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Abstract. We define a topological invariant of complex projective plane curves.

As an application, we present new examples of arithmetic Zariski pairs.

1. Introduction

In this paper, we mean by a plane curve a complex reduced (possibly reducible)
projective plane curve. The following definition is due to Artal [3]:

Definition 1.1. A pair (C,C ′) of plane curves of the same degree is called a
Zariski pair if there exist tubular neighborhoods T ⊂ P2 of C and T ′ ⊂ P2 of C ′

such that (T,C) and (T ′, C ′) are diffeomorphic, while (P2, C) and (P2, C ′) are not
homeomorphic.

The first example of Zariski pairs was studied by Zariski in order to show that an
equisingular family of plane curves need not be connected. Zariski [35] considered
a six-cuspidal sextic curve C with the six cusps lying on a conic, and proved that
π1(P2 \ C) is isomorphic to the free product of cyclic groups of order 2 and 3.
Zariski [36] then showed, by means of deformation from a nine-cuspidal sextic
curve (the dual curve of a smooth cubic curve), that there exists a six-cuspidal
sextic curve C ′ with the six cusps not lying on a conic, and that π1(P2 \ C ′) is
cyclic of order 6. Oka [18] constructed explicitly a non-conical six-cuspidal sextic
curve C ′, and showed that π1(P2 \ C ′) is a cyclic group of order 6. Therefore the
moduli space M(6A2) of plane sextics possessing six cusps as their only singularities
has at least two connected components that are distinguished by the fundamental
groups of the complements. (See [3] and [22] for simple constructions of the pair
(C,C ′).) Recently, Degtyarev [12] showed that M(6A2) has exactly two connected
components.

Many examples of Zariski pairs have been known now. The standard method
to distinguish (P2, C) and (P2, C ′) topologically is to compare the fundamental
groups of the complements, which are calculated by Zariski-van Kampen theorem
(see [24]). Other methods are, for example, to compute Alexander polynomials, or
to prove (non-)existence of finite étale Galois coverings of the complements with
given branching properties.

Let F be a number field, that is, a finite extension of Q. Let Φ be a polynomial
with coefficients in F . For an embedding σ : F ↪→ C, we denote by Φσ the
polynomial obtained from Φ by applying σ to the coefficients of Φ.
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Definition 1.2. Plane curves C and C ′ are said to be conjugate in a number field
F if there exist a homogeneous polynomial Φ(x0, x1, x2) with coefficients in F and
two distinct embeddings σ : F ↪→ C and τ : F ↪→ C such that we have

C = {Φσ = 0} and C ′ = {Φτ = 0}.

We say that C and C ′ are conjugate if they are conjugate in some number field.

Definition 1.3. A Zariski pair (C,C ′) is called an arithmetic Zariski pair if C and
C ′ are conjugate.

A difficulty in constructing examples of arithmetic Zariski pairs comes from the
fact that, if C and C ′ are conjugate, then π1(P2 \C) and π1(P2 \C ′) have the same
pro-finite completions.

Artal, Carmona, and Cogolludo ([5], [7]) constructed an arithmetic Zariski pair
in degree 12. They distinguished (P2, C) and (P2, C ′) by means of the braid mon-
odromy. On the other hand, Artal, Carmona, Cogolludo and Marco [6] found an
arithmetic Zariski pair of real line arrangements.

In this paper, we introduce an invariant NC of the homeomorphism type of
(P2, C) for plane curves C of even degree. By means of this invariant combined
with Degtyarev’s general result [12] on the connected components of the moduli of
singular sextic curves, we construct examples of arithmetic Zariski pairs in degree
6. More precisely, we show that some pairs of conjugate curves of degree 6 that
were discovered by Artal, Carmona and Cogolludo [4] are in fact arithmetic Zariski
pairs. We also give another example using the idea developed in [27].

In order to explain our examples, we introduce some terminologies. A Dynkin
type is a finite formal sum

R =
∑
l≥1

alAl +
∑
m≥4

dmDm +
8∑

n=6

enEn,

where al, dm and en are non-negative integers, almost all of which are zero. The
rank of the Dynkin type R is defined by

rank(R) =
∑

all +
∑

dmm +
∑

enn.

An ADE-sextic is a plane curve of degree 6 with only simple singularities. The
type R of an ADE-sextic C is the Dynkin type of the singularities of C. Then
rank(R) is equal to the total Milnor number of C, and hence it is at most 19. We
say that an ADE-sextic is a maximizing sextic if the total Milnor number is 19 (see
Persson [19]). If C is an ADE-sextic, then the minimal resolution XC of the double
covering YC → P2 that branches exactly along C is a K3 surface. When C is a
maximizing sextic, our invariant NC of (P2, C) coincides with the transcendental
lattice of XC .

Theorem 1.4. There exists an arithmetic Zariski pair of maximizing sextics for
each of the following Dynkin types:

(i) A16 + A2 + A1, (ii) A16 + A3, (iii) A18 + A1, (iv) A10 + A9.
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The plan of this paper is as follows. In §2, we define an invariant NC for curves
C on a smooth projective surface S satisfying certain conditions, and show that NC

is in fact an invariant of the Γ -equivalence class of (S,C) (see Definition 2.5). The
Γ -equivalence is an equivalence relation coarser than the homeomorphism type of
(S,C), and finer than the homeomorphism type of S \C. Applying the main result
(Theorem 2.6) to the case S = P2, we obtain an invariant of the homeomorphism
type of (P2, C) for plane curves C of even degree. In §3, we review the theory of
Degtyarev [12] on the connected components of the moduli space M(R) of ADE-
sextics with a given Dynkin type R. This theory is crucial to our construction.
In §4, we calculate the connected components of M(R) for some R with rank(R) =
19. Combining this calculation with the result of [4, Theorem 5.8] and using our
invariant, we show that some pairs of conjugate maximizing sextics obtained in [4]
yield examples of arithmetic Zariski pairs (the examples (i)-(iii) above). In §5, we
present another example of arithmetic Zariski pairs constructed by means of the
theory of Hilbert class fields of imaginary quadratic fields (the example (iv) above).

The first example of non-homeomorphic conjugate complex varieties was given
by Serre [21]. Since then, only few examples seem to have been treated (e.g., Abel-
son [1]). The argument of this paper provides us with a new method to construct
examples of non-trivial effects of the automorphism of the base field on the topology
of complex varieties.

The author expresses gratitude to the referee for valuable comments on the first
version of this paper.

2. The invariant NC

First we fix some notation and terminologies.

Let A be a finitely generated Z-module. We denote by Ator the torsion subgroup
of A, and by Atf := A/Ator the torsion-free quotient of A. If b : A × A → Z is a
symmetric bilinear form on A, then b induces a symmetric bilinear form on Atf in
the natural way.

Let A be a free Z-module of finite rank, and A′ a submodule of A. The primitive
closure of A′ in A is defined to be the intersection of A′ ⊗ Q and A in A ⊗ Q. We
say that A′ is primitive in A if the primitive closure of A′ is equal to A′.

A lattice is a free Z-module A of finite rank equipped with a non-degenerate
symmetric bilinear form A×A → Z. Two lattices A and A′ are isomorphic if there
exists an isomorphism A →∼ A′ of Z-modules that preserves the symmetric bilinear
forms. The automorphism group of a lattice A is denoted by O(A). If A and A′

are lattices, then A ⊥ A′ denotes the orthogonal direct-sum of A and A′.
For a topological space Z, we denote by H2(Z) the singular homology group

H2(Z, Z). When Z is an oriented topological manifold with dimR(Z) = 4, we have
the intersection pairing

bZ : H2(Z) × H2(Z) → Z.

If we further assume that Z is compact, then H2(Z)tf becomes a lattice by bZ .

Let S be a smooth connected complex projective surface such that

Pic(S) ∼= Z and π1(S) = {1}.
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Remark 2.1. We are mainly interested in the case where S is P2. There exist
other examples. If S is a general complete intersection in P2+r of multi-degree
(a1, . . . , ar), then S satisfies the conditions above, provided that (a1, . . . , ar) is not
(2), (3) or (2, 2) (see [32]).

Let H be the line bundle on S such that its class is the positive generator of
Pic(S). Let d be a positive even integer, and put

L := H⊗d and M := H⊗d/2.

An L-curve is a reduced (possibly reducible) member of the complete linear system
|L|. Let C be an L-curve given by s = 0, where s is a global section of L, and let

π : Y → S

be the finite double covering that branches exactly along C, where Y is the pull-
back of the image of the global section s by the squaring morphism M → M⊗2 = L
over S. Note that Y is normal, because Y is a hypersurface in the total space of the
line bundle M with only isolated singular points (Altman and Kleiman [2, Chapter
VII, Corollary (2.14)]). Let

ρ : X → Y

be a proper birational morphism from a smooth surface X that induces an isomor-
phism ρ−1(Y \ π−1(C)) ∼= Y \ π−1(C). We put

φ := π ◦ ρ : X → S.

Then φ is an étale double covering over S \ C. We denote by

M̃C ⊂ H2(X)

the submodule generated by the homology classes of the reduced irreducible com-
ponents of φ−1(C) ⊂ X. We then put

ÑC := { x ∈ H2(X) | bX(x, y) = 0 for any y ∈ M̃C } and

NC := (ÑC)tf ⊂ H2(X)tf .

Note that NC is primitive in H2(X)tf .

Lemma 2.2. The restriction of bX to NC is non-degenerate.

Proof. First we assume that ρ is the minimal desingularization of Y . Since H2(X)tf

is a lattice by bX , and NC is the orthogonal complement of (M̃C)tf in H2(X)tf , it
is enough to show that the restriction of bX to (M̃C)tf is non-degenerate. Let
h ∈ H2(X)tf be the first Chern class of the line bundle φ∗(H). (We have a
canonical isomorphism H2(X)tf ∼= H2(X)tf .) Since bX(h, h) > 0, the Z-module
〈h〉 ⊂ H2(X)tf generated by h is a positive-definite lattice of rank 1. Let p1, . . . , pt

be the singular points of Y . For each pi, we denote by Σi ⊂ H2(X)tf the sub-
module generated by the homology classes of reduced irreducible curves on X that
are contracted to pi by ρ. By the theorem of Mumford [16], the Z-module Σi is a
negative-definite lattice. The lattice Σi is perpendicular to 〈h〉 and Σj (j 6= i) with
respect to bX . Therefore the submodule

M0
C := 〈h〉 ⊥ Σ1 ⊥ · · · ⊥ Σt

of H2(X)tf is a lattice by bX . Let Ci be an irreducible component of C, and let
C̃i be the reduced irreducible curve on X such that φ(C̃i) = Ci. Since Pic(S) ∼= Z
is generated by the class of H, there exists an integer di such that Ci is linearly
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equivalent to H⊗di on S. Then there exists γ ∈ Σ1 ⊥ · · · ⊥ Σt such that 2[C̃i] =
dih + γ holds in H2(X)tf . Therefore MC ⊗ Q is equal to M0

C ⊗ Q in H2(X)tf ⊗ Q,
and hence bX is non-degenerate on MC .

The proof for the general case is derived from the following observation. Let
X ′ → X be the blowing up at a point P on φ−1(C), and let E be the (−1)-curve
on X ′ contracted to P . Then we have a natural isomorphism

H2(X ′) = H2(X) ⊥ 〈[E]〉.

Hence the Z-module N ′
C ⊂ H2(X ′)tf equipped with bX′ is isomorphic to the Z-

module NC ⊂ H2(X)tf equipped with bX . ¤

From now on, we consider NC as a lattice by bX . The following has already been
shown in the proof of Lemma 2.2.

Lemma 2.3. The isomorphism class of the lattice NC does not depend on the
choice of the morphism ρ : X → Y .

Therefore we can consider the isomorphism class of the lattice NC as an invariant
of the L-curve C.

Next we define the Γ -equivalence relation among L-curves.

Definition 2.4. Let I be the closed interval [0, 1] ⊂ R. We fix a base point
b ∈ S \C. Let Ci be an irreducible component of C. A loop γ : I → S \C with the
base point b is called a simple loop around Ci if there exists a continuous embedding
δ : ∆ ↪→ S of the closed unit disk ∆ := {z ∈ C | |z| ≤ 1} into S such that

(i) δ−1(C) = {0}, and P := δ(0) is a smooth point of Ci,
(ii) the local intersection number of δ(∆) and Ci (with the orientation coming

from the complex structures) at P is 1, and
(iii) the loop γ goes from b to a point b′ ∈ δ(∂∆) along a path β, turns around

Ci along δ(∂∆) once in a positive direction, and goes back to b along β−1.

Let C1, . . . , Cm be the irreducible components of an L-curve C. It is easy to
see that the homotopy classes of simple loops around Ci form a conjugacy class in
π1(S \ C, b), which we will denote by Γ+

i . We then put

Γ−
i := { [γ]−1 | [γ] ∈ Γ+

i } and Γi := Γ+
i ∪ Γ−

i .

Finally, we put

Γ+(C) := {Γ+
1 , . . . , Γ+

m} and Γ (C) := {Γ1, . . . , Γm}.

Definition 2.5. Let C and C ′ be L-curves. We say that (S,C) and (S,C ′) are
Γ -equivalent (resp. Γ+-equivalent) if there exists a homeomorphism

ψ : S \ C ∼= S \ C ′

such that the induced isomorphism π1(S \ C, b) ∼= π1(S \ C ′, ψ(b)) gives rise to a
bijection from Γ (C) to Γ (C ′) (resp. from Γ+(C) to Γ+(C ′)).

Let C and C ′ be L-curves. If (S,C) and (S,C ′) are homeomorphic, then they
are Γ -equivalent. If there exists an orientation-preserving homeomorphism between
(S,C) and (S,C ′), then they are Γ+-equivalent.

The following is the main result of this paper:
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Theorem 2.6. The isomorphism class of the lattice NC is an invariant of the
Γ -equivalence class of (S,C).

Proof. Since π1(S) is assumed to be trivial, π1(S \C) is generated by simple loops
around irreducible components of C. Therefore a homomorphism π1(S\C) → Z/2Z
that maps every element of Γ1 ∪ · · · ∪ Γm to the non-trivial element of Z/2Z is
unique. Consequently, the homeomorphism type of

U := φ−1(S \ C) ⊂ X

is uniquely determined by the Γ -equivalence class of (S,C). For a compact subset
K of U , we denote by BK the image of the natural homomorphism H2(U \ K) →
H2(U). We then put

B∞ :=
⋂

BK ,

where K runs through the set of all compact subsets of U , and set

B̃U := H2(U)/B∞ and BU := (B̃U )tf .

Since every topological cycle is compact, the intersection pairing bU on H2(U) sets
up a symmetric bilinear form

βU : B̃U × B̃U → Z.

By construction, the isomorphism class of (BU , βU ) is determined by the homeo-
morphism type of U , and hence by the Γ -equivalence class of (S,C). Therefore it
is enough to show that the lattice NC is isomorphic to (BU , βU ).

We put D := φ−1(C), and equip D with the reduced structure. Let T ⊂ X be
a tubular neighborhood of D. We put

T× := T \ D = T ∩ U,

and consider the Mayer-Vietoris sequence

(2.1)

→ H2(T×) i−→ H2(T ) ⊕ H2(U)
j−→ H2(X) →

x 7−→ (iT (x), iU (x))
(y, z) 7−→ jT (y) − jU (z) .

First note that, since T is a tubular neighborhood of D, we have

(2.2) Im(iU ) = B∞,

where iU : H2(T×) → H2(U) is the natural homomorphism induced by the inclusion
T× ↪→ U .

Next we prove

(2.3) Im(jU ) = ÑC ,

where jU : H2(U) → H2(X) is the natural homomorphism induced by the inclusion
U ↪→ X. It is obvious that Im(jU ) ⊆ ÑC . Let [W ] be an element of ÑC represented
by a 2-dimensional topological cycle W ⊂ X. We can assume the following:

(i) W ∩ Sing(D) = ∅,
(ii) W ∩ D consists of a finite number of points, and
(iii) locally around each point P of W ∩D, W is a C∞-manifold intersecting D

at P transversely.



ARITHMETIC ZARISKI PAIRS 7

Let D(1), . . . , D(n) be the irreducible components of D. For each ν = 1, . . . , n, let
P

(ν)
+,1, . . . , P

(ν)
+,k(ν) (resp. P

(ν)
−,1, . . . , P

(ν)
−,l(ν)) be the intersection points of W and D(ν)

with local intersection number 1 (resp. −1). Since bX([W ], [D(ν)]) = 0, we have

k(ν) = l(ν).

Let ∆ ⊂ C be the closed unit disk, and let I ⊂ R be the closed interval [0, 1]. Since
D(ν) \ Sing(D) is path-connected for each ν, we have continuous maps

ξ
(ν)
i : ∆ × I → X

for ν = 1, . . . , n and i = 1, . . . , k(ν) with the following properties:

(i) ξ
(ν)
i (∆ × I) ∩ D ⊂ D(ν) \ Sing(D),

(ii) (ξ(ν)
i )−1(D) = {0} × I,

(iii) ξ
(ν)
i (0, 0) = P

(ν)
+,i , and ξ

(ν)
i induces a homeomorphism from ∆ × {0} to a

closed neighborhood ∆(ν)
+,i ⊂ W of P

(ν)
+,i in W , and

(iv) ξ
(ν)
i (0, 1) = P

(ν)
−,i , and ξ

(ν)
i induces a homeomorphism from ∆ × {1} to a

closed neighborhood ∆(ν)
−,i ⊂ W of P

(ν)
−,i in W .

We then put

W ′ :=
(
W \

⋃
ν,i

(∆(ν)
+,i ∪ ∆(ν)

−,i)
)

∪
⋃
ν,i

ξ
(ν)
i (∂∆ × I).

Namely, we cut out discs ∆(ν)
+,i and ∆(ν)

−,i from W , and put tubes ξ
(ν)
i (∂∆ × I)

around the paths ξ
(ν)
i ({0} × I) on D(ν). The tube ξ

(ν)
i (∂∆ × I) connects the pair

of circles ∂∆(ν)
+,i and ∂∆(ν)

−,i. Since the local intersection numbers of W and D(ν) at

P
(ν)
+,i and at P

(ν)
−,i have opposite signs, we can put an orientation on each solid tube

ξ
(ν)
i (∆× I) in such a way that ∆(ν)

+,i ⊂ W and ξ
(ν)
i (∆×{0}) ⊂ ∂(ξ(ν)

i (∆× I)) (resp.

∆(ν)
−,i ⊂ W and ξ

(ν)
i (∆ × {1}) ⊂ ∂(ξ(ν)

i (∆ × I)) ) have the opposite orientations.

Then, with the orientation on the tubes ξ
(ν)
i (∂∆× I) induced from the orientation

of ξ
(ν)
i (∆× I), the space W ′ becomes a topological cycle. Note that W and W ′ are

homologous in X, because W −W ′ is the boundary of the 3-dimensional topological
chain

⋃
ξ
(ν)
i (∆ × I). Moreover W ′ is disjoint from D. Therefore [W ] = [W ′] is

contained in Im(jU ), and hence (2.3) is proved.

Let z be an element of H2(U). If jU (z) = 0, then (0, z) ∈ H2(T ) ⊕ H2(U) is
contained in Ker(j) = Im(i), where i and j are homomorphisms in the Mayer-
Vietoris exact sequence (2.1), and hence z ∈ Im(iU ) holds. Therefore we have a
natural inclusion Ker(jU ) ↪→ Im(iU ). Consider the following diagram: 　 　

(2.4)

0 −→ Ker(jU ) −→ H2(U)
jU−→ ÑC −→ 0

↪→

=

→→

λ

0 −→ Im(iU ) −→ H2(U) −→ B̃U −→ 0.

The upper sequence is exact by (2.3), and the lower sequence is exact by (2.2).
Therefore we obtain a surjective homomorphism λ : ÑC → B̃U that makes the
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diagram (2.4) commutative. Remark that, by the definition of the intersection
pairing, we have

bU (z, z′) = bX(jU (z), jU (z′))

for any z, z′ ∈ H2(U). Hence, for any ζ, ζ ′ ∈ ÑC ⊂ H2(X), we have

(2.5) bX(ζ, ζ ′) = βU (λ(ζ), λ(ζ ′)).

Therefore, in order to show that NC is isomorphic to (BU , βU ), it is enough to prove
that λ induces an isomorphism NC →∼ BU on the torsion-free quotients, or equiv-
alently, λ−1((B̃U )tor) = (ÑC)tor holds. It is obvious that λ((ÑC)tor) ⊆ (B̃U )tor.
Suppose that ζ ∈ ÑC satisfies λ(ζ) ∈ (B̃U )tor. By (2.5), we have bX(ζ, ζ ′) = 0 for
any ζ ′ ∈ ÑC . Since NC is a lattice, we have ζ ∈ (ÑC)tor. ¤

Corollary 2.7. Let C and C ′ be plane curves of the same degree. Suppose that
deg C = deg C ′ is even. If (P2, C) and (P2, C ′) are homeomorphic, then NC and
NC′ are isomorphic.

3. Sextics with only simple singularities

Let P∗(H0(P2,OP2(6))) be the projective space of one-dimensional subspaces of
the vector space H0(P2,OP2(6)) of homogeneous polynomials of degree 6 on P2.
For a Dynkin type R of rank ≤ 19, we denote by

M(R) ⊂ P∗(H0(P2,OP2(6)))

the space of ADE-sextics of type R. Using Urabe’s idea [33], Yang [34] made the
complete list of Dynkin types R such that M(R) 6= ∅. Degtyarev [12] refined Yang’s
argument, and gave a method to calculate the connected components of M(R) for
a given R. In this section, we expound Degtyarev’s theory.

We fix some notation and terminologies about lattices.

Let Λ be a lattice of rank n = 2 + s− and signature (2, s−). For a non-zero
vector ω ∈ Λ ⊗ C, we denote by [ω] ∈ P∗(Λ ⊗ C) the one-dimensional vector space
spanned by ω. We put

ΩΛ := { [ω] ∈ P∗(Λ ⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0 }.
It is easy to verify that ΩΛ is a complex manifold of dimension s− = n−2 consisting
of two connected components.

The dual lattice Λ∨ of a lattice Λ is defined by

Λ∨ := { v ∈ Λ ⊗ Q | (x, v) ∈ Z for all x ∈ Λ }.
We have Λ ⊂ Λ∨. An overlattice of Λ is a submodule Λ′ of Λ∨ containing Λ such
that the natural Q-valued symmetric bilinear form on Λ ⊗ Q takes values in Z on
Λ′. The discriminant group GΛ of Λ is defined by

GΛ := Λ∨/Λ.

A lattice is called unimodular if Λ∨ = Λ. A lattice Λ is said to be even if (v, v) ∈ 2 Z
holds for every v ∈ Λ. If Λ is an even lattice, we can define a quadratic form

qΛ : GΛ → Q/2 Z
by qΛ(v̄) := (v, v) mod 2 Z, where v ∈ Λ∨ and v̄ := v mod Λ. This quadratic form
is called the discriminant form of Λ. See Nikulin [17] for the basic properties of
discriminant forms.
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Let Λ be a negative-definite even lattice. A vector d ∈ Λ is called a root if
(d, d) = −2 holds. We say that Λ is a root lattice if Λ is generated by the roots in
Λ. The isomorphism classes of root lattices are in one-to-one correspondence with
the Dynkin types (see, for example, Ebeling [13, Section 1.4]). We denote by Σ−

R

the negative-definite root lattice of Dynkin type R. A subset F of Σ−
R is called a

fundamental system of roots if every element of F is a root, F is a basis of Σ−
R, and

each root v ∈ Σ−
R is written as a linear combination v =

∑
d∈F kdd of roots d ∈ F

with integer coefficients kd all non-positive or all non-negative. A fundamental
system F of roots exists (see [13, Section 1.4]). The intersection matrix of Σ−

R with
respect to the basis F is the Cartan matrix of type R multiplied by −1.

A lattice is called a K3 lattice if it is even, unimodular, of rank 22 and with
signature (3, 19). By the structure theorem of unimodular lattices, a K3 lattice is
unique up to isomorphism (see, for example, Serre [20, Chapter V]).

We now start explaining Degtyarev’s theory. Let R be a Dynkin type with

r := rank(R) ≤ 19.

First, we define a set Q(R) and an equivalence relation ∼ on it. We denote by
〈h〉 the lattice of rank 1 generated by a vector h with (h, h) = 2. We put

M0 := Σ−
R ⊥ 〈h〉,

which is an even lattice of signature (1, r). We choose a fundamental system of
roots F ⊂ Σ−

R once and for all, and put

OF,h(M0) := { g ∈ O(M0) | g(F ) = F, g(h) = h }.
We denote by Ms the set of even overlattices M of M0 satisfying the following two
conditions:

(m1) { v ∈ M | (v, h) = 1, (v, v) = 0 } = ∅, and
(m2) { v ∈ M | (v, h) = 0, (v, v) = −2 } = { v ∈ Σ−

R | (v, v) = −2 }.
(These conditions correspond to the conditions (a) and (b) in [34, Theorem 2.3].)
For M ∈ Ms, we denote by Ns(M) a complete set of representatives of isomorphism
classes of even lattices N of rank 21 − r satisfying the following two conditions:

(n1) N is of signature (2, 19 − r), and
(n2) the discriminant form (GN , qN ) of N is isomorphic to (GM ,−qM ).

By Nikulin [17, Proposition 1.6.1], the conditions (n1) and (n2) are equivalent to
the following condition:

(n) there exists an even unimodular overlattice L of M ⊥ N with signature
(3, 19) such that M and N are primitive in L.

Let N be an element of Ns(M). We denote by Ls(M,N) the set of even unimodular
overlattices L of M ⊥ N such that M and N are primitive in L. Note that every
L ∈ Ls(M,N) is a K3 lattice. We also denote by cΩs(N) the set of connected
components of the complex manifold ΩN . Remark that we have |cΩs(N)| = 2.

We define Q(R) to be the set of quartets (M,N,L, cΩ) such that M ∈ Ms,
N ∈ Ns(M), L ∈ Ls(M,N), and cΩ ∈ cΩs(N). For quartets (M,N,L, cΩ) and
(M ′, N ′, L′, cΩ′) in Q(R), we write

(M,N,L, cΩ) ∼ (M ′, N ′, L′, cΩ′)

if the following hold.
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(i) There exists g0 ∈ OF,h(M0) ⊂ O(M0) such that the induced action of g0

on Ms maps M ∈ Ms to M ′ ∈ Ms. We denote by gM : M →∼ M ′ the unique
isomorphism satisfying gM |M0 = g0.

(ii) Since (GM ,−qM ) and (GM ′ ,−qM ′) are isomorphic, there exists a canonical
bijection between Ns(M) and Ns(M ′). The elements N ∈ Ns(M) and
N ′ ∈ Ns(M ′) are corresponding by this bijection; that is, N and N ′ are
isomorphic.

(iii) There exists an isomorphism gN : N →∼ N ′ of lattices such that the bijection
Ls(M,N) →∼ Ls(M ′, N ′) induced by the isomorphism gM ⊕gN from M ⊥ N
to M ′ ⊥ N ′ maps L ∈ Ls(M,N) to L′ ∈ Ls(M ′, N ′), and that the induced
isomorphism ΩN →∼ ΩN ′ maps cΩ to cΩ′.

For (M,N,L, cΩ) ∈ Q(R), we denote by [M,N,L, cΩ] ∈ Q(R)/∼ the equivalence
class of the relation ∼ containing (M,N,L, cΩ).

Remark 3.1. If (M,N,L, cΩ) ∈ Q(R), then M0 is the sublattice of L generated by
F ⊂ L and h ∈ L, M is the primitive closure of M0 in L, and N is the orthogonal
complement of M in L. Hence [M,N,L, cΩ] = [M ′, N ′, L′, cΩ′] holds if and only if
there exists an isomorphism L →∼ L′ that maps F to F , h to h, and such that the
induced isomorphism ΩL →∼ ΩL′ maps the connected component cΩ of ΩN ⊂ ΩL

to the connected component cΩ′ of ΩN ′ ⊂ ΩL′ .

Next we define a map ρ from the space M(R) to the set Q(R)/∼. Let C be an
ADE-sextic of type R, and let X be the minimal resolution of the double covering
Y → P2 that branches exactly along C. We denote by L the line bundle on X
corresponding to the pull-back of the invertible sheaf OP2(1). We have ([L], [L]) = 2.
We then put

LX := H2(X, Z),

which is a K3 lattice. Let F(X,L) ⊂ LX be the set of cohomology classes of (−2)-
curves that are contracted by the desingularization morphism X → Y , and let
Σ(X,L) ⊂ LX be the sublattice of LX generated by F(X,L). Then Σ(X,L) is a
negative-definite root lattice of type R. It is known that F(X,L) is a fundamental
system of roots in Σ(X,L) (see [26, Proposition 2.4]). In particular, there exists an
isomorphism of lattices from Σ(X,L) to Σ−

R that maps F(X,L) to the fixed funda-
mental system of roots F ⊂ Σ−

R bijectively. We put

M0
(X,L) := Σ(X,L) ⊥ 〈[L]〉,

and choose an isomorphism

γ0
M : M0

(X,L) →∼ M0

satisfying γ0
M (F(X,L)) = F and γ0

M ([L]) = h. Let M(X,L) be the primitive closure
of M0

(X,L) in LX , and M the even overlattice of M0 corresponding to the even
overlattice M(X,L) of M0

(X,L) by γ0
M . Then M satisfies the conditions (m1) and

(m2) (see [26, Proposition 2.1]). Hence M ∈ Ms. We denote by

γM : M(X,L) →∼ M

the isomorphism induced by γ0
M . Let N(X,L) be the orthogonal complement of

M(X,L) in LX . Since the K3 lattice LX is an even unimodular overlattice of
M(X,L) ⊥ N(X,L) in which M(X,L) and N(X,L) are primitive, the lattice N(X,L)
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satisfies the condition (n). Hence there exists a unique element N of Ns(M) that
is isomorphic to N(X,L). We choose an isomorphism

γN : N(X,L) →∼ N.

By the isomorphism

γM ⊕ γN : M(X,L) ⊥ N(X,L) →∼ M ⊥ N,

the even unimodular overlattice LX of M(X,L) ⊥ N(X,L) corresponds to an element
L of Ls(M,N). We denote by

ωX ∈ H2,0(X) ⊂ LX ⊗ C

the cohomology class of a non-zero holomorphic 2-form on X. Since M(X,L) ⊂
H1,1(X), the vector ωX defines a point [ωX ] of ΩN(X,L) . Let cΩ be the connected
component of ΩN that contains the point [γN (ωX)]. Thus we obtain a quartet
(M,N,L, cΩ) ∈ Q(R). The choices we have made during the process of finding
(M,N,L, cΩ) are only on γ0

M and γN . Since γ0
M is unique up to OF,h(M0) and γN

is unique up to O(N), the equivalence class [M,N,L, cΩ] does not depend on these
choices. We thus can put

ρ(C) := [M,N,L, cΩ].

Remark 3.2. By definition, we have ρ(C) = [M,N,L, cΩ] if and only if there exists
an isomorphism LX →∼ L that maps F(X,L) to F , [L] to h, and such that the induced
isomorphism ΩLX →∼ ΩL maps the point [ωX ] ∈ ΩN(X,L) ⊂ ΩLX

to a point of the
connected component cΩ of ΩN ⊂ ΩL.

We now have all the ingredients that are needed to state the main theorem of
Degtyarev [12]:

Theorem 3.3. The map ρ induces a bijection from the set of connected components
of the space M(R) to the set Q(R)/∼.

The main tool of the proof is the Torelli theorem for the refined period map of
marked K3 surfaces. See the book by Barth, Hulek, Peters and Van de Ven [8,
Theorems 12.3 and 14.1 in Chapter VIII ].

By definition, we have the following:

Corollary 3.4. Let C be an ADE-sextic such that ρ(C) = [M,N,L, cΩ]. Then the
lattice N is isomorphic to the invariant NC of the Γ -equivalence class of (P2, C).

We explain how to calculate the set Q(R)/∼. By [17, Proposition 1.4.1], the even
overlattices of M0 = Σ−

R ⊥ 〈h〉 are in one-to-one correspondence with the totally
isotropic subgroups of the discriminant form (GM0 , qM0). For an even overlattice
M of M0, we can determine whether M satisfies the conditions (m1) and (m2) by
the method described in [25]. Since GM0 is finite, we obtain the set Ms. The group
OF,h(M0) is isomorphic to the automorphism group of the Dynkin diagram of type
R, and hence it is finite. Therefore the image of the natural homomorphism

OF,h(M0) ↪→ O(M0) → O(qM0)

is easy to calculate, where O(qM0) is the automorphism group of the finite quadratic
form (GM0 , qM0) (see [23, Section 6.2]). Consequently we obtain the set

Ms := OF,h(M0)\Ms
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of the orbits of the action of OF,h(M0) on Ms. For an element M of Ms, let
[M ] ∈ Ms denote the orbit containing M . We also put

OF,h,M (M0) := { g ∈ OF,h(M0) | g fixes M ∈ Ms }.
We have a natural map

pr : Q(R)/∼ → Ms

that maps [M,N,L, cΩ] to [M ]. We denote by Ms] ⊂ Ms the image of the map
pr : Q(R)/∼ → Ms ; that is, we put

Ms] := { [M ] ∈ Ms | Ns(M) 6= ∅ }.

For [M ] ∈ Ms, we can determine whether Ns(M) is empty or not by the criterion
of Nikulin [17, Theorem 1.10.1]. Hence Ms] is calculated.

Suppose that [M ] ∈ Ms] . By [17, Corollary 1.9.4], the set Ns(M) forms a
genus. If r := rank(R) < 19, then the isomorphism class of an indefinite lattice N
of signature (2, 19− r) is determined by the spinor genus by Eichler’s theorem (see,
for example, Cassels [9]). The method of enumeration of spinor genera in a given
genus is described in Conway and Sloane [10, Chapter 15]. When rank(R) = 19,
the set Ns(M) is easily calculated by Corollary 3.9 below.

For each [M ] ∈ Ms] , we have a natural map

pr[M ] : pr−1([M ]) → Ns(M)

that maps [M ′, N ′, L′, cΩ′] ∈ pr−1([M ]) to the lattice N ∈ Ns(M) isomorphic to
N ′ ∈ Ns(M ′). (Note that, if [M ] = [M ′], then M and M ′ are isomorphic, and
hence Ns(M) and Ns(M ′) are canonically identified.) Let N be an element of
Ns(M). We put

F ([M ], N) := pr−1
[M ](N).

We can regard OF,h,M (M0) as a subgroup of O(M):

OF,h,M (M0) = { g ∈ O(M) | g(F ) = F, g(h) = h }.
Then the group OF,h,M (M0) × O(N) acts on the set Ls(M,N) × cΩs(N) in the
natural way. The fiber F ([M ], N) of pr[M ] over N is, by definition, equal to the set
of orbits of this action:

F ([M ], N) = (OF,h,M (M0) × O(N))\(Ls(M,N) × cΩs(N)).

By [17, Proposition 1.6.1], there exists a natural bijection between the set Ls(M,N)
and the set of isomorphisms of finite quadratic forms from (GM ,−qM ) to (GN , qN ).
Since GM

∼= GN is a finite abelian group, we obtain the set Ls(M,N). Hence the
set F ([M ], N) can be calculated, provided that the group O(N) and its actions on
(GN , qN ) and on cΩs(N) are calculated.

Remark 3.5. When rank(R) = 19, the lattice N is positive-definite. Hence O(N) is
finite, and we can easily make the list of elements of O(N). The actions of O(N)
on (GN , qN ) and on cΩs(N) are then readily calculated.

We use the following terminology in §4 and §5.

Definition 3.6. Let τ : cΩs(N) →∼ cΩs(N) be the transposition of the two con-
nected components of ΩN . An orbit U ⊂ Ls(M,N) × cΩs(N) of the action of
OF,h,M (M0) × O(N) is called real if U is stable under τ .
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We review the classical theory of binary forms due to Gauss (see Edwards [14] or
Conway and Sloane [10, Chapter 15], for example). For integers a, b, c, we denote
by Q[a, b, c] the matrix [

a b
b c

]
.

For a positive integer d, we put

Qd := { Q[a, b, c] | a ≡ c ≡ 0 (mod 2), a > 0, c > 0, ac − b2 = d },

on which GL2(Z) acts from right by (Q, g) 7→ Tg Qg. The set of isomorphism
classes of even positive-definite lattices of rank 2 with discriminant d is canonically
identified with the set Qd/GL2(Z) of GL2(Z)-orbits in Qd.

Definition 3.7. We call an SL2(Z)-orbit in Qd an isomorphism class of even
positive-definite oriented lattices of rank 2 with discriminant d.

For Q[a, b, c] ∈ Qd, we denote by Λ[a, b, c] (resp. Λ̃[a, b, c]) the lattice (resp. the
oriented lattice) expressed by Q[a, b, c].

Proposition 3.8. Let d be a positive integer. Then the set

{ Λ̃[a, b, c] | Q[a, b, c] ∈ Qd, −a < 2b ≤ a ≤ c with b ≥ 0 if a = c }

is a complete set of representatives of isomorphism classes of even positive-definite
oriented lattices of rank 2 with discriminant d.

Corollary 3.9. Let d be a positive integer. Then the set

(3.1) { Λ[a, b, c] | Q[a, b, c] ∈ Qd, 0 ≤ 2b ≤ a ≤ c }

is a complete set of representatives of isomorphism classes of even positive-definite
lattices of rank 2 with discriminant d.

Remark 3.10. Let Λ[a, b, c] be an element of the set (3.1), and let [Λ[a, b, c]] ∈
Qd/GL2(Z) be the GL2(Z)-orbit containing Λ[a, b, c]. Then the fiber of the natural
map Qd/SL2(Z) → Qd/GL2(Z) over [Λ[a, b, c]] consists of two elements if

0 < 2b < a < c,

while it consists of a single element otherwise.

4. Examples of arithmetic Zariski pairs

Let f ∈ Q[t] be an irreducible polynomial. We denote by Ff the field Q[t]/(f).
Then there exists a natural bijection α 7→ σα from the set of complex roots of f to
the set of embeddings Ff ↪→ C given by σα(t) := α. For a homogeneous polynomial
Φ(x0, x1, x2) with coefficients in Ff , we write Φα instead of Φσα .

Suppose that C and C ′ are conjugate ADE-sextics. Then the configurations
of C and C ′ are the same. (See Yang [34, §3] for the precise definition of the
configuration of an ADE-sextic.) In particular, there exist tubular neighborhoods
T ⊂ P2 of C and T ′ ⊂ P2 of C ′ such that (T,C) and (T ′, C ′) are diffeomorphic.

Combining this fact with Corollaries 2.7 and 3.4, we see that the following pairs
of conjugate maximizing sextics discovered by Artal, Carmona and Cogolludo [4,
Theorem 5.8] are in fact arithmetic Zariski pairs.
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Example 4.1. Consider the Dynkin type R = A16 + A2 + A1. We put

f := 17 t3 − 18 t2 − 228 t + 536,

which has two non-real roots α, ᾱ and a real root β. In [4], it is shown that M(R)
consists of three connected components M(R)α, M(R)ᾱ and M(R)β , and that
there exists a homogeneous polynomial Φ(x0, x1, x2) of degree 6 with coefficients in
Ff such that the conjugate sextics

Cα = {Φα = 0}, Cᾱ = {Φᾱ = 0}, Cβ = {Φβ = 0}

are members of M(R)α, M(R)ᾱ and M(R)β , respectively. On the other hand, by
the method described in the previous section, we calculate that Ms] = {[M0]} and
Ns(M0) = {N1, N2}, where

N1 = Λ[10, 4, 22] and N2 = Λ[6, 0, 34].

The set F ([M0], N1) consists of two non-real orbits, while the set F ([M0], N2) con-
sists of a single real orbit. Since the complex conjugation induces a homeomorphism
(P2, Cα) ∼= (P2, Cᾱ), the invariants NCα and NCᾱ must be equal. Hence NCα and
NCᾱ are isomorphic to N1, while NCβ

is isomorphic to N2. Since N1 and N2 are
not isomorphic, we conclude that (Cα, Cβ) is an arithmetic Zariski pair.

Example 4.2. Consider the Dynkin type R = A16 + A3. In [4], it is shown that
M(R) consists of two connected components M+ and M−, and that there exist
members C+ of M+ and C− of M− that are conjugate in Q(

√
17). On the other

hand, we calculate that Ms] = {[M0]} and Ns(M0) = {N1, N2}, where

N1 = Λ[4, 0, 34] and N2 = Λ[2, 0, 68].

Each of F ([M0], N1) and F ([M0], N2) consists of a single real orbit. Therefore
(C+, C−) is an arithmetic Zariski pair.

Example 4.3. Suppose that R = A18 + A1. We put

f := 19 t3 + 50 t2 + 36 t + 8,

which has two non-real roots α, ᾱ and a real root β. Again by [4], the moduli space
M(R) consists of three connected components M(R)α, M(R)ᾱ, M(R)β that have
members Cα = {Φα = 0}, Cᾱ = {Φᾱ = 0}, Cβ = {Φβ = 0}, respectively, for some
homogeneous polynomial Φ with coefficients in Ff . On the other hand, we have
Ms] = {[M0]} and Ns(M0) = {N1, N2}, where

N1 = Λ[8, 2, 10] and N2 = Λ[2, 0, 38].

The set F ([M0], N1) consists of two non-real orbits, while the set F ([M0], N2)
consists of a single real orbit. Hence (Cα, Cβ) is an arithmetic Zariski pair.

For the cases R = A15+A4 and R = A19 that are also treated in [4, Theorem 5.8],
the situation is as follows.

Example 4.4. Suppose that R = A15 + A4. We have Ms] = {[M0], [M1]},
where M1 is an overlattice of M0 with index 2. We have Ns([M0]) = {N0} with
N0 = Λ[8, 4, 22], and F ([M0], N0) consists of two non-real orbits, while we have
Ns([M1]) = {N1} with N1 = Λ[2, 0, 20], and F ([M1], N1) consists of a single real
orbit. According to Yang’s list [34], there exist two configurations of maximizing
sextics of type A15 +A4. By [4], there exist members C and C of distinct connected
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components of M(R) that are conjugate in Q(
√
−1). The complex conjugation

yields a homeomorphism (P2, C) ∼= (P2, C). Hence we must have NC
∼= NC

∼= N0.

Example 4.5. Suppose that R = A19. We have Ms] = {[M0]} and Ns([M0]) =
{N0} with N0 = Λ[2, 0, 20]. The set F ([M0], N0) consists of two real orbits. Ac-
cording to [4], there exist members C+ and C− of M(R) belonging to the distinct
connected components that are conjugate in Q(

√
5). Our invariant fails to distin-

guish (P2, C+) and (P2, C−) topologically, because we have NC+
∼= NC−

∼= N0. It
would be an interesting problem to determine whether (P2, C+) and (P2, C−) are
homeomorphic or not.

5. A singular K3 surface defined over a number field

Let Y be a complex K3 surface or a complex abelian surface such that the
transcendental lattice T (Y ) is of rank 2. Then T (Y ) is an even positive-definite
lattice. Moreover the Hodge structure

T (Y ) ⊗ C = H2,0(Y ) ⊕ H2,0(Y )

of T (Y ) defines a canonical orientation on T (Y ); namely, an ordered basis e1, e2 of
T (Y ) is positive if the imaginary part of the complex number (e1, ωY )/(e2, ωY ) is
positive, where ωY ∈ H2,0(Y ) is the cohomology class of a non-zero holomorphic
2-form of Y . We denote by T̃ (Y ) the oriented transcendental lattice of Y .

Definition 5.1. A (smooth) K3 surface X defined over a field k of characteristic
0 is called singular if the Picard number of X ⊗ k̄ is 20.

If X is a complex singular K3 surface, then we have the oriented transcenden-
tal lattice T̃ (X). We have the following important theorem due to Shioda and
Inose [28]:

Theorem 5.2. The correspondence X 7→ T̃ (X) yields a bijection from the set of
isomorphism classes of complex singular K3 surfaces to the set of isomorphism
classes of even positive-definite oriented lattices of rank 2.

Notice that, if C is a complex maximizing sextic, then the minimal resolution
XC of the double covering YC → P2 that branches exactly along C is a complex
singular K3 surface, and T (XC) is isomorphic to NC .

Let X be a singular K3 surface defined over a number field F . For an embedding
σ of F into C, we denote by Xσ the complex K3 surface obtained from X by σ.

The following is a special case of [27, Theorem 3].

Proposition 5.3. There exist a singular K3 surface X defined over a number field
F and two embeddings τ and τ ′ of F into C such that

T̃ (Xτ ) ∼= Λ̃[2, 1, 28] and T̃ (Xτ ′
) ∼= Λ̃[8, 3, 8].

Proof. We put
K := Q(

√
−55) ⊂ C,

and denote by ZK the ring of integers of K. For a number field L containing K, we
denote by Emb(L/K) the set of embeddings of L into C whose restrictions to K
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are the identity of K. We define fractional ideals I0, . . . , I3 of ZK by the following:

I0 := ZK = Z + Zτ0 where τ0 := (1 +
√
−55)/2,

I1 := Z + Zτ1 where τ1 := (3 +
√
−55)/4,

I2 := Z + Zτ2 where τ2 := (5 +
√
−55)/8,

I3 := Z + Zτ3 where τ3 := (1 +
√
−55)/4.

The ideal class group ClK of ZK is a cyclic group of order 4 generated by the
class [I1], and we have [I2] = [I1]2 and [I3] = [I1]3. We consider the Hilbert class
polynomial

H(t) := (t − j(τ0))(t − j(τ1))(t − j(τ2))(t − j(τ3))

= t4 + 13136684625 t3 − 20948398473375 t2 +
+172576736359017890625 t − 18577989025032784359375

of ZK , and the Hilbert class field

H := K[t]/(H(t))

of K (see Cox [11]). We put

γ := t mod (H) ∈ H.

Then we have Emb(H/K) = {σ0, σ1, σ2, σ3}, where σi is the embedding defined by
σi(γ) = j(τi) ∈ C. Consider the elliptic curve

(5.1) E : y2 + xy = x3 − 36
γ − 1728

x − 1
γ − 1728

defined over H (see Silverman [31, page 52]). Then we have j(E) = γ ∈ H, and
hence j(Eσi) = j(τi) holds for i = 0, . . . , 3, where Eσi is the complex elliptic
curve defined by (5.1) with γ replaced by σi(γ) = j(τi). Therefore we have an
isomorphism of Riemann surfaces

(5.2) Eσi ∼= C/Ii

for i = 0, . . . , 3. We then put
A := E × E.

Note that T (A) is of rank 2. By means of a double covering of the Kummer surface
Km(A) of A, Shioda and Inose [28] constructed a singular K3 surface X defined over
a finite extension F of H with the following properties (see also [27, Propositions
6.1 and 6.4]).

For any σ ∈ Emb(F/K), the oriented trancendental lattice T̃ (Xσ)
is isomorphic to the oriented transcendental lattice T̃ (Aσ) of the
complex abelian surface Aσ = Eσ × Eσ.

See Inose [15] and Shioda [29] for an explicit defining equation of X.

The oriented lattice T̃ (Aσ) is calculated by Shioda and Mitani [30]. Suppose
that the restriction of σ ∈ Emb(F/K) to H is σi. Then we have

Aσ ∼= C/Ii × C/Ii
∼= C/I2

i × C/I0
∼=

{
C/I0 × C/I0 if i = 0 or i = 2,
C/I2 × C/I0 if i = 1 or i = 3,
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by (5.2) and [30, (4.14)]. Hence, by [30, Section 3], we have

T̃ (Aσ) ∼=

{
Λ̃[2, 1, 28] if σ|H is σ0 or σ2,
Λ̃[8, 3, 8] if σ|H is σ1 or σ3,

(see also [27, §6.3].) Thus we obtain the hoped-for X and τ , τ ′. ¤
Remark 5.4. Note that the orientation reversing does not change the isomorphism
classes of the oriented lattices Λ̃[2, 1, 28] and Λ̃[8, 3, 8] (see Remark 3.10). Hence,
by Theorem 5.2, if a complex singular K3 surface Y satisfies T (Y ) ∼= Λ[2, 1, 28]
(resp. T (Y ) ∼= Λ[8, 3, 8]), then Y is isomorphic to the complex K3 surface Xτ

(resp. to the complex K3 surface Xτ ′
) in Proposition 5.3

Using Proposition 5.3 and Remark 5.4, we obtain the following example of arith-
metic Zariski pairs.

Example 5.5. Consider the Dynkin type R = A10 + A9. We have

Ms] = {[M0], [M1]},
where M1 is an overlattice of M0 with index 2. We then have

Ns([M0]) = { Λ[10, 0, 22], Λ[2, 0, 110] } and
Ns([M1]) = { Λ[2, 1, 28], Λ[8, 3, 8] },

and each of the sets

F ([M0],Λ[10, 0, 22]), F ([M0],Λ[2, 0, 110]),
F ([M1],Λ[2, 1, 28]), F ([M1],Λ[8, 3, 8])

consists of a single real orbit. In particular, the number of the connected compo-
nents of M(R) is four. Let C and C ′ be members of the connected components
of M(R) corresponding to F ([M1],Λ[2, 1, 28]) and F ([M1],Λ[8, 3, 8]), respectively.
Note that we have

NC
∼= T (XC) ∼= Λ[2, 1, 28] and NC′ ∼= T (XC′) ∼= Λ[8, 3, 8].

By Remark 5.4, we see that XC is isomorphic to Xτ and XC′ is isomorphic to Xτ ′
.

Consider the composites

φC : XC −→ YC
πC−→ P2 and φC′ : XC′ −→ YC′

πC′−→ P2

of the finite double coverings branching along C and C ′ and the minimal desingu-
larizations. Since XC

∼= Xτ , there exists a morphism φL : X ⊗ L → P2 with the
Stein factorization

φL : X ⊗ L −→ YL
πL−→ P2

defined over a finite extension L of F such that, for some embedding θ of L into C
satisfying θ|F = τ , the morphism

φθ
L : (X ⊗ L)θ = Xτ −→ Y θ

L

πθ
L−→ P2

is isomorphic to φC . In particular, the branch curve B of the finite double covering
πθ

L is isomorphic to C as a complex plane curve. Let θ′ be an embedding of L into
C such that θ′|F = τ ′, and consider the morphism

φθ′

L : (X ⊗ L)θ′
= Xτ ′

−→ Y θ′

L

πθ′
L−→ P2.

Since the branch curve B′ of πθ′

L is conjugate to the branch curve B of πθ
L, it is

a maximizing sextic of type A10 + A9. Since (X ⊗ L)θ′
= Xτ ′

is isomorphic to
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XC′ , the morphism φθ′
must be isomorphic to φC′ , and hence B′ is isomorphic to

C ′ as a complex plane curve. Therefore the conjugate pair (B,B′) of plane curves
is isomorphic to the pair (C,C ′) with NC 6∼= NC′ , and thus yields an example of
arithmetic Zariski pairs.
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