1
illustrates K by thick lines and ∆i by shaded discs, in a situation where B is of
genus 2, P consists of three points indicated by ◦, and Σf consists of two points
indicated by •. Let L be the union of K and ∆i (i = 1, . . . , k). Then L is a strong
deformation retract of B containing Σf in its interior. By the condition (T3) of
Theorem 1.3, we have a local section

si : ∆i → f−1(∆i)

of f defined on ∆i that is holomorphic in the interior of ∆i. Since the restriction

f | f−1(K) : f−1(K) → K

of f to f−1(K) is a locally trivial fiber space with a connected fiber, and K is of
real dimension 1, there exists a continuous section

sK : K → f−1(K)

of f defined on K such that sK(ri) = si(ri) holds for each i. Gluing sK and si
(i = 1, . . .k) together, we obtain a section

sL : L → f−1(L)

of f defined over L. There is an open subset U of B that is containing L as a strong
deformation retract, and is a strong deformation retract of B. Then we can extend
sL to a continuous section

sU : U → f−1(U )



ZARISKI-VAN KAMPEN 7

of f defined over U . Note that sU is holomorphic at each point qi of Σf . By the
condition (T3), Fqi = f−1(qi) is irreducible for each qi ∈ Σf . Hence we can apply
Proposition 2.4 to the restriction fU : EU → U of f to

EU := f−1(U ).

Using the condition (T4), we conclude that the inclusion Fb ↪→ EU induces an
injective homomorphism

π1(Fb, b̃) ↪→ π1(EU , b̃),

where b̃ := sU (b). On the other hand, since f is locally trivial over B \ U and U is
a strong deformation retract of B, the inclusion EU ↪→ E induces an isomorphism

π1(EU , b̃) ∼= π1(E, b̃).

Hence i∗ is injective.

3.2. The case of an affine space. Next we treat the case where B is an affine
space AN by induction on N . The case where B = A1 is proved above. Suppose
that N > 1. Let

ρ : B → A

be a general affine projection, where A is a one-dimensional affine line A1, and let

g : E → A

be the composite of f and ρ. For a point t ∈ A, we put
Bt := ρ−1(t) ∼= A

N−1, Et := g−1(t) = f−1(Bt),

and denote by
ft : Et → Bt

the restriction of f to Et.
The strategy of the proof is as follows:

Step 1. We show that, when t ∈ A is general, ft satisfies the four conditions in
Theorem 1.3. Combining this with the induction hypothesis, we see that, if b ∈ B is
general, then the inclusion Fb ↪→ Eρ(b) induces an isomorphism on the fundamental
groups.
Step 2. We show that g satisfies the four conditions in Theorem 1.3, and hence,
if b ∈ B is general, the inclusion Eρ(b) ↪→ E induces an isomorphism on the fun-
damental groups. Combining this with Step 1 above, we complete the proof of
Theorem 1.3.

Step 1. First note that Et is irreducible for every t ∈ A. Indeed, since Bt
is of codimension 1 in B, the condition (T3) implies that a general fiber of ft is
irreducible. Hence, ifEt were reducible, there should exist an irreducible component
of Et whose image by ft is contained in a proper Zariski closed subset of Bt. Since
every irreducible component of Et is of dimension equal to dimE − 1, we get a
contradiction with the condition (T2).

Let Ξ0 denote the singular locus SingΣf of Σf , where Σf is regarded with the
reduced structure, and let Ξ1 denote the union of all irreducible components of
Σf with codimension ≥ 2 in B. Recall that Σ(i)

f (i = 1, . . . , k) are the irreducible
components of Σf with codimension 1 in B. Since ρ is general, there exists a proper
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Zariski closed subset Ξ(i) of Σ(i)
f containing SingΣ(i)

f such that the restriction ρ |Σ(i)
f

of ρ to Σ(i)
f is smooth at every point of Σ(i)

f \ Ξ(i). We put

Ξ′ := Ξ∪ Ξ0 ∪ Ξ1 ∪ Ξ(1) ∪ · · · ∪ Ξ(k),

where the first Ξ is the Zariski closed subset that appears in the condition (T3).
Then Ξ′ is a Zariski closed subset of B with codimension ≥ 2. There exists a finite
set Γ of points of A such that, if t ∈ A \ Γ, then Et is smooth, and Bt ∩ Ξ′ is of
codimension ≥ 2 in Bt.

Let t be a point of A\Γ. We show that ft : Et → Bt satisfies the four conditions
in Theorem 1.3. The condition (T1) is obvious. The condition (T2) for ft follows
from the condition (T2) for f . Since Bt ∩ Ξ is of codimension ≥ 2 in Bt, it follows
that ft satisfies the condition (T3).

Since ρ is a general affine projection, the intersection

Σf (t) := Bt ∩Σf

of Bt and Σf is a proper Zariski closed subset of Bt. Note that, if f is smooth at a
point z ∈ Et, then so is ft. Therefore Σf(t) contains the set ft(Sing ft) of critical
values of ft, and hence Σf(t) contains the topological discriminant locus Σft ⊂ Bt

of ft. Let Σf (t)(j) be an irreducible component of Σf (t) with codimension 1 in Bt,
and let y be a general point of Σf(t)(j). Since Bt ∩Ξ′ is of codimension ≥ 2 in Bt,
there exists a unique Σ(i)

f among Σ(1)
f , . . . , Σ(k)

f such that

• Σf (t)(j) is an irreducible component of the intersection of Bt with Σ(i)
f ,

• Σ(i)
f is smooth at y, and intersects Bt transversely at y.

Let Ut,y be a small open neighborhood of y in Bt, and let a be a point of Ut,y \
(Ut,y ∩Σf(t)). Then a simple loop

λ : (I, ∂I) → (Ut,y \ (Ut,y ∩Σf (t)), a)

in Bt\Σf (t) around Σf(t)(j) can be regarded as a simple loop in B\Σf around Σ(i)
f .

A holomorphic local section st,y of ft can be defined on Ut,y by restricting a holo-
morphic local section of f around y. Hence the local monodromy on π1(Fa, st,y(a))
along the loop λ associated to the holomorphic local section st,y is trivial by the
condition (T4) for f . Thus the condition (T4) for ft is satisfied.
Step 2. The conditions (T1) and (T2) are obvious. Since Et is irreducible, as

was shown in Step 1, and Bt\(Bt∩Ξ) is non-empty for any t ∈ A, the condition (T3)
is satisfied by g. Let q be a point of the topological discriminant locus Σg ⊂ A of
g. We choose a sufficiently small open disc D ⊂ A with the center q, and a point
t0 ∈ D \{q}. Let r0 be a general point of Bt0 . Since ρ is a general affine projection,
we have a holomorphic local section

s1 : D → ρ−1(D)

of ρ such that s1(D)∩Σf = ∅, and that s1(t0) = r0. Then there exists a holomorphic
local section

s2 : s1(D) → f−1(s1(D))

of f | f−1(s1(D)). We can define a holomorphic local section s of g by

s := s2 ◦ s1 : D → g−1(D).
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We will show that the local monodromy on π1(Et0, s(t0)) along the simple loop

λ′ : (I, ∂I) → (D \ {q}, t0)
around q associated with the section s is trivial. The intersection D ∩ Γ is either
empty or consisting of the single point q. In particular, we have t0 /∈ Γ. Since r0 is
general in Bt0 , we obtain from Step 1 an isomorphism

(3.1) π1(Fr0 , s(t0)) ∼= π1(Et0 , s(t0))

induced by the inclusion Fr0 ↪→ Et0 . Since s1(D) ∩Σf = ∅, f is locally trivial over
s1(D), and hence the local monodromy on π1(Fr0 , s(t0)) along a simple loop

s1 ◦ λ′ : (I, ∂I) → (s1(D) \ {s1(q)}, r0)
around s1(q) associated with the section s2 is trivial. From the isomorphism (3.1)
induced by the inclusion, we see that the local monodromy on π1(Et0 , s(t0)) along
the loop λ′ is also trivial. Thus the condition (T4) for g is also satisfied. �

4. Local monodromies

In this section, we present, in the following three situations, sufficient conditions
for the local monodromy µi around Σ(i)

f to be trivial.

Recall that xi is a general point of the irreducible hypersurface Σ(i)
f in B, and

λi is a simple loop around Σ(i)
f in a sufficiently small open ball Ui in B with the

center xi. If a holomorphic local section si of f is defined on Ui, then the local
monodromy on π1(Fai , si(ai)) along λi is defined, where ai is the base point of the
loop λi.
Remark 4.1. Since the local monodromy µi to be trivial is a local property on B, we
can replace B by a small Zariski open neighborhood of xi when we use the following
propositions. For example, removing all irreducible components of Σf except for
Σ(i)
f , we can assume that Σf is an irreducible hypersurface in B.

Situation (A). Let Y be a smooth irreducible quasi-projective variety. Suppose
that we are given a morphism

φ : E → Y.

We denote by
Φ : E → B × Y

the morphism defined by Φ(x) := (f(x), φ(x)).
Proposition 4.2. Suppose that the following conditions hold;
(A1) Y is simply connected,
(A2) Φ is dominant, and its general fiber is connected,
(A3) there exists an open neighborhood W of xi in B such that, for any (a, y) ∈

W ×Y , the fiber Φ−1(a, y) has at least one point at which Φ is smooth, and
(A4) the topological discriminant locus ΣΦ ⊂ B×Y of Φ does not contain {xi}×

Y .
Then the local monodromy µi is defined and trivial.

Proof. Note that Φ−1({a} × Y ) = Fa for every a ∈ B. We denote by

φa : Fa → Y
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the restriction of φ to Fa. We have a diagram of the fiber product

Fa ↪→ E

φa ↓ � ↓ Φ

Y ↪→ B × Y,
where the lower inclusion is given by y �→ (a, y). Let η be a general point of Y .
Then (xi, η) ∈ B × Y is not contained in ΣΦ by the condition (A4). Hence there
exist sufficiently small open balls U in B with the center xi and V in Y with the
center η such that the following hold:

• The open subset W in the condition (A3) contains U . Hence, for any a ∈ U ,
every fiber of φa possesses at least one point at which φa is smooth.

• The product U × V is disjoint from ΣΦ. In particular, if (a, y) ∈ U × V ,
then Φ−1(a, y) = φ−1

a (y) is smooth and, by the condition (A2), irreducible.
It follows that φa satisfies the condition in Proposition 1.1 for any a ∈ U , and that
V is disjoint from the topological discriminant locus Σφa ⊂ Y of φa for any a ∈ U .
There exists a holomorphic local section

s̃ : U × V → Φ−1(U × V )
of Φ defined on U × V . Putting

s(a) := s̃(a, η),

we obtain a holomorphic local section

s : U → f−1(U )

of f defined on U such that s(a) ∈ φ−1
a (η) for any a ∈ U . Hence the local mon-

odromy µi is defined.
Applying Proposition 1.1 to φa (a ∈ U ) and using the condition (A1), we see

that the inclusion φ−1
a (η) ↪→ Fa induces a surjective homomorphism

π1(φ−1
a (η), s(a)) →→ π1(Fa, s(a))

for any a ∈ U . We draw the simple loop λi around Σ(i)
f in U \ (U ∩Σf ). Let

λ̃i : (I, ∂I) → (U × V, (ai, η))
be the loop defined by

λ̃i(t) := (λi(t), η).

Since Φ is locally trivial over U × V , which is simply connected, the monodromy
action

µ̃i : π1(Φ−1(ai, η), s̃(ai, η))
∼→ π1(Φ−1(ai, η), s̃(ai, η))

along the loop λ̃i associated with the section s̃ is trivial. The diagram

π1(φ−1
ai

(η), s(ai))
µ̃i−→ π1(φ−1

ai
(η), s(ai))

↓ ↓
π1(Fai , s(ai))

µi−→ π1(Fai , s(ai))

is commutative, where the vertical arrows are induced by the inclusion of φ−1
ai

(η) =
Φ−1(ai, η) into Fai . Since µ̃i is trivial and the vertical homomorphisms are surjec-
tive, we see that µi is also trivial. �
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Situation (B). Suppose that there exists a smooth projective morphism

f̄ : E → B

from a quasi-projective variety E such that E is the complement E \Z to a reduced
divisor (possibly empty) Z of E, and that f is the restriction of f̄ to E. For a
point a ∈ B, let us denote by F a the fiber f̄−1(a), and by Za the scheme-theoretic
intersection of Z and Fa. We have Fa = F a \Za. Note that f̄ is locally trivial over
B, because it is smooth and projective.
Proposition 4.3. Suppose that the following conditions hold:
(B1) The fiber Fa of f̄ is connected.
(B2) There exists a Zariski closed subset Ξ of B with codimension ≥ 2 such that

Za is a reduced divisor of F a for any a ∈ B \ Ξ.
Then the local monodromy µi is defined and trivial.

Proof. The morphism f is smooth and dominant, and its general fiber is connected
by the conditions (B1). By the condition (B2), the locus {a ∈ B | Fa = ∅} is
contained in a Zariski closed subset of codimension ≥ 2 in B. Since xi is a general
point of the hypersurface Σ(i)

f of B, a holomorphic local section of f is defined in a
small open neighborhood of xi. Therefore the local monodromy µi is defined.

We embed E into a projective space PM . Let L be a general linear subspace of
PM with

dimL =M − (dimE − dimB) + 1.

We put
EL := E ∩ L, EL := E ∩ L

and denote by
f̄L : EL → B and fL : EL → B

the restrictions of f̄ and f , respectively. Let U be a sufficiently small open ball in
B with the center xi. Since L is general, the scheme-theoretic intersection Fxi ∩L
is a connected smooth curve, and hence f̄L is smooth and locally trivial over U
with fibers being compact Riemann surfaces. Moreover, by the condition (B2), the
scheme-theoretic intersection Zxi ∩L is a reduced divisor of the compact Riemann
surface f̄−1

L (xi) = Fxi ∩ L. Then fL is locally trivial over U with fibers being
punctured Riemann surfaces, because the number of the punctured points Za ∩ L
does not vary when a moves on U .

There exists a Zariski closed subset Σ(f,fL) of B with codimension ≥ 1 such that
the pair

(f, fL) : (E,EL) → B

is locally trivial over B \ Σ(f,fL) as a pair of continuous maps in the complex
topology. Let Σ′

(f,fL) be the union of all irreducible components of Σ(f,fL) that are
not contained in Σf . Then Σ′

(f,fL)
∩ Σf is of codimension ≥ 2 in B. Since xi is a

general point of the hypersurface Σ(i)
f , and U is sufficiently small, we have

U \ (U ∩Σf) ⊂ B \ Σ(f,fL).

Since fL is smooth over U , we have a holomorphic local section

s : U → f−1
L (U )
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of fL. We draw the simple loop λi around Σ(i)
f in U\(U∩Σf). The local monodromy

µ′i : π1(f−1
L (ai), s(ai))

∼→ π1(f−1
L (ai), s(ai))

along λi associated with the section s is trivial, because fL is locally trivial over
U and U is simply connected. Since (f, fL) is locally trivial over U \ (U ∩ Σf ),
Deligne’s theorem [1] [3, Theorem 1.1 (B)] implies that the inclusion of f−1

L (ai)
into Fai induces a surjective homomorphism

π1(f−1
L (ai), s(ai)) →→ π1(Fai , s(ai)).

Therefore the triviality of the local monodromy µi on π1(Fai , s(ai)) follows from
the triviality of µ′

i. �

Combining Theorem 1.3 and Proposition 4.3, we obtain the following. Let F be
a smooth irreducible projective variety, and Z a reduced hypersurface of AN × F .
For a point a ∈ A

N , we denote by Za the scheme-theoretic intersection of Z and
{a} × F , and regard it as a Zariski closed subset of F .
Corollary 4.4 ([6], Theorem 1). Suppose that there exists a Zariski closed subset
Ξ of AN with codimension ≥ 2 such that Za is a reduced divisor of F for any
a ∈ AN \Ξ. Then the inclusion of F \Za into (AN ×F )\Z induces an isomorphism
of the fundamental groups for a general a ∈ A

N . �
Situation (C). Let X be a smooth irreducible projective variety, and W a

reduced divisor (possibly empty) of X. We put

X := X \W.
Let M be a smooth irreducible projective variety, and D a very ample divisor of
M . Suppose that we are given a morphism

ḡ : B ×X → M

such that ḡ(B ×X) �⊂ D. We put

Z := (B ×W ) + ḡ−1(D),

which is a divisor of B ×X. We consider the situation where

E = (B ×X) \ Z,
and f : E → B is the projection.

We denote by

g : B ×X → M and gE : E → M \D
the restrictions of ḡ to the Zariski open subsets B×X and E of B×X , respectively.
For a ∈ B, we denote by

ḡa : X → M and ga : X → M

the restrictions of ḡ and g to {a} ×X and {a} ×X, respectively. Then we have

Fa := f−1(a) = X \ g−1
a (D) = X \ (W ∪ ḡ−1

a (D)).

Let P denote the projective space P∗H0(M,OM (D)), which parameterizes all ef-
fective divisors in the complete linear system |D|. For a point p ∈ P , let Dp denote
the corresponding divisor of M . We put

H := { (a, x, p) ∈ B ×X × P | (a, x) ∈ E, ga(x) ∈ Dp },
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and let
ρ : H → B × P

be the natural projection. We have a natural identification

ρ−1(a, p) = g−1
a (Dp) ∩ Fa = ḡ−1

a (Dp) \ (ḡ−1
a (Dp) ∩ (W ∪ ḡ−1

a (D)))

for any (a, p) ∈ B × P .
Proposition 4.5. Suppose that the following conditions hold:
(C1) The Zariski closed subset {a ∈ B | ḡa(X) ⊂ D} of B is of codimension ≥ 2.
(C2) For any a ∈ B, the dimension of ḡa(X) is ≥ 2.
(C3) The topological discriminant locus Σρ ⊂ B×P of ρ does not contain {xi}×

P .
Then the local monodromy µi is defined and trivial.

Proof. By the condition (C1), the locus {a ∈ B | Fa = ∅} is contained in a Zariski
closed subset of codimension ≥ 2 in B. Since f is smooth, we have a local holomor-
phic section of f defined in a small open neighborhood of xi. Therefore the local
monodromy µi is defined.

We denote by ∞ the point of P corresponding to the divisor D ∈ |D| given at
the outset, and write D∞ instead of D. We put

P× := P \ {∞}.
Let Q be the projective space that parameterizes the projective lines of P passing
through ∞, and let

α : P× → Q

be the natural projection, which is locally trivial in the Zariski topology with fibers
isomorphic to the affine line A1. For a point q ∈ Q, let Aq ⊂ P× denote the fiber
α−1(q). If y ∈ M \ D∞ and q ∈ Q, then there exists a unique point γq(y) of Aq

such that y ∈ Dγq(y). Hence, for each q ∈ Q, we have a natural morphism

γq : M \D∞ → Aq,

whose fibers over p ∈ Aq is Dp \ (Dp ∩D∞). Let

φq : E → Aq

be the composite of gE : E →M \D∞ and γq :M \D∞ → Aq. Let

Φq : E → B × Aq

be the morphism defined by Φq(a, x) := (a, φq(a, x)). We put

H× := ρ−1(B × P×).

Note that the restriction
ρ× : H× → B × P×

of ρ to H× is the universal family of Φq (q ∈ Q); that is, we have a diagram of the
fiber product

E −→ H×

Φq ↓ � ↓ ρ×

B ×Aq ↪→ B × P×

for any q ∈ Q, where the upper horizontal arrow is the inclusion given by

(a, x) �→ (a, x, φq(a, x)).
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We will prove the triviality of µi by showing that, when q ∈ Q is chosen generally,
the morphisms φq and Φq satisfy the four conditions in Proposition 4.2 with Y = Aq .

The condition (A1) is obvious. Since ρ is dominant by the condition (C1),
Φq is dominant for a general q ∈ Q. For any a ∈ B and a general p ∈ P , the
condition (C2) implies that ḡ−1

a (Dp) is smooth and connected by Bertini’s theorem
([3, Theorem 1.1]). Hence ρ−1(a, p) is connected for a general (a, p) ∈ B × P ,
because ρ−1(a, p) is a Zariski open dense subset of ḡ−1

a (Dp). Therefore, if q ∈ Q
is general, Φq satisfies the condition (A2). Since the topological discriminant locus
ΣΦq ⊂ B × Aq of Φq is contained in the intersection of B × Aq ⊂ B × P and
Σρ ⊂ B × P , the condition (C3) implies that Φq satisfies the condition (A4), when
q ∈ Q is general.

In order to check the condition (A3), we put

Γ := { (a, p) ∈ B × P | ρ−1(a, p) \ (ρ−1(a, p) ∩ Singρ) = ∅ }.
Since Γ is the the complement in B × P to ρ(H \ Sing ρ), it is a constructible set.
Hence it is a finite disjoint union of locally Zariski closed subsets. Let

prB : B × P → B

be the natural projection. We define Γ to be the Zariski closure in B ×P of Γ, and
ΞB to be the Zariski closed subset

{ a ∈ B | dim(pr−1
B (a) ∩ Γ) ≥ dimP − 1 }

of B. In order to show that Φq satisfies the condition (A3) for a general q ∈ Q, it
is enough to prove that ΞB is of codimension ≥ 2 in B. Indeed, let

β : P̃ → P

be the blowing up of P at ∞ ∈ P , and let

α̃ : P̃ → Q

be the natural projection, which coincides with α on P×. We denote by

Γ
∼ ⊂ B × P̃

the strict transform of Γ by idB ×β. We put

ΓQ := (idB ×α̃)(Γ∼
) ⊂ B × Q.

Since idB ×α̃ is a smooth projective morphism of relative dimension 1, ΓQ is a
Zariski closed subset of B × Q, and if a ∈ B \ ΞB , then ({a} × Q) ∩ ΓQ is of
codimension≥ 1 in {a} ×Q. Because xi is a general point of the hypersurface Σ(i)

f

of B, this point xi is not contained in ΞB. Therefore {xi} × Q is not contained in
ΓQ. Let q be a general point of Q. Then we have (xi, q) /∈ ΓQ. Hence there exist
open neighborhoods W of xi in B and W ′ of q in Q such that

(W ×W ′) ∩ ΓQ = ∅.
This implies

(W × α̃−1(W ′)) ∩ Γ
∼
= ∅.

In particular, we have
(W × Aq) ∩ Γ = ∅.

Since Φq is the pull-back of ρ by the inclusion B × Aq ↪→ B × P , the fiber of Φq

over any point of W × Aq possesses at least one smooth point. Hence Φq satisfies
the condition (A3).
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Now we assume that ΞB is of codimension ≤ 1 in B, and derive a contradiction.
By the assumption, there exists an irreducible locally Zariski closed subset Γ′ of
B × P contained in Γ such that its Zariski closure Γ

′
has the following property;

prB(Γ
′
) is of codimension ≤ 1 in B, and a general fiber of

prB |Γ′
: Γ

′ → prB(Γ
′
),

which is regarded as a Zariski closed subset of P , is of codimension ≤ 1.
We fix a general point a0 of prB(Γ

′
), and let Γ

′
0 be an irreducible component of

(prB |Γ′
)−1(a0). Then Γ

′
0 is of codimension ≤ 1 in P . We write

g0 : X → M and ḡ0 : X → M

instead of ga0 and ḡa0 for simplicity. Since Γ′ is locally Zariski closed, it is Zariski
open dense in Γ

′
. Let p0 be a general point of Γ

′
0. Then (a0, p0) be a point of

Γ′ ⊂ Γ, and hence ρ−1(a0, p0) is either empty or contained in Sing ρ. Suppose that
ρ−1(a0, p0) = ∅. We put

Y 0 := ḡ0(X).

We denote by C the Zariski closure in Y 0 of

Y 0 \ gE(Fa0) = (Y 0 ∩D∞) ∪ (Y 0 \ g0(X)).

Since prB(Γ
′
) is of codimension ≤ 1 in B, the condition (C1) implies Y 0 �⊂ D∞.

Hence C is a proper Zariski closed subset of Y 0. Let C1, . . . , Ck be the irreducible
components of C with codimension 1 in Y 0. We put

∆j := { p ∈ P | Cj ⊂ Dp }.
By the condition (C2), we have dimCj ≥ 1. Hence ∆j is a linear subspace of
codimension ≥ 2 in P . For p ∈ P , ρ−1(a0, p) is empty only if Y 0 ∩Dp ⊆ C, which
is equivalent to

(4.1) Y 0 ∩Dp ⊆ ∪k
j=1 Cj.

Note that, if (4.1) holds, then there exists at least one Cj among C1, . . . , Ck such
that Cj ⊂ Y 0 ∩Dp. Therefore we have Γ

′
0 ⊂ ∪j∆j, which contradicts to the fact

that Γ
′
0 is of codimension ≤ 1 in P . Therefore ρ−1(a0, p0) is non-empty and hence

is contained in Sing ρ for a general p0 ∈ Γ
′
0.

We put
H0 := { (x, p) ∈ X × P | ḡ0(x) ∈ Dp },

and let
ρ̄0 : H0 → P and σ̄0 : H0 → X

be the projections. Note that σ̄0 is a smooth projective morphism with fibers being
hyperplanes of P . We put

S0 := Sing ρ̄0.

By the consideration above, ρ̄−1
0 (p0) ∼= ρ̄−1(a0, p0) has at least one irreducible

component that is contained in S0 for a general p0 ∈ Γ
′
0. Since Γ

′
0 is of codimension

≤ 1 in P , there exists an irreducible component S′
0 of S0 with codimension 1 in H0

such that S′
0 is contained in S0 ∩ ρ̄−1

0 (Γ
′
0), and that ρ̄0(S ′

0) coincides with Γ
′
0.
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Let (x, p) be a point ofH0. Then the Zariski tangent space to ρ̄−1
0 (p) ∼= ρ̄−1(a0, p)

at (x, p) is canonically identified with the subspace (dḡ0)−1
x (Tḡ0(x)Dp) of TxX with

codimension ≤ 1. Hence (x, p) is contained in S0 if and only if

Im(dḡ0)x ⊆ Tḡ0(x)Dp.

For non-negative integers ν, we put

(X)ν := { x ∈ X | rank(dḡ0)x ≤ ν }.
If x ∈ (X)0, then σ̄−1

0 (x) ∩ S0 coincides with σ̄−1
0 (x), which is isomorphic to the

hyperplane
H(x) := { p ∈ P | ḡ0(x) ∈ Dp }

of P . We also have

x ∈ X \ (X)0 =⇒ σ̄−1
0 (x) ∩ S0 is of codimension ≥ 1 in σ̄−1

0 (x),

x ∈ X \ (X)1 =⇒ σ̄−1
0 (x) ∩ S0 is of codimension ≥ 2 in σ̄−1

0 (x).

By the condition (C2), (X)1 is a proper Zariski closed subset of X . Since S′
0 is of

codimension 1 in H0, σ̄0(S ′
0) must be contained in (X)0, and the fiber of

σ̄0 | S ′
0 : S ′

0 → σ̄(S ′
0)

over an arbitrary point x ∈ σ̄0(S ′
0) coincides with σ̄

−1
0 (x) ∼= H(x).

Let (x1, p1) be a general point of S ′
0. Then p1 is a general point of the linear

system H(x1). Since dimH(x1) > 0, Bertini’s theorem implies that the divisor

ρ−1(a0, p1) = g−1
0 (Dp1 )

of X has at least one smooth point. On the other hand, because p1 is a general
point of ρ̄0(S′

0) = Γ
′
0, the divisor ρ

−1(a0, p1) must be contained in Sing ρ. Thus we
get a contradiction. �

5. Action of an algebraic group

Let X be a smooth irreducible projective surface, and W a reduced divisor of X
(possibly empty). We put

X := X \W.
Let M be a smooth irreducible projective variety on which a connected algebraic
group G acts from left, and let D be a very ample divisor of M . Suppose that a
morphism

φ̄ : X → M

is given. We denote by φ : X →M the restriction of φ̄ to X. For γ ∈ G, let
γφ̄ : X → M and γφ : X → M

be the composites of φ̄ and φ with the action γ : M → M of γ, respectively. We
assume that there exists at least one γ ∈ G such that γφ̄(X) �⊂ D. Putting

B := G,

we obtain a morphism
ḡ : B ×X → M

defined by ḡ(γ, x) := γφ̄(x). We put

Z := (B ×W ) + ḡ−1(D), E := (B ×X) \ Z,
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and let f : E → B be the projection. By the assumption above, ḡ−1(D) is a divisor
of B ×X, and hence f is a dominant morphism. By definition, we have a natural
identification

Fγ := f−1(γ) = γφ−1(M \D)
for any γ ∈ G = B. We put

Y := φ̄(X),
and equip Y with the reduced structure. For γ ∈ G, let (γ(Y ) ∩D)◦ denote the
Zariski open subset of γ(Y )∩D consisting of all points y ∈ γ(Y )∩D at which γ(Y )
and D are smooth and intersecting transversely. We then put

Sing(γ(Y ) ∩D) := (γ(Y ) ∩D) \ (γ(Y ) ∩D)◦.
As before, let Σf ⊂ B = G be the topological discriminant locus of f , and Σ(i)

f an
irreducible component of Σf with codimension 1 in B. Let γi be a general point of
Σ(i)
f , and λi a simple loop around in Σ(i)

f in a sufficiently small open ball Ui around
γi with the base point ai ∈ Ui \ (Ui ∩Σf ).
Proposition 5.1. Suppose that the following conditions hold;
(G1) dimY = 2, so that φ̄ is quasi-finite onto its image,
(G2) for any irreducible Zariski closed subset C of Y with dimC > 0, the Zariski

closed subset {γ ∈ G | γ(C) ⊂ D} of G is of codimension ≥ 2, and
(G3) the locus {γ ∈ G | dimSing(γ(Y ) ∩D) > 0} is contained in a Zariski closed

subset of codimension ≥ 2 in G.
Then the local monodromy µi on π1(aiφ−1(M \D)) along the loop λi is defined and
trivial.
Remark 5.2. Suppose that D has a non-reduced irreducible component D′. By the
definition of Sing(γ(Y )∩D), if the conditions (G1) and (G3) are satisfied, then we
have γ(Y ) ∩D′ = ∅ for a general γ ∈ G. In particular, D′ is not ample.

Proof. As in Situation (C) in the previous section, we denote by P the the projective
space P∗H0(M,OM (D)), and by Dp the divisor corresponding to a point p ∈ P .
We put

H := { (γ, x, p) ∈ B ×X × P | γφ̄(x) ∈ Dp }, H := H∩ (E × P ),
and let

ρ̄ : H → B × P, ρ : H → B × P
be the natural projections. We will check that, in this situation, the three conditions
in Proposition 4.5 are satisfied. The condition (C1) follows from the conditions (G1)
and (G2). The condition (C2) follows from the condition (G1). Therefore all we
have to show is that the topological discriminant locus Σρ ⊂ B × P of ρ does not
contain {γi} × P .

Let Σρ̄ ⊂ B×P be the topological discriminant locus of ρ̄. By Bertini’s theorem
and the condition (G1), the general fiber of ρ̄ is a connected compact Riemann
surface, and, for any γ ∈ B, there exists a point p ∈ P such that γφ̄−1(Dp) is
a smooth irreducible curve on X . Hence the intersection of Σρ̄ with {γ} × P is
of codimension ≥ 1 in {γ} × P for any γ ∈ B. On the other hand, the general
fiber of ρ is a punctured Riemann surface. Hence, if (γ0, p0) ∈ (B × P ) \ Σρ̄,
then (γ0, p0)is not contained in Σρ if and only if the number of the punctured
points ρ̄−1(γ, p) \ ρ−1(γ, p) on the compact Riemann surface ρ̄−1(γ, p) does not
vary locally around (γ0 , p0).
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As before, we write D∞ instead of D. We choose a general point p0 ∈ P , and
write D0 instead of Dp0 . We have (γi, p0) /∈ Σρ̄. Let U (γi) and U (p0) be sufficiently
small open neighborhoods of γi in B and of p0 in P , respectively. We put

U := U (γi) × U (p0).
For (γ, p) ∈ U , we put

TW (γ, p) := W ∩ γφ̄−1(Dp) and T∞(γ, p) := γφ̄−1(D∞ ∩Dp).

Then we have
ρ̄−1(γ, p) \ ρ−1(γ, p) = TW (γ, p) ∪ T∞(γ, p).

Therefore, in order to show that the condition (C3) is satisfied, it suffices to prove
that the cardinality |TW (γ, p) ∪ T∞(γ, p)| is constant when (γ, p) moves on U .

First remark that the condition (G2) implies the following. If R is a Zariski
closed subset of X with dimR ≤ 1, then we have

γi(φ̄(R)) ∩D∞ = ∅ or dim(γi(φ̄(R)) ∩D∞) = 0.

Indeed, if φ̄(R) has an irreducible component φ̄(R)′ with dim φ̄(R)′ = 1, then
γi(φ̄(R)′) �⊂ D∞ by the condition (G2), because γi is a general point of the irre-
ducible hypersurface Σ(i)

f of G.
By definition, TW (γ, p) and T∞(γ, p) are disjoint if and only if

(5.1) γ(φ̄(W )) ∩D∞ ∩Dp = ∅.
By the remark above, we have

γi(φ̄(W )) ∩D∞ = ∅ or dim(γi(φ̄(W )) ∩D∞) = 0.

Since p0 is general in P , we see that (5.1) holds for any (γ, p) ∈ U .
Let W1, . . . ,Wk be the irreducible components of W such that

dim φ̄(Wµ) = 1 (µ = 1, . . . , k),

and let Wk+1, . . . ,Wm be the other irreducible components. Obviously we have

dim φ̄(Wν) = 0 (ν = k + 1, . . . ,m).

For µ = 1, . . . , k, let eµ be the mapping degree of

φ̄ |Wµ : Wµ → φ̄(Wµ),

and let φ̄(Wµ)◦ be the Zariski open dense subset of φ̄(Wµ) such that φ̄(Wµ) is
smooth at every point of φ̄(Wµ)◦, and that φ̄ |Wµ is étale over φ̄(Wµ)◦. We denote
by dµ the degree of the curve φ̄(Wµ) (with the reduced structure) with respect to
the very ample line bundle OM (D∞). Let γ ∈ G be an arbitrary element. If p ∈ P
is general, Dp intersects γ(φ̄(Wµ)) transversely at distinct dµ points in γ(φ̄(Wµ)◦).
Moreover we have

Dp ∩ γ(φ̄(Wν)) = ∅ (ν = k + 1, . . . ,m).

Since p0 is general, |TW (γ, p)| is constantly equal to
∑k

µ=1 dµeµ for any (γ, p) ∈ U .
There exists a Zariski open dense subset Y

◦
of Y such that

φ̄ | φ̄−1(Y
◦
) : φ̄−1(Y

◦
) → Y

◦

is étale. Let ε be the mapping degree of this étale morphism. We put

Q := Y \ Y ◦
,
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which is a Zariski closed subset of Y with dimQ ≤ 1. Then, by the remark above,
we have

γi(φ̄(Q)) ∩D∞ = ∅ or dim(γi(φ̄(Q)) ∩D∞) = 0.

Since p0 ∈ P is general, we have

(5.2) γ(Q) ∩D∞ ∩Dp = ∅ for any (γ, p) ∈ U.
By the condition (G3), we have

Sing(γi(Y ) ∩D∞) = ∅ or dim(Sing(γi(Y ) ∩D∞)) = 0.

Since p0 ∈ P is general, we have

Sing(γi(Y ) ∩D∞) ∩ D0 = ∅,
and the intersection γi(Y ) ∩ D∞ ∩ D0 is transverse; that is, at every point y ∈
γi(Y )∩D∞∩D0, all of γi(Y ), D∞ and D0 are smooth, and the intersection of their
Zariski tangent spaces in TyM is of dimension 0. Hence, for any (γ, p) ∈ U ,

γ(Y ) ∩D∞ ∩Dp

consists of distinct δ points, where δ is the degree of Y with respect to the line
bundle OM (D∞), and over each point of this intersection, γ φ̄ : X → γ(Y ) is étale
by (5.2). Hence |T∞(γ, p)| is constantly equal to δε when (γ, p) moves on U .

Combining the previous three paragraphs, we conclude that the number of the
punctured points TW (γ, p)∪T∞(γ, p) is constant locally around (γi, p0), and hence
(γi, p0) is not contained in Σρ. �

Remark 5.3. Proposition 5.1 plays a crucial role in the proof of Zariski hyperplane
section theorem for Grassmannian varieties in [12].
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