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Abstract. A simple sextic is a reduced complex projective plane curve of
degree 6 with only simple singularities. We introduce a notion of Z-splitting

curves for the double covering of the projective plane branching along a simple
sextic, and investigate lattice Zariski k-ples of simple sextics by means of this
notion. Lattice types of Z-splitting curves and their specializations are defined.

All lattice types of Z-splitting curves of degree less than or equal to 3 are
classified up to specializations.

1. Introduction

In virtue of the theory of period mapping, the lattice theory has become a strong
computational tool in the study of complex K3 surfaces. In this paper, we apply
this tool to the classification of complex projective plane curves of degree 6 with
only simple singularities. In particular, we explain the phenomena of Zariski pairs
from lattice-theoretic point of view.

A simple sextic is a reduced (possibly reducible) complex projective plane curve
of degree 6 with only simple singularities. For a simple sextic B ⊂ P2, we denote
by µB the total Milnor number of B, by Sing B the singular locus of B, by RB

the ADE-type of the singular points of B, and by degsB = [d1, . . . , dm] the list of
degrees di = deg Bi of the irreducible components B1, . . . , Bm of B.

We have the following equivalence relations among simple sextics.

Definition 1.1. Let B and B′ be simple sextics.
(1) We write B ∼eqs B′ if B and B′ are contained in the same connected com-

ponent of an equisingular family of simple sextics.
(2) We say that B and B′ are of the same configuration type and write B ∼cfg

B′ if there exist tubular neighborhoods T ⊂ P2 of B and T ′ ⊂ P2 of B′ and a
homeomorphism ϕ : (T,B) →∼ (T ′, B′) such that deg ϕ(Bi) = deg Bi holds for each
irreducible component Bi of B, that ϕ induces a bijection Sing B →∼ Sing B′, and
that ϕ is an analytic isomorphism of plane curve singularities locally around each
P ∈ Sing B. Note that RB and degsB are invariants of the configuration type.
(See [4, Remark 3] for a combinatorial definition of ∼cfg.)

(3) We say that B and B′ are of the same embedding type and write B ∼emb B′

if there exists a homeomorphism ψ : (P2, B) →∼ (P2, B′) such that ψ induces a
bijection Sing B →∼ Sing B′ and that, locally around each P ∈ Sing B, ψ is an
analytic isomorphism of plane curve singularities.
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It is obvious that

B ∼eqs B′ =⇒ B ∼emb B′ =⇒ B ∼cfg B′,

while the converses do not necessarily hold.

Example 1.2. Zariski [34] showed that there exist irreducible simple sextics B1

and B2 with RB1 = RB2 = 6A2 such that π1(P2 \ B1) ∼= Z/2Z × Z/3Z while
π1(P2 \ B2) ∼= Z/2Z ∗ Z/3Z, where ∗ denotes the free product of groups. (See also
Oka [18] and Shimada [22]). Therefore we have B1 ∼cfg B2, but B1 ̸∼embB2 and
hence B1 ̸∼eqsB2.

Artal-Bartolo [3] revived the study of pairs of plane curves that are of the same
configuration type but are not connected by equisingular deformation. Since then,
many works have been done about the discrepancies between equisingular deforma-
tions and configuration types, not necessarily for simple sextics but also for curves
of higher degrees and with other types of singularities. (See the survey paper [4].)
The main theme of these works is to find pairs of plane curves (called Zariski
pairs or Zariski couples) that have the same configuration type but have different
embedding topologies.

As for simple sextics, there have been two important works about ∼eqs and ∼cfg;
one is Yang [32], in which the configuration types of simple sextics are completely
classified, and the other is Degtyarev [11], in which an algorithm to calculate the
connected components of the equisingular family of simple sextics in a given config-
uration type is presented. The main tool of these two works is the theory of period
mapping of complex K3 surfaces applied to double plane sextics.

In this paper, we introduce another equivalence relation ∼lat by means of the
structure of the Néron-Severi lattices of the K3 surfaces obtained as the double
covers of P2 branching along the simple sextics. This relation is coarser than ∼eqs

but finer than ∼cfg, and hence can play the same role as ∼emb. The definition of
∼lat is, however, purely algebraic and therefore computationally easier to deal with
than ∼emb. In fact, Yang’s method [32] provides us with an algorithm to classify
all the equivalence classes of the relation ∼lat, which are called the lattice types of
simple sextics. Moreover we can sometimes conclude B ̸∼embB′ by looking at an
invariant of the lattice types (Theorem 8.5).

We then define the notion of Z-splitting curves, and investigate lattice types of
simple sextics by means of this notion. A notion of lattice Zariski couples (or more
generally, lattice Zariski k-ples) is introduced for ∼lat in the same way as the notion
of classical Zariski couples was introduced for ∼emb in [3]. The notion of Z-splitting
curves provides us with a unifying tool to describe all lattice Zariski k-ples. In fact,
the members of any lattice Zariski k-ple are distinguished by numbers of Z-splitting
curves of degree ≤ 2 (Theorem 3.5).

Finally, we define lattice types of Z-splitting curves, and classify all lineages
via specialization of lattice types of Z-splitting curves of degree ≤ 3. It turns
out that these lineages are completely indexed by the class-order of the Z-splitting
curves (Theorems 3.13, 3.19 and 3.23). These lineages seem to yield many examples
of simple sextics with interesting geometry. For example, the Z-splitting conics
with class-order 3 are the splitting conics of torus sextics, which have been studied
intensively by Oka and others (see [19], for example).
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Another importance of Z-splitting curves comes from the fact that, for a simple
sextic B that is generic in an irreducible component of an equisingular family, the
Néron-Severi lattice of the corresponding K3 surface is generated by the reduced
parts of the lifts of the irreducible components of B and the lifts of Z-splitting
curves of degree ≤ 3 (Theorem 3.21).

The plan of this paper is as follows. In §2, we define various notions that are
investigated in this paper. The relation ∼lat is defined in Definition 2.8, and the
notion of Z-splitting curves is defined in Definition 2.13. The main results are
stated in §3. Most of these results are proved computationally with assistance of a
computer. We present lattice-theoretic algorithms to prove them in the following
sections. In §4, we explain the method of Yang to make the complete list of lattice
types of simple sextics. In §5, we give an algorithm to determine the configuration
type and the classes of lifts of smooth Z-splitting curves of degree ≤ 3 for a given
lattice type of simple sextics. In §6, we present an algorithm about specializa-
tion of lattice types of Z-splitting curves. Results in §6 are the main theoretical
ingredients for our classification of the lineages of Z-splitting curves. In §7, we
demonstrate the algorithms for a concrete example. We conclude this paper by
presenting miscellaneous facts, examples and remarks in §8.

When we were finishing the first version of this paper, a preprint by Yang and
Xie [33] appeared on the e-print archive. In their paper, Yang and Xie also inves-
tigate the classical Zariski pairs of simple sextics by lattice theory and the result
in [28, 27]. See also Theorem 8.5 of this paper.

Acknowledgement. Part of this work was done during the author’s stay at
National University of Singapore in September 2008. Thanks are due to Professor
De-Qi Zhang for his warm hospitality. The author is also deeply grateful to the
referee for many valuable comments on the first version of this paper.

2. Definitions

A lattice is a free Z-module L of finite rank with a non-degenerate symmetric
bilinear form ( , ) : L × L → Z. We say that a lattice L is even if x2 ∈ 2Z holds
for any x ∈ L. We say that L is negative-definite if x2 < 0 holds for any non-zero
x ∈ L.

We fix several conventions about lattices. Let L be a lattice, and let S be a
subset of L. We denote by 〈S〉 the sublattice of L generated by S and by 〈S〉+ the
monoid of vectors

∑
avv (v ∈ S) with av ∈ Z≥0. When S = {v}, we write 〈v〉 for

〈{v}〉. We denote by S⊥ or (S ⊂ L)⊥ the orthogonal complement of 〈S〉 in L.
Let L′ be another lattice. An embedding of L into L′ is a homomorphism of

Z-modules φ : L → L′ that satisfies (x, y) = (φ(x), φ(y)) for any x, y ∈ L. Note
that such a homomorphism is necessarily injective. An embedding φ is said to be
primitive if the cokernel of φ is torsion free. For an embedding φ, we use the same
letter φ to denote the induced linear homomorphism L ⊗ C → L′ ⊗ C.

Definition 2.1. Let L be an even negative-definite lattice. A vector d ∈ L is called
a root if d2 = −2. Let DL be the set of roots in L. A subset F of DL is called a
fundamental system of roots in L if F is a basis of 〈DL〉 and every d ∈ DL can be
written as a linear combination of elements of F with coefficients all non-positive
or all non-negative. An even negative-definite lattice L is called a root lattice if
〈DL〉 = L holds.
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A fundamental system of roots exists for any even negative-definite lattice. The
isomorphism classes of fundamental systems of roots (and hence root lattices) are
classified by means of Dynkin diagrams. See Ebeling [14, §1.4] or Bourbaki [7], for
example, for the proof of these facts.

We denote by L∨ the dual lattice {v ∈ L ⊗ Q | (x, v) ∈ Z for any x ∈ L} of L,
which is a submodule of L ⊗ Q with finite rank containing L.

Definition 2.2. Let L be a lattice. A submodule L′ of L∨ is called an overlattice
of L if L′ contains L and the Q-valued symmetric bilinear form on L∨ extending
the symmetric bilinear form on L takes values in Z on L′.

Definition 2.3. Lattice data is a triple [E , h,Λ], where E is a fundamental system
of roots in the negative-definite root lattice 〈E〉 generated by E , h is a vector with
h2 = 2 that generates a positive-definite lattice 〈h〉 of rank 1, and Λ is an even
overlattice of the orthogonal direct-sum 〈h〉 ⊕ 〈E〉.

Extended lattice data is a quartet [E , h, Λ, S], where [E , h,Λ] is lattice data and
S is a subset of Λ with cardinality 2.

Remark 2.4. In the geometric application, S is the place holder for the classes of
the lifts of a Z-splitting curve. (See Definition 2.26.)

Definition 2.5. An isomorphism from lattice data [E , h,Λ] to lattice data [E ′, h′, Λ′]
is an isomorphism of lattices φ : Λ →∼ Λ′ that satisfies φ(E) = E ′ and φ(h) = h′.
If φ : Λ →∼ Λ′ is an isomorphism of lattice data, then φ induces an isomorphism of
fundamental systems of roots between E and E ′.

Definition 2.6. An isomorphism from extended lattice data [E , h, Λ, S] to extended
lattice data [E ′, h′, Λ′, S′] is an isomorphism φ : Λ →∼ Λ′ of lattice data from [E , h,Λ]
to [E ′, h′, Λ′] that induces a bijection from S to S′.

Let B ⊂ P2 be a simple sextic. Consider the double covering πB : YB → P2

branching exactly along B. Then YB has only rational double points of type RB

as its singularities, and the minimal resolution ρB : XB → YB of YB yields a K3
surface XB . Let ρ̃B : XB → P2 denote the composite of ρB and πB .

We denote by NS(XB) ⊂ H2(XB , Z) the Néron-Severi lattice of XB . Let EB be
the set of (−2)-curves on XB that are contracted by ρ̃B : XB → P2. We regard EB

as a subset of NS(XB) by E 7→ [E], where [E] ∈ NS(XB) denotes the class of the
curve E ∈ EB . We consider the sublattice

ΣB := 〈hB〉 ⊕ 〈EB〉 ⊂ NS(XB)

of NS(XB) generated by the polarization class

hB := [ρ̃∗B(OP2(1))]

and EB ⊂ NS(XB). Remark that EB is a fundamental system of roots in the root
lattice 〈EB〉 of type RB . We then denote by

ΛB := (ΣB ⊗ Q) ∩ H2(XB , Z)

the primitive closure of ΣB in H2(XB , Z), which is an even overlattice of ΣB . Since
NS(XB) is primitive in H2(XB , Z), ΛB is the primitive closure of ΣB in NS(XB).
Finally we define the finite abelian group GB by

GB := ΛB/ΣB .
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µB 0 1 2 3 4 5 6 7 8 9 10 11
∼cfg 1 1 2 3 6 10 18 30 53 89 148 246
∼lat 1 1 2 3 6 10 18 30 53 89 148 246

µB 12 13 14 15 16 17 18 19 total
∼cfg 415 684 1090 1623 2139 2283 1695 623 11159
∼lat 416 686 1096 1639 2171 2330 1734 629 11308

Table 2.1. Numbers of configuration types and lattice types

Definition 2.7. We denote by ℓ(B) the lattice data [EB , hB ,ΛB ], and call it the
lattice data of B.

Definition 2.8. Let B and B′ be simple sextics. We write B ∼lat B′ if there
exists an isomorphism between the lattice data ℓ(B) and ℓ(B′). An equivalence
class of the relation ∼lat is called a lattice type of simple sextics. The lattice type
containing a simple sextic B is denoted by λ(B).

By definition, an isomorphism of lattice data from ℓ(B) to ℓ(B′) is an isomor-
phism of lattices ΛB →∼ ΛB′ that preserves the polarization class and the set of
classes of the exceptional (−2)-curves.

It is obvious that the isomorphism class of the finite abelian group GB is an
invariant of the lattice type λ(B).

Let B1, . . . , Bm be the irreducible components of B. We denote by B̃i ⊂ XB the
reduced part of the strict transform of Bi, and put

ΘB := ΣB + 〈[B̃1], . . . , [B̃m]〉 ⊂ NS(XB).

Then we have
ΣB ⊂ ΘB ⊂ ΛB ⊂ NS(XB).

We see that the implications

B ∼eqs B′ =⇒ B ∼lat B′ =⇒ B ∼cfg B′

hold, where the second implication was proved by Yang [32]. (See also Corol-
lary 5.26). Hence the isomorphism class of the finite abelian group

FB := ΛB/ΘB

is also an invariant of the lattice type λ(B).

In fact, Yang [32] gave an algorithm to classify all lattice types and configuration
types of simple sextics using the idea of Urabe [30, 31]. The numbers of these types
are given in Table 2.1. (Yang did not present the complete table in his paper, and
hence we re-produced the classification table by ourselves along with the complete
list of configurations of rational double points on normal K3 surfaces in [26].)
Table 2.1 shows that, for µB > 11, there exist many lattice Zariski k-ples (k > 1),
which is defined as follows.

Definition 2.9. A configuration type γ of simple sextics is called a lattice Zariski
k-ple if γ contains exactly k lattice types.



6 ICHIRO SHIMADA

[Γ̃+] ∈ ΛB [Γ̃+] /∈ ΛB

[Γ̃+] = [Γ̃−] I ∅

[Γ̃+] ̸= [Γ̃−] II III

splitting : I + II + III
pre-Z-splitting : I + II
Z-splitting : II

Table 2.2. Three notions of splittingness

Example 2.10. The configuration type of irreducible simple sextics B with RB =
6A2 is a lattice Zariski couple with µB = 12. Indeed, for B1 and B2 in Example 1.2,
we have GB1 = 0 while GB2

∼= Z/3Z.

Remark 2.11. See §7 for an example of lattice Zariski triples. Looking at the
classification table, we see that there exist no lattice Zariski k-ples with k > 3.

Next we define the notion of Z-splitting curves, where Z stands for Zariski. Let
B be a simple sextic. We denote by

ιB : XB →∼ XB

the involution of XB over P2, and use the same letter ιB to denote the induced
involution on the lattice H2(XB , Z). Note that ιB preserves the sublattices ΣB ,
ΛB , ΘB and NS(XB).

Definition 2.12. A reduced irreducible projective plane curve Γ ⊂ P2 is said to
be splitting for B if the strict transform of Γ by ρ̃B : XB → P2 splits into two
(possibly equal) irreducible components Γ̃+ and Γ̃− = ιB(Γ̃+). We call Γ̃+ and Γ̃−

the lifts of the splitting curve Γ.

We have Γ̃+ = Γ̃− if and only if Γ is an irreducible component of B.

Definition 2.13. A splitting curve Γ is said to be pre-Z-splitting if the class [Γ̃+]
of a lift Γ̃+ ⊂ XB of Γ is contained in ΛB . (Note that [Γ̃+] ∈ ΛB if and only if
[Γ̃−] ∈ ΛB , because we have [Γ̃+] + [Γ̃−] ∈ ΣB .)

Definition 2.14. A pre-Z-splitting curve Γ is said to be Z-splitting if the classes
[Γ̃+] and [Γ̃−] = ιB([Γ̃+]) are distinct.

Remark 2.15. Since ιB acts on the orthogonal complement of ΛB in H2(XB , Z) as
the multiplication by −1, it follows that, if a splitting curve Γ is not pre-Z-splitting,
then we have [Γ̃+] ̸= [Γ̃−]. See Table 2.2.

We have an easy numerical criterion of pre-Z-splittingness (see Proposition 8.2).
We also have the following:

Proposition 2.16. Let Γ be a pre-Z-splitting curve for a simple sextic B. Let
B′ be a general member of the connected component F of the equisingular family
containing B, and let φ : H2(XB , Z) →∼ H2(XB′ , Z) be an isomorphism of lattices
induced by an equisingular deformation from B to B′. Then there exists a pre-Z-
splitting curve Γ′ for B′ such that the class of a lift of Γ′ is equal to φ([Γ̃+]). If Γ
is Z-splitting, then so is Γ′.

Proof. Since φ is induced by an equisingular deformation, we see that φ induces
an isomorphism ΛB →∼ ΛB′ . The second assertion follows from the first assertion
because φ commutes with the involutions ιB and ιB′ . Since Γ is irreducible by
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definition, the lift Γ̃+ is also irreducible and hence we have H1(XB ,O(Γ̃+)) = 0
by [21, Lemma 3.5]. Since B′ is general in F , we see that Γ̃+ is deformed to an
effective divisor Γ̃′+ on XB′ (see Lemmas 6.8 and 6.9), and that Γ̃′+ is irreducible
and mapped birationally to a curve Γ′ on P2. Hence φ([Γ̃+]) is the class of a lift
Γ̃′+ of a splitting curve Γ′ for B′. Since φ([Γ̃′+]) ∈ ΛB′ , Γ′ is pre-Z-splitting. ¤

Example 2.17. Let f(x0, x1, x2) and g(x0, x1, x2) be general homogeneous poly-
nomials of degree 5 and 3, respectively. Then B = {x0f + g2 = 0} is smooth,
and the triple tangent line Γ = {x0 = 0} is splitting for B but not pre-Z-splitting,
because a general sextic has no triple tangents.

Example 2.18. Every irreducible component of B is pre-Z-splitting, but not Z-
splitting.

Example 2.19. Suppose that B is a union of cubic curves E0 and E∞. Then
the general member Et of the pencil in |OP2(3)| spanned by E0 and E∞ is pre-Z-
splitting. The lifts Ẽ+

t and Ẽ−
t of Et are, however, contained in the same elliptic

pencil on XB , and hence Et is not Z-splitting.

If a pre-Z-splitting curve Γ is of degree ≤ 2 and not contained in B, then its lifts
Γ̃+ and Γ̃− are distinct (−2)-curves on XB , and hence Γ is Z-splitting.

Example 2.20. Let f(x0, x1, x2) and g(x0, x1, x2) be general homogeneous poly-
nomials of degree 2 and 3, respectively. Then the torus sextic Btrs := {f3 +g2 = 0}
is a simple sextic with RBtrs = 6A2, and the conic Γ = {f = 0} is Z-splitting, as
can be seen by the numerical criterion Proposition 8.2. (See Example 8.3.) In fact,
this torus sextic Btrs is the simple sextic B2 in Examples 1.2 and 2.10, and the class
[Γ̃+] generates the cyclic group GB2 = GBtrs of order 3.

Definition 2.21. A simple sextic B is said to be lattice-generic if ΛB = NS(XB)
holds, or equivalently, the Picard number of XB is equal to µB + 1.

Remark 2.22. It is easy to see that lattice-generic simple sextics are dense in any
equisingular family. (See Corollary 4.14.) In particular, every lattice type contains
a lattice-generic member.

Corollary 2.23. A splitting curve Γ for a simple sextic B is pre-Z-splitting if and
only if Γ is stable under general equisingular deformation of B.

Proof. The “ only if ” part follows from Proposition 2.16. The “ if ” part follows
from Remark 2.22. ¤

The assumption that B′ be a general member of F in Proposition 2.16 is indis-
pensable, as the example below shows.

Example 2.24. Let f1, f2 and g be general homogeneous polynomials with deg f1 =
deg f2 = 1 and deg g = 3. We put B0 := {f3

1 f3
2 + g2 = 0}. Then we have

Btrs ∼eqs B0. The Z-splitting conic Γ = {f = 0} for Btrs degenerates into the
union of two lines {f1 = 0} and {f2 = 0}. Both of them are splitting but not pre-
Z-splitting for B0. Note that Btrs is lattice-generic, but B0 is not lattice-generic.

Definition 2.25. We call a pair (B, Γ) of a simple sextic B and a Z-splitting curve
Γ for B a Z-splitting pair. If B is lattice-generic, we say that (B, Γ) is lattice-generic.
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Definition 2.26. The lattice data ℓP (B, Γ) of a Z-splitting pair (B, Γ) is the ex-
tended lattice data

ℓP (B, Γ) := [EB , hB ,ΛB , {[Γ̃+], [Γ̃−]}].

We write (B, Γ) ∼lat (B′, Γ′) if there exists an isomorphism of extended lattice
data between ℓP (B, Γ) and ℓP (B′, Γ′). The equivalence class of ∼lat is called a
lattice type, and the lattice type containing a Z-splitting pair (B, Γ) is denoted by
λP (B, Γ).

By definition, an isomorphism of lattice data from ℓP (B, Γ) to ℓP (B′, Γ′) is an
isomorphism of lattices ΛB →∼ ΛB′ that preserves the polarization class, the set of
exceptional (−2)-curves, and maps the classes of the lifts Γ̃± of Γ to the classes of
the lifts Γ̃′± of Γ′.

Remark 2.27. By Proposition 2.16 and Remark 2.22, every lattice type λP of Z-
splitting pairs contains a lattice-generic member.

3. Main results

3.1. Classes of lifts of Z-splitting curves. Let B be a simple sextic. For n =
1, 2, 3, we denote by

Zn(B) := { [Γ̃+], [Γ̃−] | Γ is a smooth Z-splitting curve of degree n } ⊂ ΛB .

Remark 3.1. In this definition, the condition that Γ should be smooth is of course
redundant when n < 3. For n = 3, there may be a Z-splitting nodal cubic curve
Γ such that Γ̃+ and Γ̃− are (−2)-curves on XB , but we do not consider such Z-
splitting curves.

The main reason why we treat only smooth Z-splitting curves of degree ≤ 3 will
be revealed in Theorem 3.21.

Our first main result is as follows:

Theorem 3.2. Let B and B′ be lattice-generic simple sextics such that B ∼lat B′.
If φ : ΛB →∼ ΛB′ is an isomorphism of lattice data from ℓ(B) to ℓ(B′), then φ
induces a bijection between Zn(B) and Zn(B′) for n = 1, 2, 3.

More precisely, we will give in §5 an algorithm to calculate the sets Z1(B), Z2(B)
and Z3(B) for a lattice-generic simple sextic B from the lattice data ℓ(B).

When n < 3, each element of Zn(B) is the class of a unique (−2)-curve, which is a
lift of a Z-splitting curve of degree n. Hence the cardinality of Z1(B) (resp. Z2(B))
is twice of the number of Z-splitting lines (resp. Z-splitting conics). By Theo-
rem 3.2, we can make the following:

Definition 3.3. For a lattice type λ = λ(B) of simple sextics, we define z1(λ)
and z2(λ) to be the numbers of Z-splitting lines and of Z-splitting conics for a
lattice-generic member B of λ.

In the above definition, the condition that B should be lattice-generic is indis-
pensable.

Example 3.4. The non lattice-generic member B0 of the lattice type λ(Btrs) =
λ(B0) in Example 2.24 has no Z-splitting conics, while z2(λ(Btrs)) = 1.
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µB 12 13 14 15 16 17 18 19 total

lines 0 0 0 1 2 7 13 18 41
conics 1 2 7 18 47 86 108 55 324

Table 3.1. Numbers of lattice types with Z-splitting lines or conics

The usefulness of the notion of Z-splitting curves in the study of lattice Zariski
k-ples comes from the following:

Theorem 3.5. Let λ and λ′ be lattice types of simple sextics in the same configu-
ration type. If z1(λ) = z1(λ′) and z2(λ) = z2(λ′), then λ = λ′. Namely, the lattice
types in any lattice Zariski k-ple are distinguished by the numbers z1(λ) and z2(λ).

The set Z3(B) is in two-to-one correspondence with a set of one-dimensional
families of Z-splitting cubic curves.

Proposition 3.6. Let Ẽ be an effective divisor on XB. We have [Ẽ] ∈ Z3(B)
if and only if |Ẽ| is an elliptic pencil on XB whose general member is a lift of a
Z-splitting cubic curve.

Proof. Let Ẽ be a lift of a smooth Z-splitting cubic curve E. Then Ẽ is smooth of
genus 1, and hence |Ẽ| is an elliptic pencil. Conversely, if |Ẽ| is an elliptic pencil on
XB whose general member Ẽ is a lift of a Z-splitting cubic curve E, then E must
be smooth because E is birational to Ẽ and hence of genus 1. ¤
3.2. Classification of Z-splitting curves of degree ≤ 2. Next we give a classi-
fication of lattice types of Z-splitting pairs (B, Γ) with deg Γ ≤ 2. The numbers of
lattice types λ of simple sextics with z1(λ) > 0 or z2(λ) > 0 are given in Table 3.1.
If µB < 12, then B has no Z-splitting curves of degree ≤ 2. (Remark that there
are lattice types λ for which both z1(λ) > 0 and z2(λ) > 0 hold. Such lattice types
are counted twice in Table 3.1.)

The entire classification table is too huge to be presented in a paper. In order to
state our classification in a concise way, we introduce the notion of specialization
of lattice types.

Definition 3.7. Let λ0 and λ be lattice types of simple sextics. We say that λ0 is
a specialization of λ if there exists an analytic family f : B → ∆ of simple sextics
f−1(t) = Bt parameterized by a unit disc ∆ ⊂ C, where B is a surface in P2 × ∆
and f is a projection, such that the central fiber B0 is a member of λ0 and the
other fibers Bt (t ̸= 0) are members of λ.

Definition 3.8. Let λP
0 and λP be lattice types of Z-splitting pairs. We say that

λP
0 is a specialization of λP if there exists an analytic family f : P → ∆ of Z-

splitting pairs f−1(t) = (Bt, Γt) such that the central fiber f−1(0) is a member of
λP

0 and the other fibers f−1(t) (t ̸= 0) are members of λP .

We give the list of lattice types of Z-splitting pairs that generate all other lattice
types by specialization. It turns out that the lineages of lattice types via special-
ization are classified by the class-order defined below.

Definition 3.9. The class-order of a Z-splitting pair (B,Γ) (or of a lattice type
λP (B, Γ) of Z-splitting pairs) is the order of [Γ̃+] in GB = ΛB/ΣB .
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α RB degs τ z1 z2 GB FB

A 3A5 [3, 3] l 1 0 Z/6Z Z/3Z
n 0 0 Z/2Z 0

B A3 + 2A7 [2, 4] l 1 0 Z/8Z Z/4Z
c 0 1 Z/4Z Z/2Z
n 0 0 Z/2Z 0

C 2A4 + A9 [1, 5] l 1 0 Z/10Z Z/5Z
n 0 0 Z/2Z 0

D A3 + A5 + A11 [2, 4] l 1 1 Z/12Z Z/6Z

Table 3.2. Lattice types λα,τ in γα for α ∈ {A,B, C, D}

In the following, the index τ in lattice types λα,τ takes symbolic values n, l or
c, which stand for “none”, “line” and “conic”, respectively.

The classification of Z-splitting lines is as follows.

Definition 3.10. For α ∈ {A, B,C,D}, let γα be the configuration type given in
the following table:

α RB degs
A 3A5 [3, 3] (the cubics are smooth)
B A3 + 2A7 [2, 4] (the quartic has A3)
C 2A4 + A9 [1, 5] (the quintic has 2A4)
D A3 + A5 + A11 [2, 4] (the quartic has A5)

Proposition 3.11. Let α be one of A, B, C, D.
(1) The lattice types λα,τ in the configuration type γα are given in Table 3.2.

The invariants z1(λα,τ ), z2(λα,τ ), GB and FB of these lattice-types are also given
in this table.

(2) Let B be a lattice-generic member of λα,l, so that there exists a unique Z-
splitting line Γ for B. Then Γ passes through the three singular points of B, and
the cyclic group GB is generated by [Γ̃+].

Definition 3.12. Let B and Γ be as in Proposition 3.11 (2). We put

λP
lin,d := λP (B, Γ),

where d is the order of GB ; that is, d = 6, 8, 10, 12 according to α = A, B, C, D.

These lattice types λP
lin,d are the originators of the lineages of lattice types of

Z-splitting lines.

Theorem 3.13. Let (B, Γ) be a Z-splitting pair with deg Γ = 1. Then the class-
order d of λP (B, Γ) is 6, 8, 10 or 12, and λP (B, Γ) is a specialization of the lattice
type λP

lin,d.

The classification of Z-splitting conics is as follows.
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Figure 3.1. Dynkin diagram

Definition 3.14. For α ∈ {a, b, c, d, e, f}, let γα be the configuration type given in
the following table:

α RB degs
a 6A2 [6]
b 2A1 + 4A3 [2, 4] (the quartic has 2A1)
c 4A4 [6]
d 2A1 + 2A2 + 2A5 [2, 4] (the quartic has 2A2)
e 3A6 [6]
f A1 + A3 + 2A7 [2, 4] (the quartic has A1 + A3)

Definition 3.15. Let P be a singular point of B, and let e1, . . . , er be the ex-
ceptional (−2)-curves on XB over P indexed in such a way that the dual graph is
given in Figure 3.1. Let Γ̃+ be a lift of a smooth splitting curve Γ. Suppose that
P ∈ Γ. Since Γ is smooth and splitting, there exists a unique ej among e1, . . . , er

that intersects Γ̃+. (See Lemma 5.4.) We put τP (Γ̃+) := j. If P /∈ Γ, we put
τP (Γ̃+) := 0 and τP (Γ̃−) := 0.

Proposition 3.16. Let α be one of a, b, c, d, e, f.
(1) The lattice types λα,τ in the configuration type γα are given in Table 3.3,

together with the invariants z1(λα,τ ), z2(λα,τ ), GB and FB.
(2) Let B be a lattice-generic member of λα,c. Then the Z-splitting conics Γ

for B are given in Table 3.4, where ord is the class-order of (B, Γ), and τP (Γ̃+) is
described under an appropriate choice of numbering of the exceptional (−2)-curves
and the lift of Γ.

Definition 3.17. Let B be as in Proposition 3.16 (2), and let Γ be a Z-splitting
conic for B such that [Γ̃+] generates GB . We put

λP
con,d := λP (B, Γ),

where d is the order of GB .

Remark 3.18. For d = 5, 7, 8, the lattice type λP
con,d = λP (B, Γ) does not depend

on the choice of Γ as long as [Γ̃+] generates GB .
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α RB degs τ z1 z2 GB FB

a 6A2 [6] c 0 1 Z/3Z Z/3Z
n 0 0 0 0

b 2A1 + 4A3 [2, 4] c 0 1 Z/4Z Z/2Z
n 0 0 Z/2Z 0

c 4A4 [6] c 0 2 Z/5Z Z/5Z
n 0 0 0 0

d 2A1 + 2A2 + 2A5 [2, 4] c 0 2 Z/6Z Z/3Z

n 0 0 Z/2Z 0

e 3A6 [6] c 0 3 Z/7Z Z/7Z
n 0 0 0 0

f A1 + A3 + 2A7 [2, 4] c 0 3 Z/8Z Z/4Z
l 1 0 Z/8Z Z/4Z
n 0 0 Z/4Z Z/2Z

Table 3.3. Lattice types λα,τ in γα for α ∈ {a, b, . . . , f}

α Γ ord τP (Γ̃+)
a A2 A2 A2 A2 A2 A2

Γ 3 1 1 1 1 1 1
b A1 A1 A3 A3 A3 A3

Γ 4 1 1 1 1 1 1
c A4 A4 A4 A4

Γ1 5 1 1 2 2
Γ2 5 2 2 4 4

d A1 A1 A2 A2 A5 A5

Γ1 6 1 1 2 2 1 1
Γ2 3 0 0 1 1 2 2

e A6 A6 A6

Γ1 7 1 2 3
Γ2 7 2 4 6
Γ3 7 3 6 2

f A1 A3 A7 A7

Γ1 8 1 1 1 5
Γ2 4 0 2 2 2
Γ3 8 1 3 3 7

Table 3.4. Z-splitting conics of λα,c for α ∈ {a, b, . . . , f}
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These lattice types λP
con,d are the originators of the lineages of lattice types of

Z-splitting conics.

Theorem 3.19. Let (B, Γ) be a Z-splitting pair with deg Γ = 2. Then the class-
order d of λP (B, Γ) is 3, 4, 5, 6, 7 or 8, and λP (B, Γ) is a specialization of the lattice
type λP

con,d.

Remark 3.20. The simple sextics in λP
con,3 are the classical torus sextics, which have

been studied in details by many authors (for example, see [19]). The simple sextics
in λP

con,5 are studied by Degtyarev in [10] and [12]. The simple sextics in λP
con,7 are

studied by Degtyarev in [10] and by Degtyarev-Oka in [13].

3.3. Generators of FB and Z-splitting cubic curves.

Theorem 3.21. Let B be a lattice-generic member of a lattice type λ = λ(B).
(1) The finite abelian group FB = ΛB/ΘB is generated by the classes of lifts of

smooth Z-splitting curves of degree ≤ 3; that is, we have

(3.1) ΛB = ΘB + 〈Z1(B)〉 + 〈Z2(B)〉 + 〈Z3(B)〉.
(2) If z1(λ) > 0 or z2(λ) > 0, then FB is non-trivial and is generated by the

classes of lifts of Z-splitting curves of degree ≤ 2.

The generators 〈Z3(B)〉 are indispensable in (3.1), as the following example
λQC,n shows.

Proposition 3.22. Let γQC be the configuration type of simple sextics B = Q + C
with degs B = [2, 4], RB = 3A1 + 4A3 and the quartic curve Q having 3A1.

(1) The configuration type γQC contains exactly two lattice types λQC,n and
λQC,c, which are distinguished by the following:

z1(λQC,c) = 0, z2(λQC,c) = 1, z1(λQC,n) = 0, z2(λQC,n) = 0.

These lattice types have isomorphic GB and FB; for a member B of γQC, GB is
cyclic of order 4 and FB is of order 2.

(2) Let B = Q+C be a lattice-generic member of λQC,c, and let Γ be the unique
Z-splitting conic for B. Then GB is generated by [Γ̃+].

(3) Let B′ = Q′ + C ′ be a lattice-generic member of λQC,n, so that Z1(B′) =
Z2(B′) = ∅. Then Z3(B′) consists of two elements [Ẽ+] and [Ẽ−], and GB′ is
generated by [Ẽ+]. Let E be the image of a general member of the elliptic pencil
|Ẽ+|, which is a smooth Z-splitting cubic curve. Then E passes through every point
of Sing B′ and is tangent to each of Q′ and C ′.

We need Z-splitting cubic curve to generate FB′ ̸= 0. We put

λP
QC,n := λP (B′, E),

where (B′, E) is the Z-splitting pair in Proposition 3.22 (3). The lattice type
λP

QC,n is the ancestor of all lattice types for which we need Z-splitting cubic curves
to generate FB .

Theorem 3.23. Let λ0 be a lattice type of simple sextics with a lattice-generic
member B0. Suppose that z1(λ0) = 0 and z2(λ0) = 0 but FB0 ̸= 0.

(1) The set Z3(B0) consists of two elements [Ẽ+
0 ] and [Ẽ−

0 ], and GB0 is cyclic
of order 4 generated by [Ẽ+

0 ].
(2) Let E0 be the image of a general member of the elliptic pencil |Ẽ+

0 |. Then the
lattice type λP (B0, E0) is a specialization of the lattice type λP

QC,n defined above.
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4. Classification of lattice types of simple sextics

4.1. Fundamental system of roots. Let L be an even negative-definite lattice,
and let DL be the set of roots in L. We denote by 0Hom(L, R) the space of all linear
forms t : L → R such that t(d) ̸= 0 holds for any d ∈ DL. For t ∈ 0Hom(L, R), we
put

(DL)+t := { d ∈ DL | t(d) > 0 }.
An element d ∈ (DL)+t is said to be decomposable if there exist d1, d2 ∈ (DL)+t
such that d = d1 + d2; otherwise, we say that d is indecomposable. The proof of the
following well-known fact is found, for example, in Ebeling [14, Proposition 1.4].

Proposition 4.1. The set Ft of indecomposable elements in (DL)+t is a fundamen-
tal system of roots in L. Conversely, if F is a fundamental system of roots in L,
then there exists a linear form t′ ∈ 0Hom(L, R) such that F is equal to the set Ft′

of indecomposable elements in (DL)+t′ .

We call Ft the fundamental system of roots associated with t : L → R.

Corollary 4.2. There exists a one-to-one correspondence between the set of funda-
mental systems of roots in L and the set of connected components of 0Hom(L, R).

Remark 4.3. A fundamental system of roots F in L is associated with t ∈ 0Hom(L, R)
if and only if (t, d) > 0 holds for any d ∈ F .

4.2. The Kähler cone and polarizations of a K3 surface. Let X be a K3
surface, and let ωX be a basis of H2,0(X). We put

HX := { x ∈ H2(X, R) | (x, ωX) = 0 },
DX := { d ∈ NS(X) | d2 = −2 },
ΓX := { x ∈ HX | x2 > 0 },

0ΓX := { x ∈ ΓX | (x, d) ̸= 0 for all d ∈ DX }.
We have HX = H2(X, R) ∩ H1,1(X) and NS(X) = H2(X, Z) ∩ HX . We also have

ΓX = Γ+
X ⊔ (−Γ+

X) (disjoint),

where Γ+
X is the connected component of ΓX that contains a Kähler class of X.

Definition 4.4. The Kähler cone KX of X is the set of vectors κ ∈ HX satisfying
(D,κ) > 0 for any effective divisor D on X.

Every Kähler class of X is contained in KX . Conversely, as a corollary of Theo-
rem 6.2 below, we see that every vector in KX is a Kähler class on X.

The following proposition is an immediate consequence of the definition.

Proposition 4.5. A vector v ∈ NS(X) is nef if and only if v is contained in the
closure of the Kähler cone KX in HX .

We set
∆X := { d ∈ DX | d is effective }.

By Riemann-Roch theorem, we see that DX is a disjoint union of ∆X and −∆X .
For d ∈ DX , we put

d⊥ := { x ∈ HX | (x, d) = 0 },
and call d⊥ the wall associated with d ∈ DX . The family of walls {d⊥ | d ∈ DX} is
locally finite in the cone ΓX , and partitions ΓX into the connected components of
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0ΓX . The following proposition is well-known. (See, for example, [5, Corollary 3.9
in Chap. VIII]).

Proposition 4.6. The Kähler cone KX ⊂ HX is the unique connected component
of Γ+

X ∩ 0ΓX such that (x, d) > 0 holds for every d ∈ ∆X and every x ∈ KX .

A line bundle L on X is called a polarization if L is nef, L2 > 0, and the complete
linear system |L| has no fixed components. If L is a polarization, then |L| has no
base points by [21, Corollary 3.2], and hence defines a morphism

Φ|L| : X → PN ,

where N = dim |L|.
Proposition 4.7. A vector v ∈ NS(X) is the class of a polarization if and only if
v2 > 0, v is nef, and the set {x ∈ NS(X) | (v, x) = 1, x2 = 0} is empty.

Proof. See Nikulin [17, Proposition 0.1], and the argument in the proof of (4)⇒(1)
in Urabe [30, Proposition 1.7]. ¤

Let L be a polarization on X. The orthogonal complement [L]⊥ of 〈[L]〉 in
NS(X) is negative-definite by Hodge index theorem. Then we can easily prove the
following. (See [26, Proposition 2.4].)

Proposition 4.8. The set of classes of (−2)-curves that are contracted by Φ|L| is
equal to the fundamental system of roots in [L]⊥ associated with the linear form
tκ : [L]⊥ → R given by tκ(v) := (v, κ), where κ is a vector in the Kähler cone KX .

Corollary 4.9. Let U ⊂ HX be a sufficiently small open ball with the center [L].
Then U ∩KX is an open cone with the vertex [L] and with the faces being the walls
d⊥, where d are the (−2)-curves contracted by Φ|L|.

4.3. Lattice types of simple sextics. We denote by L the K3 lattice, that is, an
even unimodular lattice of signature (3, 19), which is unique up to isomorphisms.
We put

ΩL := { [ω] ∈ P∗(L ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0 },
which is a complex manifold of dimension 20 with two connected components.
A marked K3 surface is a pair (X,φ) of a K3 surface X and an isomorphism
φ : H2(X, Z) →∼ L of lattices. There exists a universal family

(π1 : X1 → M1, Φ1)

of marked K3 surfaces over a non-Hausdorff smooth complex manifold M1 of
dimension 20, where Φ1 is an isomorphism R2π1∗Z ∼= M1 × L of locally constant
systems of lattices over M1. (See [5, §12 of Chap. VIII] or [6].) For t ∈ M1, we
have a point

τ1(t) := [φt(ωXt)] ∈ ΩL,

where (Xt, φt) is the marked K3 surface corresponding to t, and ωXt is a basis of
H2,0(Xt). We call τ1(t) the period point of (Xt, φt). It is well-known that the period
map

τ1 : M1 → ΩL

is holomorphic and surjective. (See [5, §12 of Chap. VIII] or [6].)

Yang [32] presented an algorithm to classify all lattice data that can be realized
as lattice data of simple sextics. His method is based on the following proposition,
which was proved by the surjectivity of τ1 and Propositions 4.7 and 4.8.



16 ICHIRO SHIMADA

Proposition 4.10 (Urabe [30, 31]). Lattice data [E , h, Λ] is isomorphic to lattice
data of simple sextics if and only if [E , h,Λ] satisfies the following:

(i) the lattice Λ can be embedded primitively in L,
(ii) {x ∈ Λ | (x, h) = 0, x2 = −2} = {x ∈ 〈E〉 |x2 = −2}, and
(iii) {x ∈ Λ | (x, h) = 1, x2 = 0} = ∅.

Computation 4.11. Let R be an ADE-type of rank ≤ 19. We determine all
lattice data of simple sextics B with RB = R. We put Σ := 〈h〉 ⊕ 〈E〉, where
h2 = 2 and E is the fundamental system of roots of type R. We then calculate the
discriminant form of Σ. (See [16, §1] for the definition of the discriminant form of
an even lattice.) We then make the complete list of isotropic subgroups H of the
discriminant form of Σ.

For each isotropic subgroup H, we calculate the even overlattice Λ(H) of Σ
corresponding to H by [16, Proposition 1.4.1]. We then determine whether or not
Λ = Λ(H) satisfies the conditions (ii) and (iii) in Proposition 4.10 by the method
described in [25, §4], and then determine whether or not Λ(H) can be embedded
primitively into L by means of [16, Theorem 1.12.1] or by the method of p-excess
due to Conway-Sloane [9, Chap. 15] described in [26, §3]. (See also [8, Chapters 8
and 9].)

We conclude that [E , h,Λ(H)] is realized as lattice data of simple sextics B with
RB = R if and only if Λ(H) satisfies the conditions in Proposition 4.10.

More precisely, the family of simple sextics B with ℓ(B) ∼= [E , h, Λ] is described
as follows. Suppose that lattice data [E , h,Λ] satisfies the conditions (i), (ii) and
(iii) in Proposition 4.10. We choose a primitive embedding

ψ : Λ ↪→ L,

and consider Λ as a primitive sublattice of L. In particular, we have E ⊂ L and
h ∈ L.

Remark 4.12. The primitive embedding of Λ in L is not unique in general. In
fact, by choosing different primitive embeddings of Λ in L, we often obtain dis-
tinct connected components of the equisingular family (see Degtyarev [11]). More
strongly, we have obtained examples of pair of simple sextics B1 and B2 such that
B1 ∼lat B2 but B1 ̸∼embB2 by considering different primitive embeddings of Λ
(see [1], [27] and [28]). See also §8.2.

For [ω] ∈ ΩL, we put

NS[ω] := { x ∈ L | (x, ω) = 0 },
which is a primitive sublattice of L. We then put

Ωψ⊥ := { [ω] ∈ ΩL | (ω, x) = 0 for all x ∈ Λ } ⊂ ΩL,

and denote by Ω⋄
ψ⊥ the set of all [ω] ∈ Ωψ⊥ such that NS[ω] satisfies the following

conditions, which correspond to the properties (ii) and (iii) for Λ in Proposition 4.10:

{x ∈ NS[ω] | (x, h) = 0, x2 = −2} = {x ∈ 〈E〉 |x2 = −2} and(4.1)

{x ∈ NS[ω] | (x, h) = 1, x2 = 0} = ∅.(4.2)

Note that the complement of Ω⋄
ψ⊥ in Ωψ⊥ is a locally finite family of complex

analytic subspaces. From the surjectivity of τ1 and Propositions 4.7 and 4.8, we
easily obtain the following:
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Proposition 4.13. For any point p ∈ Ω⋄
ψ⊥ , there exists a simple sextic B with a

marking φ : H2(XB , Z) →∼ L such that φ(hB) = h, φ(EB) = E, φ(ΛB) = Λ, and
that the period point of (XB , φ) is p.

Conversely, if B is a simple sextic with a marking φ : H2(XB , Z) →∼ L and
ψ′ : ΛB →∼ Λ is an isomorphism of lattice data from ℓ(B) to the lattice data [E , h, Λ],
then the period point of (XB , φ) is contained in Ω⋄

ψ⊥ , where ψ : Λ ↪→ L is the
primitive embedding obtained from φ|ΛB : ΛB ↪→ L via ψ′.

We then put
Ω⋄⋄

ψ⊥ := { [ω] ∈ Ω⋄
ψ⊥ | NS[ω] = Λ }.

If p ∈ Ω⋄⋄
ψ⊥ , then the corresponding simple sextic B is lattice-generic. It is obvious

that Ω⋄⋄
ψ⊥ is dense in Ω⋄

ψ⊥ . Hence we obtain the following:

Corollary 4.14. Given a simple sextic B, we can obtain a lattice-generic simple
sextic B′ by an arbitrarily small equisingular deformation of B.

5. Algorithms for a lattice type

Let B be a simple sextic. Throughout this section, we assume that B is lattice-
generic, except for Corollary 5.26. In particular, every splitting curve is pre-Z-
splitting. We present an algorithm to determine the configuration type and the
sets Z1(B), Z2(B) and Z3(B) from the lattice data ℓ(B) = [EB , hB , ΛB ] of B.

Recall that, for a splitting curve Γ, we denote by Γ̃+, Γ̃− ⊂ XB the lifts of Γ.
For an irreducible component Bi of B, we denote by B̃i ⊂ XB the reduced part of
the strict transform of Bi, that is, we put B̃i := B̃+

i = B̃−
i .

We denote by jB : WB → P2 the Jung-Horikawa embedded resolution (canonical
embedded resolution) of B ⊂ P2, which is the minimal succession of blowing ups
such that the strict transform of B is smooth and that any distinct irreducible
components of the total transform of B with odd multiplicities do not intersect.
(See [5, §7 of Chap. III].) Then we have the finite double covering π̃B : XB → WB

that makes the following diagram commutative:

XB
ρB−→ YB

π̃B ↓ ↓ πB

WB
jB−→ P2.

For P ∈ Sing B, let EP = {e1, . . . , er} be the set of exceptional (−2)-curves on XB

over P , which are indexed as in Figure 3.1. For simplicity, we use the same letter
for an exceptional (−2)-curve and its class, and consider EP as a subset of ΣB .
Then e1, . . . , er form the fundamental system of roots in the sublattice 〈EP 〉 of ΣB

associated with a Kähler class of XB . We denote by e∨1 , . . . , e∨r the dual basis of the
dual lattice 〈EP 〉∨ ⊂ 〈EP 〉 ⊗ Q. We have an orthogonal direct-sum decomposition

ΣB = 〈hB〉 ⊕
⊕

P∈Sing B

〈EP 〉.

Recall that ΛB is the primitive closure of ΣB in H2(XB , Z). We consider the
decomposition

(5.1) ΛB ⊗ Q = ΣB ⊗ Q = 〈hB〉 ⊗ Q ⊕
⊕

〈EP 〉 ⊗ Q.
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For x ∈ ΛB , we denote by xh ∈ 〈hB〉 ⊗ Q and xP ∈ 〈EP 〉 ⊗ Q the components of x
under the direct-sum decomposition (5.1). The following is obvious:

Lemma 5.1. Let D be an effective divisor on XB such that (D,hB) = 0. Then
we have [D] ∈ 〈EB〉+. In particular, we have [D] ∈ ΣB and [D]P ∈ 〈EP 〉+ for any
P ∈ Sing B.

Definition 5.2. We say that a vector x ∈ ΛB is v-smooth at P ∈ Sing B if xP = 0
or xP = e∨i for some i. We say that x is v-smooth if x is v-smooth at every
P ∈ Sing B. (The “v” in v-smooth stands for “vector”.)

Definition 5.3. Let mP (e∨i ) denote the multiplicity of the curve π̃B(ei) ⊂ WB in
the total transform of B in WB . We also put mP (0) := 0. Thus we have mP (xP )
for a vector x ∈ ΛB that is v-smooth at P .

Lemma 5.4. Let Γ̃ be a lift of a splitting curve Γ, and let P be a point of Sing B.
Suppose that P /∈ Γ or Γ is smooth at P . Then the vector [Γ̃] ∈ ΛB is v-smooth at
P and mP ([Γ̃]P ) is even.

This lemma is proved together with the following:

Lemma 5.5. Let Γ ⊂ P2 be a smooth splitting curve not contained in B. Let
ΓW ⊂ WB and BW ⊂ WB be the strict transforms of Γ and B, respectively, by
jB : WB → P2, and let B̃ ⊂ XB be the strict transform of B by ρ̃B : XB → P2.
Then we have

(Γ̃+, Γ̃−)X = (Γ̃+, B̃)X = (Γ̃−, B̃)X = (ΓW , BW )W /2,

where ( , )X and ( , )W denote the intersection numbers on XB and on WB, re-
spectively.

Proof of Lemmas 5.4 and 5.5. The statement of Lemma 5.4 is obviously true in the
case where P /∈ Γ. The proof of Lemma 5.4 for the case where Γ is an irreducible
component of B is given in Remark 5.7 below.

Suppose that Γ is splitting, is not contained in B, and passes through P . Let
F1, . . . , Fm ⊂ WB be the exceptional curves over P of jB , and let mk be the
multiplicity of Fk in the total transform of B by jB . We denote by T ⊂ WB a
sufficiently small tubular neighborhood of j−1

B (P ), and put T̃ := π̃−1
B (T ) ⊂ XB .

If (
∑

Fj , ΓW )W > 1, then the image Γ of ΓW by jB would be singular at P .
Hence there exists a unique irreducible component Fi such that (Fi, ΓW ) = 1 and
(Fj , ΓW ) = 0 for j ̸= i. Let Q be the intersection point of Fi and ΓW . Note that
ΓW is smooth at Q and intersects Fi transversely at Q. Suppose that Q /∈ BW ,
so that ΓW is disjoint from BW in T . Then, since Γ is splitting, the multiplicity
mi is even and π̃−1

B (Q) consists of distinct two points. Hence Γ̃+, Γ̃− and B̃ are
mutually disjoint in T̃ , and Lemma 5.4 holds by mP ([Γ̃]P ) = mi. Suppose that
Q ∈ BW , and let nQ be the intersection multiplicity of BW and ΓW at Q. Since
Γ is splitting, mi + nQ must be even. Since BW ∩ Fi ̸= ∅, mi is even. Therefore
nQ > 1, and hence BW intersects Fi transversely at Q; in other words, P is not of
type Al with l even. Thus the pull-back of Fi by π̃B is irreducible, and Lemma 5.4
holds by mP ([Γ̃]P ) = mi. In this case, the intersection multiplicity of Γ̃+ and Γ̃−,
or of Γ̃+ and B̃, or of Γ̃− and B̃, at the point of XB over Q is equal to nQ/2. ¤
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Remark 5.6. If P is of type Al, then the multiplicity mP (e∨i ) is even for any i. If
P is of other type, then mP (e∨i ) is even if and only if ei is subject to the following
restrictions:

If P is of type D2k, then i is even or 1 or 2.
If P is of type D2k+1, then i is odd or 1 or 2.
If P is of type E6, then i ̸= 1.
If P is of type E7, then i ̸= 2, 4, 6.
If P is of type E8, then i ̸= 2, 4, 6, 8.

Remark 5.7. Let Bi be an irreducible component of B that contains P ∈ Sing B
and is smooth at P . Then the component [B̃i]P ∈ 〈EP 〉 ⊗ Q is given as follows:

If P is of type A2k−1, then [B̃i]P = e∨k .
If P is of type D2k, then [B̃i]P = e∨1 or [B̃i]P = e∨2 or [B̃i]P = e∨2k.
If P is of type D2k+1, then [B̃i]P = e∨2k+1.
If P is of type E7, then [B̃i]P = e∨7 .

If P is of another type, every local irreducible components of B at P is singular.

By Remark 5.7, we obtain the following:

Lemma 5.8. Let Bi be an irreducible component of B that contains P ∈ Sing B
and is smooth at P . Then [B̃i]P ∈ 〈EP 〉 ⊗ Q is not contained in 〈EP 〉.

The following lemma is elementary, but plays a crucial role in the following:

Lemma 5.9. (1) For every e∨i , we have (e∨i )2 < 0 and e∨i /∈ 〈EP 〉+.
(2) Suppose that e∨i − e∨j ∈ 〈EP 〉+. Then (e∨i )2 > (e∨j )2 or e∨i = e∨j .
(3) If e∨i is contained in 〈EP 〉 and mP (e∨i ) is even, then (ιB(e∨i ), e∨i ) < −9/2

holds.

Proof. We have to prove this lemma only for the negative-definite root lattices of
type Al (l = 1, . . . , 19), Dm (m = 4, . . . , 19) and En (n = 6, 7, 8). Hence the
assertions can be proved by the case-by-case calculations. For the proof, we use
Remark 5.6 above. The involution ιB is calculated by Remark 5.10 below. (The
author does not know any conceptual proof of this lemma.) ¤
Remark 5.10. The involution ιB on ΛB is determined by the ADE-type of RB . We
have ιB(hB) = hB . The action of ιB on EP is described as follows.

If P is of type Al, then ιB(ei) = el+1−i.
If P is of type D2k, then ιB acts on EP identically.
If P is of type D2k+1, then ιB interchanges e1 and e2 and fixes e3, . . . , e2k+1.
If P is of type E6, then ιB(e1) = e1 and ιB(ei) = e8−i for i = 2, . . . , 6.
If P is of type E7 or E8, then ιB acts on EP identically.

Corollary 5.11. Let x ∈ ΛB and y ∈ ΛB be v-smooth vectors. If (x, hB) = (y, hB)
and x2 = y2 hold and x − y is effective, then x = y.

Proof. Since x − y is effective and (x − y, hB) = 0, we have xP − yP ∈ 〈EP 〉+ for
every P ∈ Sing B by Lemma 5.1. Suppose that x ̸= y, and let P ∈ Sing B be
a point such that xP ̸= yP . Since x and y are v-smooth, each of xP and yP is
0 or e∨i for some i. If yP = 0, then xP ̸= 0 and xP ∈ 〈EP 〉+, which contradicts
Lemma 5.9 (1). If yP ̸= 0, then we have x2

P > y2
P by Lemma 5.9 (1) and (2), which

contradicts x2 = y2. ¤
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Proposition 5.12. Let x ∈ ΛB be a v-smooth vector with (x, hB) = 1 and x2 = −2.
Then x is the class of a (−2)-curve that is mapped isomorphically to a line on P2.

Proof. By Riemann-Roch theorem for XB , we have an effective divisor D on XB

such that x = [D]. Since (x, hB) = 1, there exists a unique irreducible component
C of D such that (C, hB) = 1. Note that C is mapped isomorphically to a line on
P2, and hence the image of C is a splitting line. Therefore [C]2 = −2 and [C] is
v-smooth by Lemma 5.4. By Corollary 5.11, we have x = [C]. ¤

We put

LB := { x ∈ ΛB | x is v-smooth, (x, hB) = 1, x2 = −2 },
Lb

B := { x ∈ LB | ιB(x) = x }, and

Ll
B := { x ∈ LB | ιB(x) ̸= x }.

Corollary 5.13. The map Bi 7→ [B̃i] induces a bijection from the set of irreducible
components Bi of B of degree 1 to the set Lb

B.

Corollary 5.14. The set Ll
B is equal to the set Z1(B) of the classes of lifts of

Z-splitting lines.

Next we proceed to the study of Z-splitting conics.

Proposition 5.15. Let C̃ ⊂ XB be a curve that is mapped isomorphically to a
smooth conic C on P2. Then [C̃] /∈ ΣB.

Proof. We put x := [C̃]. Suppose that C is an irreducible component of B. Then
xP ̸= 0 for some P ∈ Sing B, and hence x /∈ ΣB by Lemma 5.8. Suppose that
C is not contained in B. Then (ιB(x), x) ≥ 0. Since C is smooth, xP is v-
smooth with mP (xP ) being even for every P ∈ Sing B. Since (x, hB) = 2, we have
(ιB(xh), xh) = x2

h = 2 and hence

(5.2) (ιB(x), x) = 2 +
∑

P (ιB(xP ), xP ) ≥ 0.

Suppose that x ∈ ΣB and hence xP ∈ 〈EP 〉 for any P ∈ Sing B. For any P ∈
C ∩ Sing B, we have xP ̸= 0 and hence (ιB(xP ), xP ) < −9/2 by Lemma 5.9 (3).
By (5.2), we therefore have C ∩ Sing B = ∅ and hence (ιB(x), x) = 2. However, we
have (ιB(x), x) = 6 because (B,C) = 12 on P2. Thus we get a contradiction. ¤
Proposition 5.16. Let x ∈ ΛB be a v-smooth vector such that (x, hB) = 2, x2 =
−2 and x /∈ ΣB. Then one and only one of the following holds:

(i) There exist l1, l2 ∈ LB such that x − (l1 + l2) ∈ 〈EB〉+, or
(ii) x is the class of a (−2)-curve C̃ that is a lift of a splitting conic C on P2.

Proof. Note that x is the class of an effective divisor of XB . We denote by |D| the
complete linear system of effective divisors D such that x = [D]. The irreducible
decomposition of each D ∈ |D| is either

D = C̃1 + C̃2 +
∑

ei with (C̃1, hB) = (C̃2, hB) = 1 and ei ∈ EB , or(5.3)

D = C̃ +
∑

ei with (C̃, hB) = 2 and ei ∈ EB .(5.4)

Suppose that there exists D ∈ |D| for which (5.3) holds. Since B is assumed to
be lattice-generic, we have [C̃1], [C̃2] ∈ ΛB . Since C̃1 and C̃2 are mapped isomor-
phically to lines on P2, the vectors [C̃1] and [C̃2] are v-smooth with the square-norm
−2. Therefore [C̃1] and [C̃2] are in LB and thus the case (i) occurs.
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Suppose that there exists D ∈ |D| for which (5.4) holds. The image of C̃ in P2 is
either a line or a smooth conic. If the image were a line, then C̃ would be a strict
transform of the line and hence [C̃] would be contained in ΣB , which contradicts the
assumption. Therefore C̃ is a lift of a splitting conic C. In particular, [C̃] ∈ ΛB is
a v-smooth vector with [C̃]2 = −2. By Corollary 5.11, we have x = [C̃]. Therefore
the case (ii) occurs.

Suppose that both of the cases (i) and (ii) occur. Then there exists D1 ∈ |D| for
which (5.3) holds and there exists D2 ∈ |D| for which (5.4) holds. By the argument
above, the existence of D2 implies that x is the class of a lift C̃ of a splitting conic C,
and in particular |D| consists of a single member C̃, which contradicts the existence
of D1. Hence only one of (i) or (ii) occurs. ¤

We put

C′
B := { x ∈ ΛB | x is v-smooth, (x, hB) = 2, x2 = −2, x /∈ ΣB }, and

CB := { x ∈ C′
B | for any l1, l2 ∈ LB , we have x − (l1 + l2) /∈ 〈EB〉+ },

Cb
B := { x ∈ CB | ιB(x) = x },

Cl
B := { x ∈ CB | ιB(x) ̸= x }.

Corollary 5.17. The map Bi 7→ [B̃i] induces a bijection from the set of irreducible
components Bi of B of degree 2 to the set Cb

B.

Corollary 5.18. The set Cl
B is equal to the set Z2(B) of the classes of lifts of

Z-splitting conics.

Next we study Z-splitting cubic curves. We put

GB := { g ∈ ΛB | g2 = 0, (g, hB) = 3, and (g, v) ≥ 0 for any v ∈ EB ∪ LB },
Gb

B := { g ∈ GB | ιB(g) = g },
Gl

B := { g ∈ GB | ιB(g) ̸= g }.

Lemma 5.19. Every g ∈ GB is the class [Ẽ] of a member of an elliptic pencil |Ẽ|
on XB.

Proof. We have an effective divisor D such that g = [D] and dim |D| > 0. We
decompose |D| into the movable part |M | and the fixed part Ξ. Since dim |M | > 0,
we have (M,hB) ≥ 2 and hence (Ξ, hB) ≤ 1. Therefore every irreducible component
C of Ξ is either an element of EB or mapped isomorphically to a line of P2. In
the latter case, we have [C] ∈ LB . Hence (C, g) ≥ 0 holds for any irreducible
component C of Ξ by the definition of GB . Therefore g is nef. Then, by Nikulin [17,
Proposition 0.1], we have Ξ = ∅ and there exists an elliptic pencil |Ẽ| on XB such
that |D| = m|Ẽ| for some integer m > 0. From (g, hB) = 3, we obviously have
m = 1. ¤

By Proposition 3.6, we see that every g ∈ Z3(B) is nef and hence satisfies
(g, v) ≥ 0 for any v ∈ EB ∪ LB . Combining Proposition 3.6 and Lemma 5.19, we
obtain the following:

Corollary 5.20. We have Gl
B = Z3(B).

Proposition 5.21. Suppose that B does not have any irreducible components of
degree ≤ 2. Then B is irreducible if and only if Gb

B = ∅.
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Proof. Suppose that B is reducible. Then B is a union of two irreducible cubic
curves E0 and E∞. Note that, for each P ∈ E0 ∩ E∞, either E0 or E∞ is smooth
at P . Let P ⊂ |OP2(3)| be the pencil spanned by E0 and E∞. Examining the
Jung-Horikawa resolution jB : WB → P2 explicitly, we see that jB resolves the base
points of P, and hence we obtain an elliptic fibration

φP : WB → P1

on WB such that, by jB : WB → P2, the general fiber of φP is mapped to a member
of P, and φ−1

P (0) and φ−1
P (∞) are mapped to E0 and E∞, respectively. Moreover

the branching locus of π̃B : XB → WB is contained in φ−1
P (0) ∪ φ−1

P (∞). Indeed,
suppose that E0 is smooth at P ∈ E0 ∩E∞, and let F1, . . . , Fm be the exceptional
curves of jB over P . There exists a unique Fi among them that intersects the
strict transform of E0. This component Fi becomes a section of φP , and the other
components are mapped to ∞ by φP . The multiplicity of Fi in the total transform
of B is even, and hence π̃B does not ramify along the section Fi.

Thus we have an elliptic fibration ψP : XB → P1 that fits in a commutative
diagram

XB
π̃B−→ WB

ψP↓ ↓ φP

P1 π̄B−→ P1,

where π̄B : P1 → P1 is the double covering branching at 0 ∈ P1 and ∞ ∈ P1. Let
Ẽ ⊂ XB be the general fiber of the elliptic fibration ψP : XB → P1. Since Ẽ is nef,
we see that g := [Ẽ] ∈ ΛB is an element of Gb

B .

Conversely, suppose that g ∈ Gb
B . By Lemma 5.19, we have an elliptic fibration

ψ : XB → P1 such that the class of its general fiber Ẽ is g. Since ιB(g) = g, the
involution ιB preserves this elliptic fibration. Therefore ψ : XB → P1 is obtained
from an elliptic fibration φ : WB → P1 on WB = XB/〈ιB〉 by the base change
π̄ : P1 → P1 of degree 2. Since the branch points of π̄ consists of two points,
the branch curve of π̃B : WB → XB is contained in the union of two fibers of
φ : WB → P1, each of which is mapped to a cubic irreducible component of B. ¤
Remark 5.22. Suppose that g ∈ Gb

B . Note that a point P ∈ Sing B of type A1 is
an intersection point of the irreducible components E0 and E∞ of B if and only if
gP ̸= 0. Therefore we can recover the configuration type of B from g.

Remark 5.23. There are additional necessary conditions for degsB to be [3, 3], which
are helpful in calculation. If degsB = [3, 3], then RB consists of the following ADE-
types; A2, A2k−1, D5, D2k, E7, and moreover, for a point P ∈ Sing B of type tP , the
component gP of the vector g ∈ Gb

B should satisfy the following:

tP A2 A1 A2k−1 (k > 1) D5 D4 D2k (k > 2) E7

gP 0 0 or e∨1 e∨k e∨5 e∨1 , e∨2 or e∨4 e∨1 or e∨2 e∨7

We now interpret these geometric results to lattice-theoretic results.

Definition 5.24. A fundamental system of roots is called irreducible if the corre-
sponding Dynkin diagram is connected.

Let ℓ = [E , h,Λ] be lattice data. We put

Σ := 〈h〉 ⊕ 〈E〉.
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We denote by sing ℓ the set of irreducible components of E , and let

E =
⊔

P∈sing ℓ

EP

be the irreducible decomposition of E . We then have an orthogonal direct-sum
decomposition

Λ ⊗ Q = 〈h〉 ⊗ Q ⊕
⊕

〈EP 〉 ⊗ Q.

We say that x ∈ Λ is v-smooth at P ∈ sing ℓ if the component xP ∈ 〈EP 〉 ⊗ Q of
x is either 0 or equal to some e∨i ∈ 〈EP 〉∨, where e∨1 , . . . , e∨r are the basis of 〈EP 〉∨
dual to the basis EP = {e1, . . . , er} of 〈EP 〉. We say that x is v-smooth if x ∈ Λ is
v-smooth at every P ∈ sing ℓ.

Remark 5.25. The notion “v-smooth ” is the lattice theoretic version of the geo-
metric notion “ v-smooth ” defined in Definition 5.2.

We also define an involution ι of Λ ⊗ Q by Remark 5.10 with ΛB replaced by Λ
and ιB replaced by ι. Then we can define the subsets

Ll(ℓ), Lb(ℓ), Cl(ℓ), Cb(ℓ), Gl(ℓ), Gb(ℓ)

of Λ in the same way as the sets Ll(B),Lb(B), Cl(B), Cb(B),Gl(B),Gb(B) with ΛB

replaced by Λ, hB replaced by h, ΣB replaced by Σ, v-smooth replaced by v-smooth,
and ιB replaced by ι. If φ : ΛB →∼ Λ is an isomorphism of lattice data from ℓ(B)
to ℓ, then φ maps Ll(B), Lb(B), Cl(B), Cb(B), Gl(B), Gb(B) to Ll(ℓ), Lb(ℓ), Cl(ℓ),
Cb(ℓ), Gl(ℓ), Gb(ℓ) bijectively, respectively. In other words, these subsets of ΛB are
determined only by the lattice data of B.

Thus we have shown that the configuration type of a lattice-generic simple sextic
B is determined by the lattice type of B. Hence we obtain the following, which has
been proved in Yang [32].

Corollary 5.26. Let B1 and B2 be simple sextics (not necessarily lattice-generic)
in the same lattice type. Then B1 ∼cfg B2 holds.

Proof. There exist lattice-generic simple sextics B′
1 and B′

2 such that B′
1 ∼eqs B1

and B′
2 ∼eqs B2. Since B′

1 ∼lat B′
2, we have B′

1 ∼cfg B′
2 by the above arguments.

Thus B1 ∼cfg B2 follows. ¤

We have also shown that the subsets Z1(B), Z2(B) and Z3(B) of ΛB for a
lattice-generic simple sextic B are determined only by the lattice type of B, and
hence Theorem 3.2 is proved.

Computation 5.27. We have already obtained the complete list of lattice data of
simple sextics by Computation 4.11. For each piece ℓ = [E , h, Λ] of the lattice data
in this list, we make the following calculation.

We compute the subsets Ll(ℓ),Lb(ℓ), Cl(ℓ), Cb(ℓ) of Λ. If Lb(ℓ) = Cb(ℓ) = ∅, then
we calculate Gb(ℓ). Thus we determine the configuration type containing the lattice
type of the lattice data ℓ. We then calculate

Θ :=

{
Σ + 〈Lb(ℓ)〉 + 〈Cb(ℓ)〉 if Lb(ℓ) ̸= ∅ or Cb(ℓ) ̸= ∅,
Σ + 〈Gb(ℓ)〉 if Lb(ℓ) = Cb(ℓ) = ∅,

and Fℓ := Λ/Θ.
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Suppose that Ll(ℓ) ̸= ∅ or Cl(ℓ) ̸= ∅. We confirm that Fℓ ̸= 0 and that the
equality Λ = Θ + 〈Ll(ℓ)〉 + 〈Cl(ℓ)〉 holds. Suppose that Ll(ℓ) = C(ℓ) = ∅ but
Fℓ ̸= 0. We then calculate Gl(ℓ), and confirm that Gl(ℓ) consists of two elements,
that Λ = Θ + 〈Gl(ℓ)〉 holds, and that Λ/Σ is cyclic of order 4.

Remark 5.28. In order to determine whether or not two lattice types are contained
in the same configuration type, we have to use the combinatorial definition of the
configuration type, which is given in [4, Remark 3] for example.

By this calculation, we prove Theorems 3.5, 3.21 and the first part of Theo-
rem 3.23. We also obtain the complete list of lattice data of Z-splitting pairs (B, Γ)
with deg Γ ≤ 2, or with z1(λ(B)) = z2(λ(B)) = 0, FB ̸= 0 and Γ being smooth cu-
bic. Our next task is to determine the relation of specializations among the lattice
data of Z-splitting pairs.

6. Specialization of lattice types

For the study of specialization of lattice types, we need to refine the period map
τ1 : M1 → ΩL. (See [5, Chap. VIII] or [6].) Consider the real vector bundle R2π1∗R
of rank 22 over the non-Hausdorff moduli space M1, where π1 : X1 → M1 is the
universal family of (marked) K3 surfaces. A point of this vector bundle is given by
(t, x), where t ∈ M1 and x ∈ H2(Xt, R). We then put

M2 := { (t, κ) ∈ R2π1∗R | κ is a Kähler class of Xt },

that is, M2 is the base space of the universal family of the triples (X,φ, κ), where
(X,φ) is a marked K3 surface and κ is a Kähler class of X.

For a point [ω] of ΩL, we put

H [ω] := { x ∈ L ⊗ R | (x, ω) = 0 },
NS[ω] := H [ω] ∩ L (as defined in the previous section),

D[ω] := { d ∈ NS[ω] | d2 = −2 },
Γ[ω] := { x ∈ H [ω] | x2 > 0 },

0Γ[ω] := { x ∈ Γ[ω] | (x, d) ̸= 0 for all d ∈ D[ω] }.

We then put

HΩL := { ([ω], x) ∈ ΩL × (L ⊗ R) | x ∈ H [ω] },
KΩL := { ([ω], x) ∈ ΩL × (L ⊗ R) | x ∈ Γ[ω] }, and

0KΩL := { ([ω], x) ∈ ΩL × (L ⊗ R) | x ∈ 0Γ[ω] }.

We have a commutative diagram

(6.1)

0KΩL ↪→ KΩL ↪→ HΩL

ΠΩ ↘ ↓ ↙
ΩL ,

where the maps to ΩL are the projection onto the first factor. Note that KΩL and
HΩL are locally trivial fiber spaces over ΩL. We have the following:

Lemma 6.1 (Corollary 9.2 in Chapter VIII of [5]). The space 0KΩL is open in
KΩL, and hence the projection ΠΩ is an open immersion.
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Let t be a point of M1, and let

[ωt] := τ1(t) ∈ ΩL

be the period point of (Xt, φt). Then the marking φt : H2(Xt, Z) →∼ L maps HXt

to H [ωt], ΓXt to Γ[ωt], NS(Xt) to NS[ωt], DXt to D[ωt], and hence φt maps 0ΓXt to
0Γ[ωt]. Since every Kähler class of Xt is contained in the Kähler cone KXt ⊂ 0ΓXt ,
we can define a map

τ2 : M2 → 0KΩL,

which is called the refined period map, by

τ2(t, κ) := (τ1(t), φt(κ)).

Then we obtain a commutative diagram

(6.2)

M2
τ2−→ 0KΩL

ΠM ↓ ↓ ΠΩ

M1
τ1−→ ΩL,

where the vertical arrows ΠM and ΠΩ are the forgetful maps.

The following plays a crucial role in the study of specialization of lattice types:

Theorem 6.2 (Theorems 12.3 and 14.1 in Chapter VIII of [5]). The refined period
map τ2 is an isomorphism.

The specialization of lattice types of simple sextics and Z-splitting pairs can be
described by geometric embeddings of lattice data.

Definition 6.3. Let ℓ = [E , h, Λ] and ℓ0 = [E0, h0,Λ0] be lattice data. By a
geometric embedding of ℓ into ℓ0, we mean a primitive embedding σ : Λ ↪→ Λ0 of
the lattice Λ into the lattice Λ0 that satisfies σ(h) = h0 and σ(E) ⊂ 〈E0〉+.

Definition 6.4. Let ℓP = [E , h, Λ, S] and ℓP
0 = [E0, h0, Λ0, S0] be extended lattice

data. A geometric embedding of ℓP into ℓP
0 is a geometric embedding σ : Λ ↪→ Λ0

of [E , h,Λ] into [E0, h0, Λ0] such that we have

σ(S) ⊂ S0 + 〈E0〉+ := (v+
0 + 〈E0〉+) ∪ (v−

0 + 〈E0〉+), where S0 = {v±
0 }.

Let f : B → ∆ be an analytic family of simple sextics, where f is the projection
from B ⊂ P2 × ∆ to ∆, and Bt := f−1(t) is a simple sextic on P2 × {t} for any
t ∈ ∆. Suppose that f is equisingular over ∆×. We define a geometric embedding

σB,t : ΛBt ↪→ ΛB0

of the lattice data ℓ(Bt) with t ̸= 0 into the lattice data ℓ(B0) as follows. We
consider the double cover

YB → P2 × ∆
branching exactly along B. Note that every fiber of YB → ∆ is birational to a
K3 surface. Therefore, by Kulikov [15], there exists a birational transformation
XB → YB such that the composite holomorphic map

πB : XB → ∆

is a smooth family of K3 surfaces. Note that the fiber of πB over t ∈ ∆ is isomorphic
to XBt . Note also that XB has a line bundle LB such that the class of the restriction
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of LB to XBt = π−1
B (t) is equal to hBt ∈ H2(XBt , Z) for any t ∈ ∆. Then we have

a trivialization
R2πB∗Z ∼= ∆ × L,

which induces markings H2(XBt , Z) →∼ L for any t ∈ ∆. Using this trivialization,
we obtain a primitive embedding σB,t : ΛBt ↪→ ΛB0 of lattices by the specialization
homomorphism

H2(XBt , Z) →∼ H2(XB0 , Z).
This σB,t induces a geometric embedding of the lattice data ℓ(Bt) for t ̸= 0 into the
lattice data ℓ(B0). Indeed, σB,t maps hBt to hB0 because the polarizations on XBt

form a family LB. Moreover any exceptional (−2)-curve on XBt (t ̸= 0) degenerates
into an effective divisor on XB0 , whose reduced irreducible components must be
exceptional (−2)-curves on XB0 because its degree with respect to the polarization
hB0 is zero.

Proposition 6.5. Let {(Bt, Γt)}t∈∆ be an analytic family of Z-splitting pairs that
is equisingular over ∆×. Then the geometric embedding σB,t of ℓ(Bt) with t ̸= 0
into ℓ(B0) yields a geometric embedding of the extended lattice data ℓP (Bt, Γt) with
t ̸= 0 into the extended lattice data ℓP (B0, Γ0).

Proof. Since Γt degenerates into Γ0, the curve Γ̃+
t ⊂ XBt for t ̸= 0 degenerates into

an effective divisor on XB0 that is the sum of Γ̃+
0 (or Γ̃−

0 ) and some exceptional
(−2) curves on XB0 . Hence the geometric embedding σB,t : ΛBt ↪→ ΛB0 of ℓ(Bt)
into ℓ(B0) constructed above satisfies σB,t([Γ̃+

t ]) ∈ [Γ̃+
0 ] + 〈EB0〉+ or σB,t([Γ̃+

t ]) ∈
[Γ̃−

0 ] + 〈EB0〉+. ¤
Corollary 6.6. Let λP

0 and λP be lattice types of Z-splitting pairs, and let ℓP
0 and

ℓP be the corresponding extended lattice data. If λP
0 is a specialization of λP , then

there exists a geometric embedding of ℓP into ℓP
0 .

Since a geometric embedding σ : ΛB ↪→ ΛB0 of ℓP (B, Γ) into ℓP (B0, Γ0) induces a
homomorphism of finite abelian groups GB → GB0 that maps ([Γ̃+] mod ΣB) ∈ GB

to ([Γ̃+
0 ] mod ΣB0) ∈ GB0 or ([Γ̃−

0 ] mod ΣB0) ∈ GB0 , we obtain the following:

Corollary 6.7. If λP
0 = λP (B0, Γ0) is a specialization of λP = λP (B, Γ), then the

class-order of λP
0 is a divisor of the class-order of λP .

In order to show that the existence of a geometric embedding of lattice data with
certain properties is sufficient for the existence of the specialization, we prepare two
easy lemmas.

Let π : X → ∆ be a smooth family of K3 surfaces. We put Xt := π−1(t).

Lemma 6.8. Let s be a section of R2π∗Z. If st := s|Xt ∈ H2(Xt, Z) is contained
in H1,1(Xt) for any t ∈ ∆, then there exists a line bundle LX on X such that the
class of the restriction Lt := LX |Xt is equal to st.

Proof. This follows immediately from the commutative diagram

H1(X ,O×) → H2(X , Z) → H2(X ,O)
↓ ≀ ↓ ≀

H0(∆, R2π∗Z) → H0(∆, R2π∗O),

where the horizontal sequences are induced from the exponential exact sequence
0 → Z → O → O× → 0. ¤
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Lemma 6.9. Let LX be a line bundle on X , and we put Lt := LX |Xt for t ∈ ∆.
If h1(X0,L0) = 0 and h0(X0,L0) > 0, then there exists a linear subspace V ⊂
H0(X ,LX ) of dimension equal to h0(X0,L0) such that, after replacing ∆ with a
smaller disc if necessary, the restriction homomorphism H0(X ,LX ) → H0(Xt,Lt)
maps V isomorphically onto H0(Xt,Lt) for any t ∈ ∆.

Proof. From h0(X0,L0) > 0, we have h2(X0,L0) = 0. By the semi-continuity
theorem, the assumption h1(X0,L0) = 0 implies h1(Xt,Lt) = 0 and h0(Xt,Lt) =
h0(X0,L0) for t in a sufficiently small neighborhood of 0, because L2

t ∈ Z is con-
stant. Hence, by replacing ∆ with a smaller disc if necessary, we can assume that
H1(X ,LX ) = 0 and hence H1(X ,LX (−Xt)) = 0 holds for any t ∈ ∆, because
LX ∼= LX (−Xt) on X . Therefore the restriction homomorphism H0(X ,LX ) →
H0(Xt,Lt) is surjective for any t ∈ ∆. ¤

The following proposition seems to be well-known. We present, however, a com-
plete proof, because it illustrates how the refined period map is used for the study
of specializations of simple sextics, and it sets up various tools necessary for the
proof of Proposition 6.16 below.

Proposition 6.10. Let ℓ0 = [E0, h0,Λ0] and ℓ = [E , h,Λ] be lattice data of simple
sextics. Suppose that a simple sextic B0 with an isomorphism α0 : Λ0 →∼ ΛB0 of
lattice data from ℓ0 to ℓ(B0) is given. If a geometric embedding σ : Λ ↪→ Λ0 of
ℓ into ℓ0 is given, then we can construct an analytic family f : B → ∆ of simple
sextics Bt = f−1(t) and isomorphisms

αt : Λ →∼ ΛBt

of lattice data from ℓ to ℓ(Bt) for t ̸= 0 that satisfy the following:
(i) the central fiber f−1(0) of f is the given simple sextic B0,
(ii) f is equisingular over ∆×,
(iii) for t ̸= 0, the composite α−1

0 ◦ σB,t ◦ αt : Λ ↪→ Λ0 is equal to the given
geometric embedding σ of ℓ into ℓ0, and

(iv) the locus of all t ∈ ∆ such that Bt is lattice-generic is dense in ∆.

Proof. For simplicity, we put
X0 := XB0 .

We fix a marking
φ0 : H2(X0, Z) →∼ L.

By α0 and φ0, we obtain a primitive embedding

ψ : Λ0 ↪→ L.

By the composition of σ and ψ, we obtain a primitive embedding

ψ ◦ σ : Λ ↪→ L.

From now on, we consider Λ and Λ0 as primitive sublattices of L by ψ ◦ σ and ψ,
respectively:

Λ ⊂ Λ0 ⊂ L.

In particular, we have h = h0 = φ0(hB0) ∈ L and E0 = φ0(EB0) ⊂ L, E ⊂ 〈E0〉+ ⊂
L. Moreover we have inclusions of complex submanifolds

Ωψ⊥ ⊂ Ω(ψ◦σ)⊥ ⊂ ΩL.
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Let [η0] ∈ ΩL be the period point of the marked K3 surface (X0, φ0). Then [η0] is
a point of Ωψ⊥ . We choose an analytic embedding

δ : ∆ ↪→ Ω(ψ◦σ)⊥

of the open unit disk ∆ ⊂ C into a sufficiently small neighborhood of [η0] such that
δ(0) = [η0], and that δ−1(Ω⋄

(ψ◦σ)⊥) = ∆\{0} holds, and that δ−1(Ω⋄⋄
(ψ◦σ)⊥) is dense

in ∆. (These properties can be achieved because Ω⋄
(ψ◦σ)⊥ is open in Ω(ψ◦σ)⊥ and

Ω⋄⋄
(ψ◦σ)⊥ is dense in Ω(ψ◦σ)⊥ .) We write

δ(t) = [ηt] ∈ ΩL.

Consider the pull-back

(6.3)

0KΩδ ↪→ KΩδ ↪→ HΩδ

↘ ↓ ↙
∆ ,

of the diagram (6.1) by δ : ∆ ↪→ Ω(ψ◦σ)⊥ ↪→ ΩL. For simplicity, we put

H := H [η0], Γ := Γ[η0].

Then we have trivializations

(6.4) KΩδ
∼= ∆ × Γ and HΩδ

∼= ∆ × H

over ∆ that extend the identity maps over 0 ∈ ∆, and such that the inclusion
KΩδ ↪→ HΩδ is given by the identity map of ∆ times the inclusion Γ ↪→ H. Since
([ω], h) ∈ KΩL for any [ω] ∈ Ω(ψ◦σ)⊥ , we have a section t 7→ (δ(t), h) of KΩδ → ∆.
We choose the trivialization (6.4) in such a way that KΩδ

∼= ∆ × Γ maps this
section to the constant section t 7→ (t, h) of ∆ × Γ → ∆. For a vector d ∈ L with
d2 = −2 and a point [ω] ∈ ΩL with (ω, d) = 0, we put

W (d) := { x ∈ L ⊗ R | (x, d) = 0 } and d⊥
[ω] := W (d) ∩ H [ω].

Then d⊥
[ω] is a hyperplane of the real vector space H [ω]. Since 〈E〉 ⊂ 〈E0〉+, we see

that 〈E〉 is a sublattice of 〈E0〉, and hence the set D〈E〉 of roots in 〈E〉 is a subset of
the set D〈E0〉 of roots in 〈E0〉;

D〈E〉 ⊂ D〈E0〉.

We have
D〈E〉 ⊂ D[ηt] for any t ∈ ∆, and D〈E0〉 ⊂ D[η0].

More precisely, we have

(6.5) D〈E〉 = { d ∈ D[ηt] | h ∈ d⊥[ηt]
} for t ̸= 0,

because δ(t) ∈ Ω⋄
(ψ◦σ)⊥ for t ̸= 0, and

(6.6) D〈E0〉 = { d ∈ D[η0] | h ∈ d⊥
[η0]

}.

We choose the trivialization (6.4) in such a way that, for each d ∈ D〈E〉, the
isomorphism HΩδ

∼= ∆ × H maps the family of walls

{ ([ηt], x) ∈ HΩδ | x ∈ d⊥[ηt]
}

over ∆ to the constant family ∆ × d⊥
[η0]

. We denote by

0(∆ × Γ)
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the open subset of ∆×Γ that corresponds to the open subset 0KΩδ ⊂ KΩδ by the
trivialization, and put

W := (∆ × Γ) \ 0(∆ × Γ).

Recall that the complement of 0KΩδ in KΩδ is the union of walls

{ ([ηt], x) ∈ KΩδ | x ∈ d⊥
[ηt]

for some d ∈ D[ηt] }.

Therefore, by the description (6.5) and (6.6) of walls passing through h, if B ⊂ Γ
is a sufficiently small ball with the center h, then

(∆ × B) ∩W =
∪

d∈D〈E〉

(∆ × d′⊥
[η0]

) ∪
∪

d∈D〈E0〉\D〈E〉

({0} × d′⊥[η0]
).

where d′⊥
[η0]

:= d⊥[η0]
∩ Γ. In other words, the projection

0(∆ × Γ) ∩ (∆ × B) → ∆

is a constant family of cones in the ball B partitioned by the walls associated with
d ∈ D〈E〉 over ∆×, with the central fiber being partitioned further by the walls
associated with d ∈ D〈E0〉 \ D〈E〉.

We have a unique connected component of the central fiber
0(∆ × Γ) ∩ ({0} × B) ⊂ {0} × Γ = Γ[η0]

that is mapped to the Kähler cone KXB0
⊂ 0ΓXB0

of XB0 via the marking φ0. We
choose a point (0, v0) from this connected component. Then v0 ∈ Γ[η0] corresponds
to a Kähler class of XB0 via the marking φ0. In particular, we have

(v0, e) > 0 holds for any e ∈ E0.

Since E ⊂ 〈E0〉+, we have

(6.7) (v0, e) > 0 holds for any e ∈ E .

By the description of 0(∆ × Γ) ∩ (∆ × B) above, we see that (t, v0) ∈ ∆ × Γ is a
point of 0(∆ × Γ) for any t ∈ ∆. We denote by

δ̃ : ∆ → 0KΩδ

the section of KΩδ → ∆ corresponding to the constant section t 7→ (t, v0) of
0(∆ × Γ) → ∆, and let

δ̃M : ∆ → M2

be the map corresponding to δ̃ via τ2. We denote by

(Xt, φt, κt)

the marked K3 surface (Xt, φt) with a Kähler class κt corresponding to δ̃M(t) ∈
M2. Let hXt ∈ H2(Xt, Z) be the vector such that φt(hXt) = h. Since ηt ⊥ h,
we have hXt ∈ NS(Xt). Suppose that t ̸= 0. Since h is contained in the closure
of the connected component of 0Γ[ηt] containing φt(κt), the class hXt ∈ NS(Xt) is
nef by Proposition 4.5. By Proposition 4.7 and δ(t) ∈ Ω⋄

(ψ◦σ)⊥ , the condition (4.2)
in the definition of Ω⋄

(ψ◦σ)⊥ implies that hXt is the class of a polarization Lt of
degree 2 on Xt. Note that we have (κt, e) > 0 for any e ∈ φt(E) by (6.7). By
δ(t) ∈ Ω⋄

(ψ◦σ)⊥ again, the condition (4.1) in the definition of Ω⋄
(ψ◦σ)⊥ implies that

φ−1
t (E) is a fundamental system of roots in 〈hXt

〉⊥ ⊂ NS(Xt) associated with the
Kähler class κt. Consequently, Proposition 4.8 implies that φ−1

t (E) is equal to the
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set of classes of (−2)-curves contracted by Φ|Lt| : Xt → P2. Let Bt be the branch
curve of Φ|Lt|. Then the markings φt : H2(Xt, Z) ∼= L yield isomorphisms of lattices
from ΛBt ⊂ H2(Xt, Z) to Λ ⊂ L that induce isomorphisms of lattice data ℓ(Bt) ∼= ℓ
for t ̸= 0. We define αt : Λ →∼ ΛBt to be the inverse of this isomorphism.

We will show that, making ∆ smaller if necessary, these simple sextics Bt form
an analytic family. Let πδ̃ : Xδ̃ → ∆ be the family of Xt, which is the pull-back
of the universal family π1 : X1 → M1 by ΠM ◦ δ̃M. Then t 7→ hXt gives a section
of R2πδ̃∗Z. By Lemma 6.8, there exists a line bundle LX on Xδ̃ such that the
restriction LX |Xt is equal to the polarization Lt given above for any t ∈ ∆. Note
that h0(X0,L0) = 3 and h1(X0,L0) = 0 by Nikulin [17, Proposition 0.1]. Therefore,
shrinking ∆ if necessary, we have a 3-dimensional subspace V of H0(Xδ̃,LX ) such
that the restriction homomorphism maps V onto H0(Xt,Lt) isomorphically for
any t ∈ ∆. In particular, the linear system V has not base points. Considering the
morphism

ΦV : Xδ̃ → P2

induced by V , we obtain an analytic family of morphisms Xt → P2 with the branch
curve Bt ⊂ P2, and hence we obtain an analytic family of simple sextics over ∆. It
is obvious that this analytic family and the isomorphisms αt : Λ →∼ ΛBt of lattice
data from ℓ to ℓ(Bt) for t ̸= 0 have the required properties. ¤

By Proposition 6.10 together with the construction of the geometric embedding
σB,t, we obtain the following:

Corollary 6.11. Let λ0 and λ be lattice types of simple sextics, and let ℓ0 and ℓ be
the corresponding lattice data. Then λ0 is a specialization of λ if and only if there
exists a geometric embedding of ℓ into ℓ0.

Remark 6.12. By the theory of adjacency of singularities ([2] or [29]), we see that,
if λ(B0) is a specialization of λ(B), the Dynkin diagram of RB is a subgraph of the
Dynkin diagram of RB0 .

Let B be a simple sextic, and let D := C1 + · · · + Cm be an effective divisor
on XB , where C1, . . . , Cm are reduced and irreducible. A subcurve of D is, by
definition, a divisor

C := Ci1 + · · · + Cin ,

where {Ci1 , . . . , Cin} is a (possibly empty) subset of {C1, . . . , Cm}.

Lemma 6.13. Let D := C1 + · · · + Cm be an effective divisor on XB. We put
h1(D) := dim H1(XB ,O(D)).

(1) Suppose that D2 = −2. For h1(D) = 0 to hold, it is sufficient that C2 ≤ −2
holds for any non-empty subcurve C of D.

(2) Suppose that D2 = 0 and (D,hB) = 3. For h1(D) = 0 to hold, it is sufficient
that C2 ≤ 0 holds for any non-empty subcurve C of D.

Proof. Let |M | be the movable part of |D|, where M is a subcurve of D. Suppose
that D2 = −2. If h1(D) > 0, then we have |M | ̸= ∅ and hence M2 ≥ 0. Suppose
that D2 = 0 and (D,hB) = 3. If h1(D) > 0, then either M2 > 0 or |M | = m|E| with
m > 1 for some elliptic pencil |E|. Since (D,hB) = 3, we would have (E, hB) = 1
in the latter case, which is absurd. ¤

We interpret this geometric fact into a lattice-theoretic sufficient condition, which
can be checked easily by a computer.
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Definition 6.14. Let ℓP = [E , h,Λ, {v±}] be extended lattice data, and let

w := v+ +
∑

mee (e ∈ E , me ≥ 0)

be an element of v+ + 〈E〉+. We say that u ∈ Λ is a subcurve vector of w if u is
nvv+ +

∑
nee with me ≥ ne ≥ 0 for any e ∈ E and (nv = 0 or nv = 1).

Suppose that w2 = −2 or (w2 = 0 and (w, h) = 3). We say that w satisfies the
vanishing-h1 condition if u2 ≤ w2 holds for any non-zero subcurve vector u of w.

We also define the vanishing-h1 condition for elements w of v− + 〈E〉+ in the
same way.

Definition 6.15. We say that a geometric embedding σ of ℓP = [E , h,Λ, {v±}] into
ℓP
0 = [E0, h0, Λ0, {v±0 }] satisfies the vanishing-h1 condition if σ(v+) ∈ {v±

0 }+ 〈E0〉+
satisfies the vanishing-h1 condition.

Proposition 6.16. Let ℓP = [E , h, Λ, {v±}] and ℓP
0 = [E0, h0, Λ0, {v±

0 }] be the
lattice data of Z-splitting pairs (B,Γ) and (B0, Γ0), respectively. Suppose that Γ
and Γ0 are smooth of degree ≤ 3. Then the lattice type λP (B0,Γ0) is a specialization
of the lattice type λP (B, Γ) if there exists a geometric embedding σ : Λ ↪→ Λ0 of ℓP

into ℓP
0 that satisfies the vanishing-h1 condition.

Proof. By Remark 2.27, we can assume that the representatives (B, Γ) and (B0, Γ0)
of λP (B, Γ) and λP (B0, Γ0) are lattice-generic. We fix a marking

φ0 : H2(XB0 , Z) →∼ L.

We then consider Λ0 as a primitive sublattice of L in such a way that the marking
φ0 induces an isomorphism

φ0 : ΛB0 →∼ Λ0

of lattice data from ℓP (B0) to ℓP
0 . By Proposition 6.10, we have an analytic family

{Bt}t∈∆ of simple sextics constructed from the geometric embedding σ : Λ ↪→ Λ0

of ℓ = [E , h, Λ] into ℓ0 = [E0, h0, Λ0] and the isomorphism φ0. Let

πδ̃ : Xδ̃ → ∆

be the smooth family of K3 surfaces constructed in the proof of Proposition 6.10.
Then Xt := π−1

δ̃
(t) is equal to XBt and equipped with markings

φt : H2(Xt, Z) →∼ L

continuously varying with t. We have lifts Γ̃±
0 of Γ0 on X0 = XB0 . Our aim is to

deform Γ̃±
0 to curves on Xt that are the lifts of Z-splitting curves for Bt.

By construction, the markings φt induce isomorphisms of lattices

φt : ΛBt →∼ Λ

for t ̸= 0 that induces an isomorphism of lattice data ℓ(Bt) ∼= ℓ. Moreover the
specialization homomorphism

H2(Xt, Z) →∼ H2(X0, Z)

induces the geometric embedding σ : Λ ↪→ Λ0 of ℓ to ℓ0 under the isomorphisms
φt (t ̸= 0) and φ0. Then v+ ∈ Λ with σ(v+) ∈ Λ0 gives rise to a section ṽ of the
locally constant system R2πδ̃∗Z on ∆; namely, ṽt := ṽ|Xt ∈ H2(Xt, Z) is mapped
by φt to v+ for t ̸= 0 and to σ(v+) for t = 0. In particular, we have ṽt ∈ H1,1(Xt)
for any t ∈ ∆, and hence, by Lemma 6.8, there exists a line bundle D on Xδ̃ such
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that the class of Dt := D|Xt is equal to ṽt. Since [E , h,Λ, {v±}] is the lattice data
of (B, Γ), the assumption that Γ be smooth of degree ≤ 3 implies that v+ satisfies
(v+)2 = −2 or ((v+)2 = 0 and (v+, h) = 3), and hence σ(v+) ∈ Λ0 also satisfies

(σ(v+))2 = −2 or ( (σ(v+))2 = 0 and (σ(v+), h0) = 3 ).

Therefore Lemma 6.13 can be applied, and the assumption that σ(v+) satisfy the
vanishing-h1 condition implies

H1(X0,D0) = 0.

After interchanging v+
0 and v−

0 (and hence Γ̃+
0 and Γ̃−

0 ) if necessary, there exist a
finite number of exceptional (−2)-curves ei on X0 such that

ṽ0 = [Γ̃+
0 +

∑
ei].

Let s0 be the section of the invertible sheaf O(Γ̃+
0 +

∑
ei) on X0 such that s0 = 0

defines the divisor Γ̃+
0 +

∑
ei. By Lemma 6.9, there exists a section s ∈ H0(Xδ̃,D)

such that its restriction to X0 is s0. We put st := s|Xt for t ̸= 0, and let Γ̃t be the
curve on Xt cut out by st = 0. Since φt([Γ̃t]) = v+ ∈ Λ, we have [Γ̃t] ∈ ΛBt . Since
[E , h,Λ, {v±}] is the lattice data of (B, Γ) and [Γ̃±] ∈ Zn(B) with n = deg Γ =
(v+, h) ≤ 3, we see that, if Bτ is lattice-generic with τ ̸= 0, then

[Γ̃τ ] ∈ Zn(Bτ )

holds by Theorem 3.2. In particular, if n < 3, then Γ̃t is a (−2)-curve. When n = 3,
we replace s by s + s′ where

s′ ∈ H0(Xδ̃,D(−X0)) = H0(Xδ̃,D) ⊗O∆(−0)

is chosen generally, and assume that Γ̃t is irreducible. We denote by Γt the image
of Γ̃t by the double covering XBt → P2. Then Γt is a smooth Z-splitting curve that
degenerates to Γ0. Since the lattice data of (Bt, Γt) for t ̸= 0 is isomorphic to ℓP ,
the analytic family (Bt,Γt)t∈∆ of Z-splitting pairs gives rise to the specialization
of ℓP to ℓP

0 . ¤

Computation 6.17. By Computation 5.27, we have obtained the complete list LDn

of lattice data of Z-splitting pairs (B, Γ) with n := deg Γ ≤ 2, and the complete
list LD3 of lattice data of Z-splitting pairs (B, Γ) with z1(λ(B)) = z2(λ(B)) = 0,
FB ̸= 0 and Γ being smooth cubic.

For each ℓP = [E , h, Λ, S] in LD1 (resp. LD2), we calculate the class-order d of ℓP

(that is, the order of v ∈ S in the finite abelian group Λ/(〈h〉 ⊕ 〈E〉)), and confirm
that d is either 6, 8, 10 or 12 (resp. 3, 4, 5, 6, 7 or 8).

For each n = 1, 2 and the class-order d, we denote by LDn,d the set of lattice data
ℓP ∈ LDn with the class-order d, and denote by lPn,d the member of LDn,d with the
total Milnor number µB = rank〈E〉 being minimal. It turns out that the condition
that µB be minimal determines lPn,d uniquely, and that the corresponding lattice
types are equal to λP

lin,d or λP
con,d given in Definitions 3.12 or 3.17 according to

n = 1 or 2. Then, for each ℓP in LDn,d that is not lPn,d, we search for a geometric
embedding of lPn,d into ℓP that satisfies the vanishing-h1 condition, and confirm that
there exists at least one such embedding. Thus Theorems 3.13 and 3.19 are proved.

We also confirm that there exists unique lattice data lPQC in LD3 with µB being
minimal, that the lattice type corresponding to lPQC is λQC,n, and that, for each
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Generators
H0 0 0
H1 [[0, 4, 4, 0]] cyclic of order 2
H2 [[1, 1, 1, 1]] cyclic of order 8
H3 [[2, 2, 2, 0]] cyclic of order 4

Table 7.1. The isotropic subgroups Hi

piece of lattice data ℓP in LD3 that is not lPQC , there exists at least one geometric
embedding of lPQC into ℓP satisfying the vanishing-h1 condition. Thus the second
half of Theorem 3.23 is also proved.

7. Demonstration

We demonstrate the calculations for the ADE-type A3 + 2A7. Let 〈E〉 be the
negative-definite root lattice of type A3 + 2A7 with a distinguished fundamental
system of roots

E = {t1, t2, t3} ⊥ {e1, . . . , e7} ⊥ {e′1, . . . , e′7},

where {t1, t2, t3} is of type A3 with (ti, ti+1) = 1 for i = 1, 2, and {e1, . . . , e7} and
{e′1, . . . , e′7} are of type A7 with (ei, ei+1) = (e′i, e

′
i+1) = 1 for i = 1, . . . , 6. The

automorphism group Aut(E) of E is isomorphic to

{±1} × ({±1} ≀ S2),

where the first factor is the involution t1 ↔ t3 of A3, and {±1} ≀ S2 is the wreath
product of the involution ei ↔ e8−i of A7 and the permutation of the components
of 2A7. We put

Σ = 〈E〉 ⊕ 〈h〉,
where h2 = 2. Then the discriminant group Σ∨/Σ of Σ is

〈t̄∨3 〉 ⊕ 〈ē∨7 〉 ⊕ 〈ē′∨7 〉 ⊕ 〈h̄∨〉 ∼= (Z/4Z) ⊕ (Z/8Z) ⊕ (Z/8Z) ⊕ (Z/2Z),

where x̄ = x mod Σ, and the discriminant form q : Σ∨/Σ → Q/2Z of Σ is given by

q(w, x, y, z) = −3
4
w2 − 7

8
x2 − 7

8
y2 +

1
2
z2 mod 2Z,

where (w, x, y, z) = wt̄∨3 +xē∨7 +yē′∨7 +zh̄∨. We determine all isotropic subgroups H
such that the corresponding overlattice Λ = Λ(H) satisfies the three conditions in
Proposition 4.10. Up to the action of Aut(E), they are given in Table 7.1. Therefore
there exist four lattice types λ(Hi) of simple sextics B with RB = A3 + 2A7. We
denote by B(Hi) a lattice-generic member of λ(Hi).

Next we calculate the subsets L(Hi) := LB(Hi) and C(Hi) := CB(Hi) of Λ(Hi)
for each Hi, and deduce information about the geometry of B(Hi). From now on,
vectors in Λ(Hi) ⊂ Σ∨ are written with respect to the basis

t∨1 , . . . , t∨3 , e∨1 , . . . , e∨7 , e′∨1 , . . . , e′∨7 , h∨

of Σ∨ that is dual to E ∪ {h}.
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(H0) We have L(H0) = ∅ and C(H0) = ∅. Hence B(H0) is irreducible. (If
degs B(H0) = [3, 3], then the two cubic irreducible components would intersect
with multiplicity 10.) Moreover we have z1(λ(H0)) = z2(λ(H0)) = 0.

(H1) We have L(H1) = ∅ and C(H1) = {u}, where

u := [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2].

Since u is invariant under the involution on Λ(H1), we have degsB(H1) = [2, 4]
with the irreducible component of degree 2 passing through two A7 points and
disjoint from the tacnode A3. Moreover we have z1(λ(H1)) = z2(λ(H1)) = 0. This
lattice type is denoted by λB,n in Proposition 3.11.

(H2) We have L(H2) = {v, ιB(v)} and C(H2) = {u}, where

v := [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] ̸= ιB(v),

and u is the same vector as in (H1). Hence we have B(H2) ∼cfg B(H1), and
z1(λ(H2)) = 1, z2(λ(H2)) = 0. This lattice type is denoted by λB,l. The class v of
the lift of Z-splitting line is of order 8 in the discriminant group Σ∨/Σ. There are
no Z-splitting lines of class-order 8 for simple sextics of total Milnor number < 17.
Hence the Z-splitting line for B(H2) is the originator of the lineage of Z-splitting
lines of class-order 8, whose lattice type is denoted by λP

lin,8.
(H3) We have L(H3) = ∅ and C(H3) = {u,w, ιB(w)}, where

w := [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2] ̸= ιB(w),

and u is the same vector as in (H1). Hence we have B(H3) ∼cfg B(H1), and
z1(λ(H3)) = 0, z2(λ(H3)) = 1. This lattice type is denoted by λB,c. The class
w = [Γ̃] of the lift of Z-splitting conic Γ is of order 4 in the discriminant group
Σ∨/Σ. The conic Γ is tangent to the quartic irreducible component of B(H3) at
the three singular points of B(H3).

Next we describe the originator of the lineage of Z-splitting conics of class-order
4, and how the Z-splitting conic for B(H3) above is obtained from this originator
by specialization.

Any simple sextic of total Milnor number < 14 does not have Z-splitting conics
of class-order 4, and there exists a unique lattice type λb,c of total Milnor number
14 whose lattice-generic member B′ has a Z-splitting conic Γ of class-order 4. The
ADE-type of the lattice type is 2A1 + 4A3. Consider the negative-definite root
lattice 〈E ′〉 of type 2A1 + 4A3 with a distinguished fundamental system of roots

E ′ := {a(1)} ⊥ {a(2)} ⊥ {b(1), c(1), d(1)} ⊥ · · · ⊥ {b(4), c(4), d(4)},
where {a(ν)} is of type A1 and {b(ν), c(ν), d(ν)} is of type A3 with (b(ν), c(ν)) =
(c(ν), d(ν)) = 1. We put

Σ′ = 〈E ′〉 ⊕ 〈h〉.
The discriminant group of Σ′ is isomorphic to

(Z/2Z)2 ⊕ (Z/4Z)4 ⊕ (Z/2Z),

with

q′(x1, x2, y1, y2, y3, y4, z) = −1
2
x2

1 −
1
2
x2

2 −
3
4
y2
1 − 3

4
y2
2 − 3

4
y2
3 − 3

4
y2
4 +

1
2
z2 mod 2Z.

The overlattice ΛB′ of the lattice type λb,c corresponds to the isotropic subgroup

H ′ := 〈[1, 1, 1, 1, 1, 1, 0]〉,
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which is cyclic of order 4. We denote vectors of ΛB′ ⊂ (Σ′)∨ with respect to the
basis of (Σ′)∨ dual to the basis E ′ ∪ {h} of Σ′. Then the classes of the lifts of the
Z-splitting conic Γ′ for the lattice-generic member B′ of λb,c are equal to

w′ := [1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2]

and ιB(w′). Let σ : (Σ′)∨ → Σ∨ be the homomorphism given by the matrix
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−a −a 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −b −a −c b a c 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 b −a −b −b −a b 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 c a b b −a −b 0 0 0 0
0 0 0 0 0 −c −a −b c a b 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 b a −b 0 0 0 0 0 0 −b −a −c 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 −b a b 0 0 0 0 0 0 b a −b 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −c −a −b 0 0 0 0 0 0 −b a b 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

where a = 1/2, b = 1/4 and c = 3/4. It can be easily checked that σ(h) = h,
σ(E ′) ⊂ 〈E〉+, that σ embeds the lattice ΛB′ ⊂ (Σ′)∨ into the lattice ΛB(H3) ⊂ Σ∨

primitively. Moreover, we have

σ(w′) = w + t2 + e′2.

We can easily see that σ(w′) = w + t2 + e′2 satisfies the vanishing-h1 condition.
Therefore λP (B(H3), Γ) is a specialization of λP (B′,Γ′).

Remark 7.1. There are six configuration types and seven lattice types with ADE-
type 2A1 + 4A3.

Remark 7.2. This triple {λB,c, λB,l, λB,n} is the example of lattice Zariski triple
with the smallest total Milnor number.

Remark 7.3. Let Bτ be a sextic in the lattice type λB,τ , where τ = c, l, n, and let
Bτ = Cτ ∪ Qτ be the irreducible decomposition of Bτ with deg Qτ = 4. Consider
the normalization

ν : Q̃τ → Qτ

of the quartic curve Qτ with one tacnode. Then Q̃τ is a curve of genus 1. Let
p, q ∈ Q̃τ be the inverse images of the tacnode, and let s, t ∈ Q̃τ be the inverse
images of the two A7-singular points Cτ ∩Qτ . Then, in the elliptic curve Pic0(Q̃τ ),
the order of the class of the divisor p + q − s − t on Q̃τ is 4, 2 or 1 according to
τ = c, l or n.

8. Miscellaneous facts and final remarks

8.1. Numerical criterion of the pre-Z-splittingness.

Definition 8.1. Let Γ be a smooth splitting curve for B that is not contained in
B. Let P be a singular point of B. We define σP (Γ) ∈ Q as follows. If P /∈ Γ, we
put σP (Γ) := 0. Suppose that P ∈ Γ. If P is of type Al, then

σP (Γ) := −m2/(l + 1), where m = min(τP (Γ̃+), l + 1 − τP (Γ̃+)).
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(Recall that τP (Γ̃+) is defined in Definition 3.15.) If P is of type Dm, then

σP (Γ) :=


−m/4 if m is even and τP (Γ̃+) = 1 or 2,

1/2 − m/4 if m is odd and τP (Γ̃+) = 1 or 2,

τP (Γ̃+) − m − 1 if τP (Γ̃+) ≥ 3.

If P is of type En, then σP (Γ) is defined by the following table:

τP (Γ̃+) 1 2 3 4 5 6 7 8
E6 −2 −2/3 −8/3 −6 −8/3 −2/3
E7 −7/2 −2 −6 −12 −15/2 −4 −3/2
E8 −8 −4 −14 −30 −20 −12 −6 −2

We can easily check that σP (Γ) does not depend on the choice of the lift Γ̃+ by
Remark 5.10.

Proposition 8.2. Let B̃ ⊂ XB be the reduced part of the strict transform of B.
Suppose that Γ is a smooth splitting curve for B not contained in B. We put

tΓ := (B̃, Γ̃+) = (B̃, Γ̃−).

Then the following inequality holds:

(8.1) (deg Γ)2/2 +
∑

P σP (Γ) ≤ tΓ.

The splitting curve Γ is pre-Z-splitting if and only if the equality holds in (8.1).

Proof. Let NQ denote the orthogonal complement of the subspace ΣB⊗Q = ΛB⊗Q
in NS(XB) ⊗ Q. Then the intersection-paring is negative-definite on NQ, and the
involution ιB on NS(XB) ⊗ Q acts on NQ by the multiplication by −1. We have a
decomposition

[Γ̃+] = (deg Γ/2)h +
∑

γP + n,

where γP ∈ 〈EP 〉 ⊗ Q and n ∈ NQ. Then we have

tΓ = ([Γ̃+], [Γ̃−]) = (deg Γ)2/2 +
∑

(γP , ιB(γP )) − n2

by Lemma 5.5. The value σP (Γ) is defined in such a way that σP (Γ) = (γP , ιB(γP ))
holds. Since n2 ≤ 0 and n2 = 0 holds if and only if n = 0, we obtain the proof. ¤

Example 8.3. Let f and g be general homogeneous polynomials of degree 2 and 3,
respectively. The splitting conic Γ = {f = 0} for a torus sextic Btrs = {f3+g2 = 0}
is Z-splitting, because we have deg Γ = 2, tΓ = 0 and σP (Γ) = −1/3 for each
ordinary cusp P of Btrs.

Remark 8.4. As a corollary of the classifications of Z-splitting pairs, we obtain the
following. Let (B, Γ) be a lattice-generic Z-splitting pair with deg Γ ≤ 2. Then
B ∩ Γ is contained in Sing B, and Γ̃+ ∩ Γ̃− = ∅.

8.2. Relation between∼emb and ∼lat. In many lattice Zariski k-ples, the distinct
lattice types have different embedding topology.

Theorem 8.5. Suppose that B and B′ satisfy B ∼cfg B′. If GB and GB′ have
different orders, then B ̸∼embB′.
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Proof. We can assume that B and B′ are lattice-generic. We consider the transcen-
dental lattices of XB and XB′ defined by

TB := (NS(XB) ↪→ H2(XB , Z))⊥, TB′ := (NS(XB′) ↪→ H2(XB′ , Z))⊥.

From B ∼cfg B′, we have RB = RB′ , and hence discΣB = discΣB′ holds, where
disc denotes the discriminant of the lattice. Combining this with |GB | ̸= |GB′ |, we
obtain discΛB ̸= discΛB′ . Since H2(XB , Z) and H2(XB′ , Z) are unimodular, we
obtain

disc TB ̸= disc TB′ .

Then B ̸∼embB′ follows from the fact that the transcendental lattice of XB is a
topological invariant of (P2, B) for a lattice-generic B, which was proved in [27]
and [28]. ¤
Remark 8.6. We have not yet obtained any examples of pairs [B1, B2] of simple
sextics with B1 ̸∼latB2 but B1 ∼emb B2. For the example of the lattice Zariski
couple λQC,c and λQC,n in Proposition 3.22, we have |GB | = |GB′ | = 4, where
B ∈ λQC,c and B′ ∈ λQC,n, and hence Theorem 8.5 does not apply. It would be an
interesting problem to study the topology of simple sextics in λQC,c and λQC,n.

8.3. Examples of many Z-splitting conics. For any lattice type λ(B) of simple
sextics, we have z1(λ(B)) ≤ 1. On the other hand, we have lattice types λ(B) of
simple sextics such that z2(λ(B)) = 12 or z2(λ(B)) = 6. (These two are the largest
and the second largest values for z2(λ(B)).)

Suppose that z2(λ(B)) = 12. Then B is a nine cuspidal sextic. The configuration
type of nine cuspidal sextics B consists of a single lattice type, and the group GB

is isomorphic to Z/3Z × Z/3Z × Z/3Z. Moreover the class orders of the twelve
Z-splitting conics for B are all 3. A nine cuspidal sextic B is the dual curve of a
smooth cubic curve C, and the nine cusps are in one-to-one correspondence with
the inflection points of C. In particular, the set Sing B has a natural structure of
the 2-dimensional affine space over F3. Each Z-splitting conic Γ passes through
6 points of Sing B, and the complement Sing B \ (Sing B ∩ Γ) is an affine line of
Sing B. Thus there is a one-to-one correspondence between the set of Z-splitting
conics for B, and the set of affine lines of Sing B.

Suppose that z2(λ(B)) = 6. Then B is a union of three smooth conics with
RB = 6A3. The configuration type of simple sextics B with degsB = [2, 2, 2] and
RB = 6A3 consists of a single lattice type, and the group GB is isomorphic to
Z/4Z × Z/4Z. Moreover the class orders of the six Z-splitting conics for B are
all 4. Let B = C1 + C2 + C3 be a simple sextic in this lattice type. There exists
a one-to-one correspondence between the six Z-splitting conics for B and the six
tacnodes of B, which is described as follows. Let P ∈ Sing B be a tacnode that
is a tangent point of two distinct conics Ci and Cj . Then there exists a unique
Z-splitting conic that does not pass through P but is tangent to both of Ci and
Cj at the other tacnode P ′ ∈ Sing B on Ci ∩Cj , and passes through the other four
tacnodes on Ck (k ̸= i, j).

8.4. Degeneration of Z-splitting conics. Consider the following two lattice
types of simple sextics:

λA,l = λlin,6 (RB = 3A5, degs B = [3, 3], z1(λA,l) = 1), and
λa,c = λcon,3 (RB = 6A2, degs B = [6], z2(λa,c) = 1).
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It is well-known that any member of λa,c = λcon,3 is defined by an equation of
(2, 3)-torus type

B : f3 + g2 = 0 (deg f = 2, deg g = 3),

while it is easy to see that any member of λA,l = λlin,6 is defined by an equation
of (2, 6)-torus type

B′ : l6 + g2 = 0 (deg l = 1, deg g = 3).

When the quadratic polynomial f degenerates into l2, then B degenerates into B′

and the Z-splitting conic Γ = {f = 0} for B degenerates into the double of the
Z-splitting line Γ′ = {l = 0} for B′. Therefore we can regard the Z-splitting line
Γ′ as the reduced part of a non-reduced Z-splitting conic.

It seems that any Z-splitting line can be obtained as the reduced part of a non-
reduced Z-splitting conic as above. For example, it is quite plausible that there
may exist the following specializations from the lattice type λ with z2(λ) = 1 to
the lattice type λ′ with z1(λ′) = 1 that makes the Z-splitting conic for λ to the
double of the Z-splitting line for λ′:

λ λ′

λb,c = λcon,4

(RB = 2A1 + 4A3, degs B = [2, 4])
λB,l = λlin,8

(RB = A3 + 2A7, degs B = [2, 4])

λc,c = λcon,5

(RB = 4A4, degs B = [6])
λC,l = λlin,10

(RB = 2A4 + A9, degs B = [1, 5])

λd,c = λcon,6

(RB = 2A1 +2A2 +2A5, degs B = [2, 4])
λD,l = λlin,12

(RB = A3 +A5 +A11, degs B = [2, 4])

The adjacency of ADE-types in these conjectural specializations are all of the type
2Al → A2l+1. However the existence of these specializations has not yet been
confirmed.

8.5. Z-splitting curves in positive characteristics. The study of Z-splitting
curves has stemmed from the research of supersingular K3 surfaces in characteristic
2. In [24], we have developed the theory of Z-splitting curves for purely inseparable
double covers of P2 by supersingular K3 surfaces in characteristic 2. The configu-
ration of Z-splitting curves for such a covering is described by a binary linear code
of length 21. Using this theory, we have described the stratification of the moduli
of polarized supersingular K3 surfaces of degree 2 in characteristic 2 by the Artin
invariant.

Using the structure theorem of the Néron-Severi lattices of supersingular K3
surfaces by Rudakov-Sharfarevich [20], we can construct the theory of Z-splitting
curves for supersingular double sextics in odd characteristics. Note that every
supersingular K3 surface can be obtained as double sextics [23, 25].
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