
SINGULARITIES OF DUAL VARIETIES IN CHARACTERISTIC 3

ICHIRO SHIMADA

Abstract. We investigate singularities of a general plane section of the dual

variety of a smooth projective variety, or more generally, the discriminant
variety associated with a linear system of divisors on a smooth projective
variety. We show that, in characteristic 3, singular points of E6-type take the
place of ordinary cusps in characteristic 0.

1. Introduction

We work over an algebraically closed field k.

Let X be a smooth projective variety of dimension n > 0, and let L be a line
bundle on X. We consider the m-dimensional linear system |M | of divisors on
X corresponding to a linear subspace M of H0(X,L) with dimension m + 1 > 1.
The discriminant variety of |M | is the locus of all points t ∈ P∗(M) such that the
corresponding divisor Dt ∈ |M | is singular ([2, Section 2]). When the linear system
|M | embeds X into a projective space Pm, then the parameter space P∗(M) of the
linear system |M | is identified with the dual projective space (Pm)∨ of Pm, and the
discriminant variety of |M | is called the dual variety of X ⊂ Pm.

Since the paper of Wallace [24], it has been noticed that the geometry of dual
varieties in positive characteristics is quite different from that in characteristic 0.
For example, the reflexivity property does not hold in general in positive charac-
teristics. See [17] and [8] for the definition and detailed accounts of the reflexivity.
Many papers have been written about this failure of the reflexivity property in
positive characteristics. For example, see [6, 7, 9, 12, 11, 13, 19].

However, if the linear system |M | is sufficiently ample, then the peculiarity about
the reflexivity in positive characteristics vanishes except for the case when char k
is 2 and dim X is odd. Namely we have the following theorem ([14, Théorème 2.5],
[8, Theorem (5.4)]):

Theorem 1.1. Suppose that char k 6= 2 or dimX is even. Let A be a very ample
line bundle of X, and let X be embedded in Pm by the complete linear system |A⊗d|
with d ≥ 2. Then the dual variety of X ⊂ Pm is a hypersurface of (Pm)∨, and
X ⊂ Pm is reflexive.

In this paper, we show that the singularity of the dual variety has a peculiar
feature in characteristic 3 that does not vanish however ample the linear system
may be.

We assume that |M | is sufficiently ample. By cutting the dual variety by a
general plane in P∗(M) = (Pm)∨, we obtain a singular plane curve. If char k > 3
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or char k = 0, the plane curve has only ordinary cusps as its unibranched singular
points. We show that, if char k = 3, the plane curve has E6-singular points as its
unibranched singular points.

In fact, we prove our results in the more general setting of discriminant varieties
associated with (not necessarily very ample) linear systems. Here in Introduction,
however, we state our results in the case of dual varieties.

We assume that the base field k is of characteristic 6= 2. Let X ⊂ Pm be a
smooth projective variety of dimension n > 0. We assume that X is not contained
in any hyperplane of Pm, so that the dual projective space

P := (Pm)∨

of Pm is regarded as the parameter space P∗(M) of the linear system |M | of hyper-
plane sections on X, where M is a linear subspace of H0(X,OX(1)). We use the
same letter to denote a point H ∈ P and the corresponding hyperplane H ⊂ Pm.
We denote by D ⊂ X ×P the universal family of hyperplane sections. The support
of D is equal to the closed subset

{ (p,H) ∈ X × P | p ∈ H }
of X × P. It is easy to see that D is smooth of dimension n + m − 1. Let C
be the critical locus of the second projection D → P with the canonical scheme
structure (Definition 2.15). Then C is smooth, irreducible and of dimension m− 1.
In fact, if N is the conormal sheaf of X ⊂ Pm, then C is isomorphic to P∗(N ) ([14,
Remarque 3.1.5]). The support of C is equal to the set

{ (p,H) ∈ D | the divisor H ∩ X of X is singular at p }.
The image of C by the projection to P is called the dual variety of X ⊂ Pm, or the
discriminant variety of the linear system |M | on X.

We will study the singularity of the dual variety by investigating the critical
locus E of the second projection C → P. The codimension of E in C is ≤ 1. If the
codimension is 0, then either the dual variety is not a hypersurface of P, or C is
inseparable over the dual variety. By [14, Proposition 3.3] or Proposition 3.14 of
this paper, the complement C \ E is set-theoretically equal to

{ (p, H) ∈ C | the Hessian of the singularity of H ∩ X at p is non-degenerate }.
We equip the critical locus E with the canonical scheme structure by Definition 2.15,
and put

Esm := { (p,H) ∈ E | E is smooth of dimension m − 2 at (p,H) },
which is a Zariski open (possibly empty) subset of E . Note that, if Esm is non-empty,
then E is of codimension 1 in C, and hence the dual variety is a hypersurface in P.
Moreover, if Esm is non-empty, then the generalized Monge-Segre-Wallace criterion
([16, Theorem (4.4)] or [17, Theorem (4)]) implies that X ⊂ Pm is reflexive.

We put

EA2 := { (p,H) ∈ E | the singularity of H ∩ X at p is of type A2 }.
See Definition 2.13 for the definition of the hypersurface singularity of type A2.

We will show that E is irreducible and the loci Esm and EA2 are dense in E if
|M | is sufficiently ample (Proposition 4.9).
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Let P = (p,H) be a closed point of E , and let Λ ⊂ P be a general plane passing
through H ∈ P. We denote by CΛ the pull-back of Λ by the projection C → P.
Our main goal is to investigate the singularity of the morphism CΛ → Λ at P ∈ CΛ.

Theorem 1.2. Suppose that char k > 3 or char k = 0. Then the following two
conditions are equivalent:

(i) P ∈ EA2 ,
(ii) P ∈ Esm, and the projection E → P induces a surjective homomorphism

(OP,H)∧ →→ (OE,P )∧

on the completions of the local rings.
Moreover, if these conditions are satisfied, then CΛ is smooth of dimension 1 at P ,
and the morphism CΛ → Λ has a critical point of A2-type at P (Definition 2.1).

This result seems to be classically known. See Proposition 4.4 and Theorem 5.2 (1)
of this paper for the proof.

Now we assume that k is of characteristic 3. Then P ∈ EA2 does not necessarily
imply P ∈ Esm. Our main results are as follows.

(I) The projection Esm → P factors as

Esm q−→ (Esm)K τ−→ P,

where q : Esm → (Esm)K is the quotient morphism by an integrable subbundle
K of the tangent vector bundle T (Esm) of Esm with rank 1 (Definition 2.18). In
particular, q is a purely inseparable finite morphism of degree 3.

(II) Suppose that P = (p,H) is a point of Esm ∩ EA2 . Then the morphism
τ : (Esm)K → P induces a surjective homomorphism

(OP,H)∧ →→ (O(Esm)K,q(P ))
∧.

Moreover, the scheme CΛ is smooth of dimension 1 at P , and the morphism CΛ → Λ
has a critical point of E6-type at P (Definition 2.3).

In the case where (n,m) = (1, 2), the locus Esm is always empty. In this case,
we have the following result. Let X ⊂ P2 be a smooth projective plane curve. The
first projection C → X is then an isomorphism with the inverse morphism given by
p 7→ (p, Tp(X)), where Tp(X) ⊂ P2 is the tangent line to X at p. The projection
C → P = (P2)∨ is therefore identified with the Gauss map

γX : X → P

that maps p ∈ X to Tp(X) ∈ P. The image of γX is the dual curve X∨ of X. A
point P = (p, Tp(X)) of C is a point of E if and only if Tp(X) is a flex tangent line
to X at p, and P is a point of EA2 if and only if Tp(X) is an ordinary flex tangent
line to X at p.

(III) Suppose that γX induces a separable morphism from X to X∨. Then E
is of dimension 0. Let P = (p, Tp(X)) be a point of E . Then the length of OE,P is
divisible by 3. Suppose that p is an ordinary flex point of X. Then γX is formally
isomorphic at p to the morphism

Tl : t 7→ (u, v) = ( t3l+1, t3 + t3l+2 )
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from Spec k[[t]] to Spec k[[u, v]], where l := lengthOE,P /3. Hence the singular point
Tp(X) of X∨ is formally isomorphic to the plane curve singularity defined by

x3l+1 + y3 + x2ly2 = 0.

Suppose that all flex points of X ⊂ P2 are ordinary. Let tl be the number of critical
points of Tl-type in the morphism γX . Then we have

(1.1)
∑

ltl = d − 2 + 2g,

where d is the degree of X ⊂ P2 and g is the genus of X.

Remark 1.3. The critical point of T1-type is a critical point of E6-type.

Remark 1.4. By the Monge-Segre-Wallace criterion, the condition that X be sepa-
rable over X∨ by γX is equivalent to the condition that the plane curve X ⊂ P2 is
reflexive. See [7, 9, 11, 19] for the properties of non-reflexive curves.

Remark 1.5. If char k > 3 or char k = 0, and if the dual curve X∨ has only ordinary
nodes and ordinary cusps as its singularities, then the number of the ordinary cusps
is equal to 3(d − 2 + 2g).

The simplest example of the result (III) is as follows. Let E ⊂ P2 be a smooth
cubic curve. We fix a flex point O ∈ E, and regard E as an elliptic curve with the
origin O. Since char(k) 6= 2, the dual curve E∨ is of degree 6, and the Gauss map
γE induces a birational morphism from E to E∨. The singular points of E∨ are
in one-to-one correspondence with the flex points of E via γE . On the other hand,
the flex points of E are in one-to-one correspondence with the 3-torsion subgroup
E[3] of the elliptic curve E. We have

E[3] ∼=


Z/3Z × Z/3Z if char(k) 6= 3,
Z/3Z if char(k) = 3 and E is not supersingular,
0 if char(k) = 3 and E is supersingular.

Then the critical locus of γE : E → P consists of
9 points of A2-type if char(k) 6= 3,
3 points of E6-type if char(k) = 3 and E is not supersingular,
1 point of T3-type if char(k) = 3 and E is supersingular.

The plan of this paper is as follows. In §2, we fix some notions and notation. In
§3, we define the schemes D, C and E in the setting of discriminant varieties, and
study their properties. The results in this section are valid in any characteristics
including the case where char k = 2. In §4, we assume that char k 6= 2, and
study the scheme E more closely. Then we show that, in characteristic 3, the
projection from Esm to P factors through the quotient morphism by an integrable
tangent vector bundle of rank 1 (Theorem 4.5). In §5, we prove a normal form
theorem (Theorem 5.2) on the critical points of the morphism CΛ → Λ under the
assumption that char k 6= 2, and prove the result (II) above. In §6, we treat the
case where char k = 3 and (n,m) = (1, 2), and prove the result (III) above, except
for the formula (1.1). In §7, we calculate the degree of E with respect to OP(1),
count the number of the unibranched singular points on CΛ, and prove (1.1).
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In the paper [22], we will study the singularity of discriminant varieties in char-
acteristic 2 in the case where dim X is even.

The author would like to thank Professor Hajime Kaji for many valuable com-
ments and suggestions.

Notation and Terminology.

(1) Throughout this paper, we work over an algebraically closed field k. A
variety is a reduced irreducible quasi-projective scheme over k. A point
means a closed point unless otherwise stated.

(2) Let X be a variety, and P a point of X. We denote by TP (X) the Zariski
tangent space to X at P . When X is smooth, we denote by T (X) the
tangent bundle of X.

(3) Let f : X → Y be a morphism from a smooth variety X to a smooth
variety Y , and let P be a point of X. Then f is said to be a closed
immersion formally at P if the differential homomorphism dP f : TP (X) →
Tf(P )(Y ) of f at P is injective, or equivalently, the induced homomorphism
(OY,f(P ))∧ → (OX,P )∧ from the formal completion (OY,f(P ))∧ of OY,f(P )

to the formal completion (OX,P )∧ of OX,P is surjective.

2. Definitions

2.1. Curve singularities. Let ϕ : C → S be a morphism from a smooth curve C
to a smooth surface S. Let P be a point of C, t a formal parameter of (OC,P )∧, and
(u, v) a formal parameter system of (OS,ϕ(P ))∧. We have a local homomorphism

ϕ∗ : (OS,ϕ(P ))∧ = k[[u, v]] → (OC,P )∧ = k[[t]].

Definition 2.1. We say that ϕ has a critical point of A2-type at P if

ϕ∗u = a t2 + b t3 + (terms of degree ≥ 4) and
ϕ∗v = c t2 + d t3 + (terms of degree ≥ 4)

with ad − bc 6= 0 hold.

Remark 2.2. If ϕ has a critical point of A2-type at P , then it is possible to choose
t and (u, v) in such a way that

ϕ∗u = t2 and ϕ∗v = t3.

The image of the germ (C,P ) by ϕ is then defined by u3 − v2 = 0. This holds even
when char k is 2.

Definition 2.3. We say that ϕ has a critical point of E6-type at P if

ϕ∗u = a t3 + b t4 + (terms of degree ≥ 5) and
ϕ∗v = c t3 + d t4 + (terms of degree ≥ 5)

with ad − bc 6= 0 hold.

Remark 2.4. Suppose that ϕ has a critical point of E6-type at P . If char k is not 2
nor 3, then, under suitable choice of t and (u, v), we have

ϕ∗u = t3 and ϕ∗v = t4,
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and the image of the germ (C,P ) is given by u4−v3 = 0. If char k = 3, then, under
suitable choice of t and (u, v), we have either

(ϕ∗u = t3, ϕ∗v = t4) or (ϕ∗u = t3 + t5, ϕ∗v = t4).

In the former case, the image of the germ (C,P ) is given by u4 − v3 = 0, while
in the latter case, the image is formally isomorphic to the germ of a plane curve
singularity defined by

x4 + y3 + x2y2 = 0.

In the notation of Artin [1] and Greuel-Kröning [4], they are denoted by E0
6 and

E1
6 , respectively. See Remark 2.7 and Propositions 6.2 and 6.3.

From now until the end of this subsection, we assume that char k = 3. For
F ∈ (OS,ϕ(P ))∧, we denote by F[t,ν] the coefficient of tν in the formal power series
ϕ∗F of t.

Definition 2.5. Let l be a positive integer. We say that ϕ has a critical point of
Tl-type at P if the following conditions are satisfied:

(2.1)
u[t,ν] 6= 0 =⇒ ν > 3l or 3|ν,
v[t,ν] 6= 0 =⇒ ν > 3l or 3|ν,

and

(2.2)
∣∣∣∣ u[t,3] u[t,3l+1]

v[t,3] v[t,3l+1]

∣∣∣∣ 6= 0,

∣∣∣∣ u[t,3l+1] u[t,3l+2]

v[t,3l+1] v[t,3l+2]

∣∣∣∣ 6= 0.

Remark 2.6. Note that the conditions (2.1) and (2.2) do not depend on the choice
of the formal parameters t and (u, v). Indeed, suppose that (u, v) satisfies (2.1). If

u′ =
∑

αiju
ivj and v′ =

∑
βiju

ivj

form another formal parameter system of (OS,ϕ(P ))∧, then (u′, v′) also satisfies (2.1),
and[

u′
[t,3] u′

[t,3l+1] u′
[t,3l+2]

v′
[t,3] v′[t,3l+1] v′[t,3l+2]

]
=

[
α10 α01

β10 β01

] [
u[t,3] u[t,3l+1] u[t,3l+2]

v[t,3] v[t,3l+1] v[t,3l+2]

]
holds. If s is another formal parameter of (OC,P )∧ that relates to t by

t =
∑

γis
i,

then u[s,ν] and v[s,ν] satisfy (2.1), and we have[
u[s,3] u[s,3l+1] u[s,3l+2]

v[s,3] v[s,3l+1] v[s,3l+2]

]
=

[
u[t,3] u[t,3l+1] u[t,3l+2]

v[t,3] v[t,3l+1] v[t,3l+2]

]  γ3
1 0 0
0 γ3l+1

1 0
0 0 γ3l+2

1

 .

Remark 2.7. The critical point of T1-type is just the critical point of E1
6 -type.

Remark 2.8. In §6, we will show that, if ϕ has a critical point of Tl-type at P , then,
by choosing appropriate formal parameters t and (u, v), we have

ϕ∗u = t3l+1 and ϕ∗v = t3 + t3l+2,

and the image of the germ (C,P ) by ϕ is formally isomorphic to the germ of a
plane curve singularity defined by

x3l+1 + y3 + x2ly2 = 0.
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2.2. Hypersurface singularities. Let X be a smooth variety of dimension n, and
let D ⊂ X be an effective divisor of X that is passing through a point P ∈ X and
is singular at P . Let (x1, . . . , xn) be a formal parameter system of X at P , and let
f = 0 be the local defining equation of D at P . The symmetric bilinear form

Hf,P : TP (X) × TP (X) → k

defined by

Hf,P

(
∂

∂xi
,

∂

∂xj

)
=

∂2f

∂xi∂xj
(P )

does not depend on the choice of the formal parameter system (x1, . . . , xn), and
does not depend on the choice of f except for multiplicative constants. We call
Hf,P the Hessian of D at P .

Definition 2.9. We say that the singularity of D at P is non-degenerate if Hf,P

is non-degenerate.

From now on to the end of this subsection, we assume that char k is not 2.

Definition 2.10. A formal parameter system (x1, . . . , xn) of X at P is called
admissible with respect to f if

f = x2
1 + · · · + x2

r + (terms of degree ≥ 3)

holds in (OX,P )∧ = k[[x1, . . . , xn]], where r is the rank of Hf,P .

Remark 2.11. Since char k is not 2, any formal parameter system at P can be turned
into an admissible formal parameter system with respect to f by means of a linear
transformation of parameters.

Proposition 2.12. Suppose that the Hessian of D at P is of rank n− 1. Then the
following two conditions are equivalent.

(i) There exist a local defining equation f = 0 of D at P and a formal parameter
system (x1, . . . , xn) admissible with respect to f such that the coefficient of
x3

n in f is non-zero.
(ii) For any local defining equation f = 0 of D at P and for every formal

parameter system (x1, . . . , xn) admissible with respect to f , the coefficient
of x3

n in f is non-zero.

Proof. Let f = 0 and g = 0 be local defining equations of D at P . Suppose that
(x1, . . . , xn) and (y1, . . . , yn) are formal parameter systems of X at P admissible
with respect to f and g, respectively. Let T be the n × n-matrix whose (i, j)-
component is

∂yi

∂xj
(P ).

Since the rank of the Hessian of D at P is n − 1, we have

tT

 In−1 0

t0 0

T = c

 In−1 0

t0 0

 ,

where c is a non-zero constant. Therefore we have

(2.3)
∂yi

∂xn
(P ) 6= 0 ⇐⇒ i = n.
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There exists a formal parameter series u(x1, . . . , xn) with u(0, . . . , 0) 6= 0 such that

f(x1, . . . , xn) = u(x1, . . . , xn)g(y1, . . . , yn)

holds. Expanding u(x1, . . . , xn)g(y1, . . . , yn) in the formal power series of (x1, . . . , xn)
using (2.3), we see that the coefficient of x3

n in f is equal to

u(0, . . . , 0)
(

∂yn

∂xn
(P )

)3

times the coefficient of y3
n in g. ¤

Definition 2.13. We say that the singularity of D at P is of type A2 if the Hessian
of D at P is of rank n− 1, and the conditions (i) and (ii) in Proposition 2.12 above
are satisfied.

2.3. Degeneracy subschemes.

Definition 2.14. Let X be a variety, and let E and F be vector bundles on X
with rank e and f , respectively. We put r := min(e, f). For a homomorphism
σ : E → F , we denote by D(σ) the closed subscheme of X defined locally on X
by all r-minors of the f × e-matrix expressing σ, and call D(σ) the degeneracy
subscheme of σ.

For P ∈ X, let mP denote the maximal ideal of OP := OX,P , and let

σP := σ ⊗OP /mP : E ⊗OP /mP → F ⊗OP /mP

be the linear homomorphism induced from σ on the fibers over P . The support of
D(σ) is equal to

{ P ∈ X | the rank of σP is < r }.

Definition 2.15. Let φ : X → Y be a morphism from a smooth variety X to a
smooth variety Y . The critical subscheme of φ is the degeneracy subscheme of the
homomorphism

dφ : T (X) → φ∗ T (Y ),
and is denoted by Cr(φ).

Suppose that dimX ≤ dimY . Then a point P ∈ X is in the support of Cr(φ)
if and only if φ fails to be a closed immersion formally at P . (See Notation and
Terminology (3).)

2.4. The quotient morphism by an integrable subbundle. In this subsection,
we assume that char k = p > 0. Let X be a smooth variety, and let N be a
subbundle of T (X).

Definition 2.16. We say that N is integrable if N is closed under the pth power
operation D 7→ Dp and the bracket product

(D,D′) 7→ [D,D′] := DD′ − D′D

of derivations.

Proposition 2.17 ([21] Théorème 2). Let X be a smooth variety, and N an inte-
grable subbundle of T (X). Then there exists a unique morphism q : X → XN with
the following properties;

(i) q induces a homeomorphism on the underlying topological spaces,
(ii) q is a radical covering of height 1, and
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(iii) the kernel of dq : T (X) → q∗ T (XN ) coincides with N .
Moreover the variety XN is smooth, and q is a purely inseparable finite morphism
of degree pr, where r is the rank of N .

Indeed, the scheme structure of XN is given on the topological space Xsp un-
derlying X by putting

Γ(U,OXN ) := Γ(U,OX)Γ(U,N )

for each affine Zariski open subset U of Xsp, where Γ(U,N ) is considered as a mod-
ule of derivations on Γ(U,OX), and Γ(U,OX)Γ(U,N ) is the sub-algebra of Γ(U,OX)
consisting of all the elements that are annihilated by every derivation in Γ(U,N ).
The inclusions

Γ(U,OXN ) ↪→ Γ(U,OX)
together with the identity map on Xsp yield the radical covering q : X → XN .
See [21] for more detail.

Definition 2.18. Let X be a smooth variety, and N an integrable subbundle of
T (X). The morphism q : X → XN is called the quotient morphism by N .

Remark 2.19. Let q : X → XN be as in Definition 2.18. Suppose that N is of rank
r. Let P be a point of X. Then there exists a local parameter system (x1, . . . , xn)
of X at P such that

(xp
1, . . . , x

p
r , xr+1, . . . , xn)

is a local parameter system of XN at q(P ). See [21, Proposition 6]. In particu-
lar, (OX,P )∧ is a free module of rank pr over (OXN, q(P ))∧, and hence (OX,P )∧ is
faithfully flat over (OXN, q(P ))∧.

Remark 2.20. Let f : X → Y be a morphism from a smooth variety X to a smooth
variety Y . Suppose that the kernel K of the homomorphism df : T (X) → f∗ T (Y )
is a subbundle of T (X). (This assumption is always satisfied if we replace X
with a Zariski open dense subset of X.) Then K is integrable, and the morphism
f : X → Y factors canonically as

X
q−→ XK −→ Y,

where q : X → XK is the quotient morphism by K.

3. The discriminant variety of a linear system

We make no assumptions on the characteristic of the base field k in this section.

Let X be a projective variety of dimension n > 0. Let L → X be a line bundle
on X, and M a linear subspace of H0(X,L) with dimension m+1 ≥ 2. We denote
by

P := P∗(M)
the projective space of one-dimensional linear subspaces of M , which is the param-
eter space of the linear system |M |. We put

X := X \ (Sing(X) ∪ Bs(|M |)),

where Sing(X) is the singular locus of X and Bs(|M |) is the base locus of the linear
system |M |. We denote by

Ψ : X → P∨
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the morphism induced by the linear system |M |. Let

pr1 : X × P → X and pr2 : X × P → P

be the projections. For a non-zero element f of M , we denote by [f ] the point of
P corresponding to f , and by D[f ] ∈ |M | the divisor of X defined by f = 0. We
then put

D[f ] := D[f ] ∩ X.

In the vector bundle M ⊗k OP on P, there exists a tautological subbundle S ↪→
M ⊗k OP of rank 1, which is isomorphic to OP(−1). Hence we have a canonical
section

(3.1) OP −→ M ⊗k OP(1)

of M ⊗kOP(1). On the other hand, the inclusion M ↪→ H0(X,L) induces a natural
homomorphism

(3.2) M ⊗k OX −→ L.

We put
L̃ := pr∗1 L ⊗ pr∗2 OP(1).

Composing the pull-backs of (3.1) and (3.2) to X × P, we obtain a section

(3.3) OX×P −→ L̃.

Definition 3.1. We fix a non-zero element

σ ∈ H0(X × P, L̃)

corresponding to (3.3), which is unique up to multiplicative constants. We denote
by D the subscheme of X × P defined by σ = 0, and by

p1 : D → X and p2 : D → P

the projections.

It is easy to see that the support of D coincides with the set

{ (p, [f ]) ∈ X × P | p ∈ D[f ] }.

Proposition 3.2. The scheme D is smooth.

Proof. Since the linear system |M | has no base points on X, the first projection
p1 : D → X is a smooth morphism with fibers being hyperplanes of P. Since X is
smooth, so is D. ¤

Definition 3.3. Let C denote the critical subscheme Cr(p2) of p2 : D → P.

Let U be a Zariski open subset of X×P. Assume that there exists a trivialization

τ : L̃ |U ∼→ OX×P |U

of the line bundle L̃ over U . Let Θ be a section of T (X × P) over U , which is
regarded as a derivation on Γ(U,OX×P). Since D is defined by σ = 0, the element

τ−1(Θ(τ(σ))) | D ∈ Γ(U ∩ D, L̃ ⊗ OD)

does not depend on the choice of the trivialization τ . Hence we denote it by (Θσ) | D.
It is obvious that, if two sections Θ and Θ′ of T (X × P) over U are mapped to
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the same element in Γ(U ∩D, T (X ×P)⊗OD), then we have (Θσ) | D = (Θ′σ) | D.
Therefore we have a natural homomorphism

dσ : T (X × P) ⊗OD → L̃ ⊗OD

of vector bundles on D defined by

Θ | D 7→ (Θσ) | D.

We then denote by
dσX : p∗1 T (X) → L̃ ⊗OD

the restriction of dσ to the direct factor p∗1 T (X) of

T (X × P) ⊗OD = p∗1 T (X) ⊕ p∗2 T (P).

Proposition 3.4. (1) The critical subscheme C of p2 : D → P coincides with the
degeneracy subscheme D(dσX) of dσX .

(2) A point (p, [f ]) of D is contained in C if and only if the divisor D[f ] of X is
singular at p ∈ X.

Construction 3.5. In order to prove Proposition 3.4, we introduce a formal pa-
rameter system of D at a point P = (p, [f ]) ∈ D. We choose a formal parameter
system (x1, . . . , xn) of X at p ∈ X. Since the linear system |M | has no base points
on X, we can choose a global section β of L such that β(p) 6= 0. Then we can
choose a basis (b0, . . . , bm) of M in such a way that

b0 = f, bm = β,

and that the functions

φi := bi/β (i = 0, . . . ,m − 1)

on X defined locally at p satisfy

φ0(p) = · · · = φm−1(p) = 0.

Let (y1, . . . , ym) be the affine coordinate system of P such that a point (c1, . . . , cm)
corresponds to the one-dimensional linear subspace of M spanned by

b0 + c1b1 + · · · + cmbm ∈ M.

Then [f ] = [b0] ∈ P is the origin (0, . . . , 0).
We will regard φ0, . . . , φm−1 as formal power series of (x1, . . . , xn) so that we

will write φi(0) instead of φi(p), for example. We put

Φ := φ0 + y1φ1 + · · · + ym−1φm−1 + ym.

Then we have

(3.4) σ = cΦβ for some c ∈ k×

in L̃ ⊗OP
(OP )∧, where OP is the local ring OX×P,P . Hence D is given by Φ = 0

locally at P . Since
∂Φ
∂ym

(0, 0) = 1,

we see that

(ξ, η) = (ξ1, . . . , ξn, η1, . . . , ηm−1) := (p∗1x1, . . . , p
∗
1xn, p∗2y1, . . . , p

∗
2ym−1)

is a formal parameter system of D at P .
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Proof of Proposition 3.4. Let P = (p, [f ]) be a point of D. We use the formal
parameter system (ξ, η) of D at P and the affine coordinate system (y1, . . . , ym) of
P with the origin [f ] given in Construction 3.5. We write the pull-back p∗2ym of ym

to D as a formal power series of (ξ, η):

p∗2ym = gm(ξ, η) in (OD,P )∧ = k[[ξ, η]].

Then the Jacobian matrix of p2 : D → P is as follows:
0 Im−1

∂gm

∂ξ1
. . .

∂gm

∂ξn
∗


because p∗2yi = ηi for i = 1, . . . ,m − 1 and p∗2ym = gm(ξ, η). Hence the degenerate
subscheme C of p2 : D → P is defined locally at P by the ideal

(3.5)
〈

∂gm

∂ξ1
, . . . ,

∂gm

∂ξn

〉
⊂ (OD,P )∧ = k[[ξ, η]].

On the other hand, by (3.4), the degeneracy subscheme of dσX : p∗1 T (X) → L̃⊗OD
is defined locally at P by the ideal

(3.6)
〈

∂Φ
∂x1

∣∣∣∣D , . . . ,
∂Φ
∂xn

∣∣∣∣D
〉

⊂ (OD,P )∧.

By the definition of gm, we have

Φ(ξ1, . . . , ξn, η1, . . . , ηm−1, gm(ξ, η)) ≡ 0.

Applying ∂/∂ξi to this identity, we obtain

∂Φ
∂xi

∣∣∣∣D +
∂Φ
∂ym

∣∣∣∣D · ∂gm

∂ξi
≡ 0.

Because ∂Φ/∂ym ≡ 1, the ideals (3.5) and (3.6) coincide in (OD,P )∧. Therefore the
assertion (1) is proved. Because

∂Φ
∂xi

(0, 0) =
∂φ0

∂xi
(0),

the origin P ∈ D is contained in the subscheme C of D defined by the ideal (3.6) if
and only if we have

∂φ0

∂x1
(0) = · · · =

∂φ0

∂xn
(0) = 0;

that is, the divisor D[f ] = {φ0 = 0} is singular at p. Thus the assertion (2) is also
proved. ¤

Corollary 3.6. The subscheme C of X × P is defined by

Φ =
∂Φ
∂x1

= · · · =
∂Φ
∂xn

= 0

locally at a point P = (p, [f ]) of D, where Φ is the function on X×P defined locally
at P given in Construction 3.5.

Note that the expected dimension of C is m − 1.
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Proposition 3.7. The subscheme C is smooth of dimension m − 1 at a point
P = (p, [f ]) of C if one of the following holds;

(i) the singularity of D[f ] at p is non-degenerate, or
(ii) the morphism Ψ : X → P∨ induced by the linear system |M | is a closed

immersion formally at p.

Proof. We use the formal parameter system (x1, . . . , xn, y1, . . . , ym) of X × P at
P given in Construction 3.5. By Corollary 3.6, the subscheme C is smooth of
dimension m − 1 at the origin P if and only if the (n + m) × (n + 1)-matrix

J :=



∂φ0

∂x1
(0)

...
∂2φ0

∂xi∂xj
(0) (i,j=1,...,n)

∂φ0

∂xn
(0)

0
...

∂φi

∂xj
(0) “

i = 1, . . . , m − 1,
j = 1, . . . , n

”

0

1 0 . . . 0




n


m

is of rank n + 1. Here we have used the following equalities:

∂Φ
∂xi

(0, 0) =
∂φ0

∂xi
(0),

∂Φ
∂yj

(0, 0) =

{
φj(0) = 0 if j < m,
1 if j = m,

and

∂

∂xj

(
∂Φ
∂xi

)
(0, 0) =

∂2φ0

∂xj∂xi
(0),

∂

∂yj

(
∂Φ
∂xi

)
(0, 0) =


∂φj

∂xi
(0) if j < m,

0 if j = m.

Suppose that the condition (i) holds. Then the Hessian matrix(
∂2φ0

∂xi∂xj
(0)

)
of D[f ] at p is non-degenerate, and hence the matrix J is of rank n + 1. Suppose
that the condition (ii) holds. Then there exist n divisors D1, . . . , Dn ∈ |M | that
pass through p, are smooth at p, and intersect transversely at p. The local defining
equations of these Di at P are linear combinations of φ1, . . . , φm−1, because the
divisor D[f ] = {φ0 = 0} is singular at p and the divisor corresponding to bm does
not pass through p. Hence the (m − 1) × n-matrix(

∂φi

∂xj
(0)

)
i=1,...,m−1, j=1,...,n

is of rank n, and thus J is of rank n + 1. ¤

Assumption 3.8. From now on until the end of the paper, we assume that m > n,
and that the locus

X◦ := { p ∈ X | the morphism Ψ : X → P∨ is a closed immersion formally at p }
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is dense in X.

Note that if X is smooth and the linear system |M | is very ample, then X◦

coincides with X.

Definition 3.9. We put
C◦ := C ∩ (X◦ × P),

and denote by
π1 : C◦ → X◦ and π2 : C◦ → P

the projections.

Proposition 3.10. The scheme C◦ is a smooth irreducible closed subscheme of
X◦ × P with dimension m − 1.

Proof. The fact that C◦ is smooth of dimension m− 1 follows from Proposition 3.7
and the definition of X◦. We will prove the irreducibility of C◦. For each point
p ∈ X◦, there exists a unique n-dimensional linear subspace Lp ⊂ P∨ passing
through Ψ(p) such that the image of the injective homomorphism dpΨ : Tp(X◦) →
TΨ(p)(P∨) coincides with TΨ(p)(Lp) ⊂ TΨ(p)(P∨). The fiber of π1 : C◦ → X◦ over
p coincides with the linear subspace

{ H ∈ P | Lp ⊂ H }

of P. Hence C◦ is irreducible. ¤

Remark 3.11. The above proof of Proposition 3.10 shows that, if m = n + 1, then
π1 : C◦ → X◦ is an isomorphism with the inverse morphism given by p 7→ (p, Lp).
In this case, the morphism π2 : C◦ → P is identified with the Gauss map X◦ → P
of the morphism Ψ : X◦ → P∨.

Definition 3.12. Let E denote the critical subscheme Cr(π2) of π2 : C◦ → P.

Definition 3.13. We will construct the universal Hessian

H : π∗
1 T (X◦) ⊗OC◦ π∗

1 T (X◦) → L̃ ⊗OC◦

on C◦. Let U be a Zariski open subset of X◦. Making U smaller if necessary, we may
assume that there exist regular functions (u1, . . . , un) on U that form a coordinate
system on U , and that there exists a trivialization L |U ∼= OU of L over U . Let V
be a Zariski open subset of P over which the line bundle OP(1) is trivialized. Let
ΦU×V denote the regular function on U × V obtained from the fixed global section
σ of L̃ via a trivialization τ : L̃ | (U ×V ) ∼= OU×V . We define H on C◦∩ (U ×V ) by

H
(

∂

∂ui
,

∂

∂uj

)
:= τ−1

(
∂2ΦU×V

∂ui∂uj

)
.

It is easy to see that this definition does not depend on the choice of the coordinate
system (u1, . . . , un) on U and the trivializations of the line bundles, because the
functions ΦU×V and ∂ΦU×V /∂u1, . . . , ∂ΦU×V /∂un are constantly equal to zero
on C◦ ∩ (U × V ) by Corollary 3.6. Therefore we can define H globally on C◦. We
denote by

H˜ : π∗
1 T (X◦) → L̃ ⊗ π∗

1 T (X◦)∨

the homomorphism induced from H.
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The following proposition is a scheme-theoretic refinement of [14, Proposition
3.3]. See also the Hessian criterion of Hefez and Kleiman ([17, Theorem (12)], [8,
Theorem 3.2]).

Proposition 3.14. The critical subscheme E of π2 : C◦ → P coincides with the
degeneracy subscheme D(H )̃ of H .̃

Construction 3.15. In order to prove Proposition 3.14, we introduce a formal
parameter system of C◦ at a point P = (p, [f ]) ∈ C◦. We use the same notation
as in Construction 3.5. Since p ∈ X◦, we can assume that the vectors b1, . . . , bn

among the basis b0, . . . , bm of M define divisors that pass through p, are smooth
at p, and intersect transversely at p. Then we can take (φ1, . . . , φn) as the formal
parameter system (x1, . . . , xn) of X◦ at p; that is, we have

φ1 = x1, . . . , φn = xn,

and hence we have

Φ = φ0 + y1x1 + · · · + ynxn + yn+1φn+1 + · · · + ym−1φm−1 + ym.

By a further linear transformation of the basis b0, . . . , bm, we can also assume that

∂φi

∂xj
(0) = 0 for i = n + 1, . . . ,m − 1 and j = 1, . . . , n

hold; that is, the functions φn+1, . . . , φm−1 have no linear terms as formal power
series of x1, . . . , xn. By Corollary 3.6, the local defining equations of C◦ in X◦ ×P
at P = (p, [f ]) are as follows.

φ0 + y1x1 + · · · + ynxn + yn+1φn+1 + · · · + ym−1φm−1 + ym = 0,

∂φ0

∂x1
+ y1 + yn+1

∂φn+1

∂x1
+ · · · + ym−1

∂φm−1

∂x1
= 0,

. . .

. . .

∂φ0

∂xn
+ yn + yn+1

∂φn+1

∂xn
+ · · · + ym−1

∂φm−1

∂xn
= 0.

We see that

(u, v) = (u1, . . . , un, vn+1, . . . , vm−1) := (π∗
1x1, . . . , π

∗
1xn, π∗

2yn+1, . . . , π
∗
2ym−1)

is a formal parameter system of C◦ at P = (p, [f ]).

Proof of Proposition 3.14. Let P = (p, [f ]) be a point of C◦. We use the formal
parameter system (u, v) of C◦ at P and the affine coordinate system (y1, . . . , ym)
of P with the origin [f ] given in Construction 3.15. We put

γj := π∗
2yj (j = 1, . . . ,m).
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Since γj = vj for j = n+1, . . . ,m− 1, the Jacobian matrix of π2 : C◦ → P is of the
form 

∂γi

∂uj
(i,j=1,...,n) ∗

0 Im−n−1

∂γm

∂u1
. . .

∂γm

∂un
∗


.

Hence the defining ideal of the critical subscheme E of π2 at P is generated by all
n-minors of the (n + 1) × n matrix


a1

...
an

am

 :=



∂γ1

∂u1
. . .

∂γ1

∂un
...

. . .
...

∂γn

∂u1
. . .

∂γn

∂un

∂γm

∂u1
. . .

∂γm

∂un


.

Since Φ | C◦ ≡ 0, we have

(3.7) φ̃0 + γ1u1 + · · · + γnun + vn+1φ̃n+1 + · · · + vm−1φ̃m−1 + γm ≡ 0,

where

φ̃i := φi(u1, . . . , un) = π∗
1φi.

Applying ∂/∂ui to (3.7), we obtain

(3.8)
∂φ̃0

∂ui
+ γi +

n∑
ν=1

∂γν

∂ui
uν +

m−1∑
µ=n+1

vµ
∂φ̃µ

∂ui
+

∂γm

∂ui
≡ 0.

Since (∂Φ/∂xi) | C◦ ≡ 0 for i = 1, . . . , n, we have

(3.9)
∂φ̃0

∂ui
+ γi +

m−1∑
µ=n+1

vµ
∂φ̃µ

∂ui
≡ 0,

because (∂φj/∂xi) | C◦ = ∂φ̃j/∂ui. Combining the identities (3.8) and (3.9), we
obtain

∂γm

∂ui
≡ −

n∑
ν=1

∂γν

∂ui
uν (i = 1, . . . , n).

Thus we have

am = −
n∑

ν=1

uνaν .
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Therefore the defining ideal of E at P is generated by

det A := det

 a1

...
an


in (OC◦,P )∧. On the other hand, we have

(3.10)
∂2Φ

∂xi∂xj

∣∣∣∣C◦ ≡ ∂2φ̃0

∂ui∂uj
+

m−1∑
µ=n+1

vµ
∂2φ̃µ

∂ui∂uj
.

Applying ∂/∂uj to (3.9), we obtain

(3.11)
∂2φ̃0

∂ui∂uj
+

∂γi

∂uj
+

m−1∑
µ=n+1

vµ
∂2φ̃µ

∂ui∂uj
≡ 0.

Combining (3.10) and (3.11), we obtain

(3.12)
∂2Φ

∂xi∂xj

∣∣∣∣C◦ ≡ − ∂γi

∂uj
.

We denote by

S :=

 s1

...
sn

 =
(

∂2Φ
∂xi∂xj

∣∣∣∣C◦

)
the n × n matrix representing the universal Hessian H locally at P . From (3.12),
we obtain

si = −ai (i = 1, . . . , n).
Hence det A and detS generate the same ideal in (OC◦,P )∧. Therefore E coincides
with D(H )̃ locally at P . ¤

Corollary 3.16 ([14] Proposition 3.3). The morphism π2 : C◦ → P is a closed
immersion formally at a point (p, [f ]) ∈ C◦ if and only if the singularity of the
divisor D[f ] of X◦ at p ∈ X◦ is non-degenerate.

Corollary 3.17. The subscheme E of X◦ × P is defined by

Φ =
∂Φ
∂x1

= · · · =
∂Φ
∂xn

= det
(

∂2Φ
∂xi∂xj

)
= 0

locally at a point P = (p, [f ]) of C◦, where Φ is the function on X◦ × P defined
locally at P given in Construction 3.15.

Remark 3.18. By Corollaries 3.6 and 3.17, the scheme E is of codimension ≤ 1 in
C◦. It was observed by Wallace [24] that, in positive characteristics, E and C◦ may
coincide. For example, let X be the Fermat hypersurface

Xq+1
0 + Xq+1

1 + · · · + Xq+1
n+1 = 0

of degree q + 1 in Pn+1, where q = lν is a power of the characteristic l > 0 of k,
and let M be the complete linear system |OX(1)|. Then, at every point p of X,
the divisor Tp(X)∩X of X has a degenerate singular point at p, and hence E = C◦

holds. In this case, the morphism C◦ → P is purely inseparable of degree qn onto
its image. See [14, Example 3.4] or [23] for the details.
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4. The scheme E

In this section, we assume that char k is not 2.

Construction 4.1. Let P = (p, [f ]) be a point of E , and let r be the rank of
the Hessian of D[f ] at p. By Corollary 3.16, we have r < n. We choose a formal
parameter system (x1, . . . , xn, y1, . . . , ym) of X◦×P at P given in Construction 3.15.
Since char k 6= 2, we can assume that the functions

φ1 = x1, . . . , φn = xn

form an admissible formal parameter system with respect to φ0 at p ∈ X◦ by a
linear transformation of the basis b0, . . . , bm of M . (See Remark 2.11). Thus we
have

φ0 = x2
1 + · · · + x2

r + (terms of degree ≥ 3) in (OX◦, p)∧ = k[[x1, . . . , xn]].

Definition 4.2. Let

$1 : E → X◦ and $2 : E → P

be the projections. We put

Esm := { P ∈ E | E is smooth of dimension m − 2 at P },
which is a Zariski open subset of E , and let

$sm
1 : Esm → X◦ and $sm

2 : Esm → P

be the restrictions of $1 and $2 to Esm. Note that, if Esm is non-empty, then the
image of the projection π2 : C◦ → P is a hypersurface.

We also put

EA2 := { (p, [f ]) ∈ E | the singularity of the divisor D[f ] at p is of type A2 }.

In the following, Proposition 4.3 concerns with both the cases of characteristic 3
and characteristic 6= 3, Proposition 4.4 treats the case where char k 6= 3, and
Theorem 4.5 is a result in characteristic 3.

Proposition 4.3. If P = (p, [f ]) is a point of Esm, then the rank of the Hessian
Hφ0,p of the divisor D[f ] at p is n − 1.

Conversely, let P = (p, [f ]) be a point of E, and suppose that the rank of Hφ0,p

is n − 1. Let (x1, . . . , xn, y1, . . . , ym) be the formal parameter system of X◦ ×P at
P given in Construction 4.1. Let ai (i = 1, . . . , n) be the coefficient of xix

2
n in φ0,

and let bj (j = n+1, . . . ,m− 1) be the coefficient of x2
n in φj. Then P ∈ Esm holds

if and only if at least one of

a1, . . . , an−1, 3an, bn+1, . . . , bm−1

is not zero.

Proposition 4.4. Suppose that char k 6= 3. Then we have

EA2 = Esm \ Cr(d$sm
2 ).

Theorem 4.5. Suppose that char k = 3. We denote by K the kernel of the homo-
morphism

d$sm
2 : T (Esm) → $sm∗

2 T (P).
Then K is an integrable subbundle of T (Esm) with rank 1. Let

Esm q−→ (Esm)K τ−→ P
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be the canonical factorization of $sm
2 , where q is the quotient morphism by K. Then

we have
q(EA2 ∩ Esm) ⊂ (Esm)K \ Cr(τ).

Proof of Propositions 4.3, 4.4 and Theorem 4.5. Let P = (p, [f ]) be a point of E ,
and let r be the rank of the Hessian Hφ0,p of D[f ] at p. We use the formal parameter
system (x1, . . . , xn, y1, . . . , ym) of X◦×P at P given in Construction 4.1. For a for-
mal power series F of (x1, . . . , xn, y1, . . . , ym), we denote by F [1] the homogeneous
part of degree 1 of F . Then we have

Φ[1] = ym,(
∂Φ
∂xi

)[1]

= 2xi + yi (i = 1, . . . , r),(
∂Φ
∂xi

)[1]

= yi (i = r + 1, . . . , n),

and(
det

(
∂2Φ

∂xi∂xj

))[1]

=


0 if r < n − 1,(

∂2Φ
∂x2

n

)[1]

if r = n − 1,

=


0 if r < n − 1,

2(a1x1 + · · · + an−1xn−1 + 3anxn+
+bn+1yn+1 + · · · + bm−1ym−1)

if r = n − 1.

By Corollary 3.17, the Zariski tangent space TP (E) to E at P is identified with the
linear space defined by these n + 2 linear forms in the (n + m)-dimensional linear
space with coordinates (x1, . . . , xn, y1, . . . , ym). Hence Proposition 4.3 is proved.

If char k 6= 3 and P ∈ EA2 , then P ∈ Esm because 3an 6= 0. Suppose that
P ∈ Esm. The kernel of the linear homomorphism

dP $sm
2 : TP (Esm) → T[f ](P)

is identified with the intersection of the linear space defined by the n + 2 linear
forms above and the linear space defined by

y1 = · · · = ym = 0.

Hence Ker(dP $sm
2 ) is of dimension 0 if and only if 3an 6= 0. Thus Proposition 4.4

is proved.
We now assume that char k = 3. Suppose that P = (p, [f ]) ∈ Esm. The kernel

of the linear homomorphism dP $sm
2 is of dimension 1 and is generated by(

∂

∂xn

)
P

∈ TP (Esm).

Since this holds at every point P of Esm, we see that the sub-sheaf K = Ker(d$sm
2 )

of T (Esm) is a subbundle of rank 1. The integrability of K follows trivially from the
definition. From now on, we further assume that P ∈ EA2 ; that is, an 6= 0. The
fiber

Z := ($sm
2 )−1( [f ] )
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of $sm
2 passing through P is defined by

φ0 =
∂φ0

∂x1
= · · · =

∂φ0

∂xn
= det

(
∂2φ0

∂xi∂xj

)
= 0

in X◦ × {[f ]} ∼= X◦ locally at P . We will calculate dimk OZ,P . Since $sm
2 factors

through the radical covering q : Esm → (Esm)K of degree 3, we have

dimk OZ,P ≥ 3.

We put
ξi := xi |Z (i = 1, . . . , n − 1) and t := xn |Z.

Using the identity ∂φ0/∂x1 = · · · = ∂φ0/∂xn−1 = 0 on Z and Lemma 4.6 below,
we can write ξi in formal power series of t as follows:

ξi = ait
2 + (terms of degree ≥ 3) (i = 1, . . . , n − 1).

Making substitutions xi = ξi for i = 1, . . . , n − 1 and xn = t in φ0, we obtain a
formal power series

φ0 |Z = ant3 + (terms of degree ≥ 4).

Since an 6= 0, we obtain dimk OZ,P ≤ 3. Therefore dimk OZ,P = 3 holds. We put

A := (OEsm,P )∧, B := (O(Esm)K,q(P ))∧, C := (OP,[f ])∧,

and let mA, mB , mC be their maximal ideals, respectively. From dimk OZ,P = 3
and Remark 2.19, we have

dimk(A/mCA) = 3 = dimk(A/mBA).

Since mCB ⊆ mB , we obtain
mBA = mCA.

Since A is faithfully flat over B, we obtain mB = mCB, which implies that C → B
is surjective. Hence τ is a closed immersion formally at q(P ). Thus Theorem 4.5 is
proved. ¤

Lemma 4.6. Let F1(u, t), . . . , FN (u, t) be formal power series of variables (u, t) =
(u1, . . . , uN , t) such that F1(0, 0) = · · · = FN (0, 0) = 0 and detJ 6= 0, where

J :=


∂F1

∂u1
(0, 0) . . .

∂F1

∂uN
(0, 0)

...
. . .

...
∂FN

∂u1
(0, 0) . . .

∂FN

∂uN
(0, 0)

 .

We put
µ := min{ ordt=0(Fi(0, t)) | i = 1, . . . , N },

and let αi be the coefficient of tµ in Fi(0, t). We put β1

...
βN

 := −J−1

 α1

...
αN

 .

Then we can solve the equation

F1(u, t) = · · · = FN (u, t) = 0
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with indeterminates u1, . . . , uN in k[[t]] as follows:

ui = βit
µ + (terms of degree > µ) (i = 1, . . . , N).

Proof. Obvious. ¤

The following Corollary of Proposition 4.3 plays a crucial role in the proof of
Theorem 5.2.

Corollary 4.7. Suppose that char k = 3. If P ∈ Esm, then at least one of

a1, . . . , an−1, bn+1, . . . bm−1

is not zero. In particular, if (n,m) = (1, 2), then Esm = ∅.

Remark 4.8. Suppose that the Hessian Hφ0,p of D[f ] at p is of rank n − 1. Then
the condition that at least one of a1, . . . , an−1, 3an be non-zero is independent of
the choice of the admissible formal parameter system (x1, . . . , xn) of X at p with
respect to φ0. The condition that at least one of bn+1, . . . , bm−1 be non-zero is
equivalent to the condition that there exists a divisor D ∈ P passing through p and
having a non-degenerate singular point at p.

Next we will give a sufficient condition for EA2 and Esm to be dense in E .

Proposition 4.9. For p ∈ X◦, let mp ⊂ Op denote the maximal ideal of the local
ring Op := OX◦, p, and let Lp denote the Op-module L ⊗ Op. Suppose that the
evaluation homomorphism

vp : M → Lp/m4
pLp

∼= Op/m4
p

is surjective at every point p of X◦. Then E is irreducible, and EA2 and Esm are
dense in E.

Proof. The space m2
p/m3

p is regarded as the space of symmetric bilinear forms on
the Zariski tangent space Tp(X◦) = (mp/m2

p)∨. The determinant of the symmetric
matrix cuts out the irreducible subscheme D of degenerate symmetric bilinear forms
in m2

p/m3
p. By Proposition 3.14, there exists a closed variety D̃ ⊂ m2

p/m4
p ⊂ Op/m4

p,
which is a cone over D ⊂ m2

p/m3
p in the subspace m2

p/m4
p of Op/m4

p and is invariant
under the multiplications by elements of k×, such that

$−1
1 (p) = P∗(v−1

p (D̃)).

By the definition of hypersurface singularities of type A2, and by Proposition 4.3,
there exist Zariski open dense subsets D̃A2 and D̃sm of D̃, which are invariant under
the multiplications by elements of k×, such that

$−1
1 (p) ∩ EA2 = P∗(v−1

p (D̃A2)) and $−1
1 (p) ∩ Esm = P∗(v−1

p (D̃sm)).

Therefore, if vp is surjective at every point p ∈ X◦, then E is irreducible, and EA2

and Esm are dense in E . ¤

Corollary 4.10. Let A be a very ample line bundle on a smooth projective variety
X. If L = A⊗3 and M = H0(X,L), then E is irreducible, and EA2 and Esm are
dense in E.
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5. A general plane section of the discriminant hypersurface

In this section, we still assume that char k is not 2.

Definition 5.1. Let P = (p, [f ]) be a point of Esm, and let Λ ⊂ P be a general
plane passing through the point π2(P ) = [f ] of P. We denote by

πΛ : CΛ → Λ

the restriction of π2 : C◦ → P to

CΛ := π−1
2 (Λ) ⊂ C◦.

Note that, if Esm is not empty, then the image of π2 : C◦ → P is a hypersurface,
and hence π2(C◦) ∩ Λ is a projective plane curve.

Theorem 5.2. Let P = (p, [f ]) be a point of Esm ∩ EA2 , and let Λ be a general
plane in P passing through [f ]. Then CΛ is smooth of dimension 1 at P ∈ CΛ.

(1) Suppose that char k 6= 3. Then the morphism πΛ : CΛ → Λ has a critical
point of A2-type at P .

(2) Suppose that char k = 3. Then the morphism πΛ : CΛ → Λ has a critical
point of E6-type at P .

Proof. We use the formal parameter system

(x, y) = (x1, . . . , xn, y1, . . . , ym)

of X◦×P at P = (p, [f ]) ∈ Esm given in Construction 4.1. Since Λ ⊂ P is a general
plane passing through the origin [f ], we can take

u := yn |Λ and v := ym |Λ
as affine coordinates of Λ with the origin [f ]. The linear embedding Λ ↪→ P is given
by

(5.1) yn = u, ym = v, yi = αiu + βiv (i 6= n,m),

where αi and βi (i 6= n,m) are general elements of k. For a formal power series
F = F (x, y) of (x, y), we denote by FΛ the formal power series of

(x, u, v) = (x1, . . . , xn, u, v)

obtained by making the substitutions (5.1) in F . In other words, we put

FΛ(x, u, v) := F | (X◦ × Λ).

For simplicity, we put

Φi :=
∂Φ
∂xi

.

Then CΛ is defined in X◦ × Λ by the equations

ΦΛ = Φ1,Λ = · · · = Φn,Λ = 0

locally at P . The linear parts Φ[1]
Λ ,Φ[1]

1,Λ, . . . , Φ[1]
n,Λ of these formal power series are

given as follows:

Φ[1]
Λ = v,

Φ[1]
i,Λ = 2xi + αiu + βiv (i < n),

Φ[1]
n,Λ = u.
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Therefore CΛ is smooth of dimension 1 at P , and the variable

t := xn |CΛ

is a formal parameter of CΛ at P . Hence we can write the functions u |CΛ, v |CΛ

and xi |CΛ (i < n) on CΛ as formal power series of t with no constant terms:

u |CΛ = U(t) =
∑∞

ν=1 Uν tν ,

v |CΛ = V (t) =
∑∞

ν=1 Vν tν ,

xi |CΛ = Xi(t) =
∑∞

ν=1 Xi,ν tν (i < n).

In order to prove the assertions (1) and (2), it is enough to calculate the coefficients
Uν and Vν up to ν = 3 and up to ν = 4, respectively.

The coefficients are calculated by the following algorithm. Let (S) be a set of
substitutions of the form

(S)

 u = Pu(t),
v = Pv(t),
xi = Pxi

(t) (i < n),

where Pu, Pv and Pxi are polynomials in t with coefficients in k and without
constant terms. For a formal power series F of (x, y), we denote by s(F, S) the
formal power series of t obtained from FΛ = FΛ(x, u, v) by making the substitutions
(S) and xn = t:

s(F, S) := FΛ(Px1(t), . . . , Pxn−1(t), t, Pu(t), Pv(t)).

We also denote by c(F, S, l) the coefficient of tl in s(F, S).

The (l + 1)-st step of the algorithm. Suppose that we have calculated the
coefficients Uν , Vν and Xi,ν for ν ≤ l in such a way that, by making the substitutions

(Sl)


u = P

[l]
u (t) =

∑l
ν=1 Uν tν ,

v = P
[l]
v (t) =

∑l
ν=1 Vν tν ,

xi = P
[l]
xi (t) =

∑l
ν=1 Xi,ν tν (i < n)

and xn = t to the formal power series ΦΛ,Φ1,Λ, . . . , Φn,Λ defining CΛ in X◦ × Λ,
we obtain

c(Φ, Sl, λ) = c(Φ1, Sl, λ) = · · · = c(Φn, Sl, λ) = 0
for λ ≤ l. We then put

(Sl+1)


u = P

[l]
u (t) + Ul+1 tl+1 ,

v = P
[l]
v (t) + Vl+1 tl+1,

xi = P
[l]
xi + Xi,l+1 tl+1 (i < n),

and solve the equations

c(Φ, Sl+1, l + 1) = c(Φ1, Sl+1, l + 1) = · · · = c(Φn, Sl+1, l + 1) = 0

with indeterminates being the new coefficients Ul+1, Vl+1 and Xi,l+1 (i < n).

A monomial M of x = (x1, . . . , xn) is said to be of degree [λ, µ] if M is of degree
λ in (x1, . . . , xn−1) and of degree µ in xn. For a formal power series F of x, we
denote by F [λ,µ] the homogeneous part of degree [λ, µ]. Let M be a monomial of
(x, y), or of (x, u, v). We say that M is of degree [λ, µ, ν] if M is of degree [λ, µ] in
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x, and is of degree ν in y = (y1, . . . , ym) or in (u, v), respectively. Let F be a formal
power series of (x, y), or of (x, u, v). We denote by F [λ,µ,ν] the homogeneous part
of F with degree [λ, µ, ν]. Since the embedding Λ ↪→ P is linear, we obviously have

(F [λ,µ,ν])Λ = (FΛ)[λ,µ,ν]

for a formal power series F of (x, y). If the substitutions

(S)

 u = Pu(t),
v = Pv(t),
xi = Pxi

(t) (i < n)

satisfy

ordt=0 Pu(t) ≥ A, ordt=0 Pv(t) ≥ A, and ordt=0 Pxi
(t) ≥ B (i < n),

then we have
c(F, S, l) =

∑
Bλ+µ+Aν≤l

c(F [λ,µ,ν], S, l).

Recall that

Φ = φ0 + y1x1 + · · · + ynxn + yn+1φn+1 + · · · + ym−1φm−1 + ym,

where φ0, φn+1, . . . , φm−1 are formal power series of x = (x1, . . . , xn) such that

φ
[0,0]
0 = φ

[0,0]
n+1 = · · · = φ

[0,0]
m−1 = 0,

φ
[0,1]
0 = φ

[0,1]
n+1 = · · · = φ

[0,1]
m−1 = φ

[1,0]
0 = φ

[1,0]
n+1 = · · · = φ

[1,0]
m−1 = 0,

φ
[2,0]
0 = x2

1 + · · · + x2
n−1, φ

[1,1]
0 = φ

[0,2]
0 = 0.

Recall also that a1, . . . , an, bn+1, . . . , bm−1 are defined in Proposition 4.3 by

φ
[1,2]
0 = (a1x1 + · · · + an−1xn−1)x2

n, φ
[0,3]
0 = anx3

n,

and
φ

[0,2]
j = bjx

2
n (j = n + 1, . . . ,m − 1).

By the assumption P ∈ EA2 , we have

an 6= 0.

We define e1, . . . , en and f1, . . . , fn by

φ
[1,3]
0 = (e1x1 + · · · + en−1xn−1)x3

n, φ
[0,4]
0 = enx4

n,

φ
[1,4]
0 = (f1x1 + · · · + fn−1xn−1) x4

n, φ
[0,5]
0 = fnx5

n.

We also define homogeneous polynomials Ai(x1, . . . , xn−1) (i < n) of degree 1 and
B(x1, . . . , xn−1) of degree 2 by

Ai :=
1
xn

∂φ
[2,1]
0

∂xi
, B :=

∂φ
[2,1]
0

∂xn
.

Then we obtain Table 5.1.

Step 1. We put

(S1)

 u = U1 t,
v = V1 t,
xi = Xi,1 t (i < n).
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[λ, µ, ν] F = Φ F = Φi (i < n) F = Φn

[0, 0, 0] 0 0 0

[0, 0, 1] ym yi yn

[0, 1, 0] 0 0 0

[0, 1, 1] ynxn —— 2
(∑m−1

j=n+1 bjyj

)
xn

[0, 2, 0] 0 aix
2
n 3 anx2

n

[0, 3, 0] anx3
n eix

3
n 4 enx3

n

[0, 4, 0] enx4
n fix

4
n 5 fnx4

n

[1, 0, 0] 0 2xi 0

[1, 1, 0] 0 Ai(x0, . . . , xn−1) xn 2
(∑n−1

i=1 aixi

)
xn

[1, 2, 0]
(∑n−1

i=1 aixi

)
x2

n —— 0 if char k = 3

[2, 0, 0]
∑n−1

i=1 x2
i —— B(x0, . . . , xn−1)

if ν > 1 0 0 0

Table 5.1. F [λ,µ,ν] for F = Φ, Φi (i < n) and Φn

Then we have
c(F, S1, 1) =

∑
λ+µ+ν≤1

c(F [λ,µ,ν], S1, 1)

for any formal power series F of (x, y). Therefore we obtain equations

V1 = 0, 2Xi,1 + αiU1 + βiV1 = 0 (i < n), U1 = 0.

Hence we get
U1 = V1 = Xi,1 = 0 (i < n).

Step 2. We put

(S2)

 u = U2 t2,
v = V2 t2,
xi = Xi,2 t2 (i < n).

Then we have
c(F, S2, 2) =

∑
2λ+µ+2ν≤2

c(F [λ,µ,ν], S2, 2).

Therefore we obtain equations

V2 = 0,

αiU2 + βiV2 + ai + 2Xi,2 = 0 (i < n),
U2 + 3 an = 0.

Hence we get

U2 = −3 an, V2 = 0, Xi,2 = (3anαi − ai)/2 (i < n).
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Step 3. We put

(S3)

 u = U2 t2 + U3 t3,
v = V3 t3,
xi = Xi,2 t2 + Xi,3 t3 (i < n).

Then we have
c(F, S3, 3) =

∑
2λ+µ+2ν≤3

c(F [λ,µ,ν], S3, 3).

Putting F = Φ in this formula, we obtain an equation

V3 + U2 + an = 0.

Hence we get
V3 = 2an.

Therefore we have

u |CΛ = −3 ant2 + (terms of degree ≥ 3),
v |CΛ = 2 ant3 + (terms of degree ≥ 4).

Thus the assertion (1) in char k 6= 3 is proved.

From now on, we assume char k = 3. Then we have

U2 = 3 an = 0, Xi,2 = ai (i < n),

and the substitutions (S3) become as follows:

(S3)

 u = U3 t3,
v = V3 t3,
xi = Xi,2 t2 + Xi,3 t3 (i < n).

Therefore we have

c(F, S3, 3) =
∑

2λ+µ+3ν≤3

c(F [λ,µ,ν], S3, 3).

Hence we get equations

V3 + an = 0,

αiU3 + βiV3 + ei + 2Xi,3 + Ai(X1,2, . . . , Xn−1,2) = 0 (i < n),

U3 + en + 2
( n−1∑

i=1

aiXi,2

)
= 0.

Thus we obtain

U3 = 2 en +
n−1∑
i=1

a2
i , V3 = 2 an,

and

Xi,3 = αiU3 + βiV3 + Ξi = αi(2 en +
n−1∑
i=1

a2
i ) + 2βian + Ξi (i < n),

where Ξ1, . . . , Ξn−1 do not depend on the parameters αj nor βj (j 6= n,m).
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Step 4. We put

(S4)

 u = U3 t3 + U4 t4,
v = V3 t3 + V4 t4,
xi = Xi,2 t2 + Xi,3 t3 + Xi,4 t4 (i < n).

We have
c(F, S4, 4) =

∑
2λ+µ+3ν≤4

c(F [λ,µ,ν], S4, 4).

Putting F = Φ and F = Φn into this formula, we obtain equations

V4 + U3 + en +
n−1∑
i=1

aiXi,2 +
n−1∑
i=1

X2
i,2 = 0, and

U4 + 2
m−1∑

j=n+1

bj(αjU3 + βjV3) + 2fn + 2
n−1∑
i=1

aiXi,3 + B(X1,2, . . . , Xn−1,2) = 0.

From the first equation, we obtain

V4 = −U3 − en − 2
n−1∑
i=1

a2
i = 0.

Since V3 = 2an 6= 0, the critical point P of πΛ is of E6-type if and only if U4 6= 0.
From the second equation, we obtain

U4 = U3

( n−1∑
i=1

aiαi +
m−1∑

j=n+1

bjαj

)
+ V3

( n−1∑
i=1

aiβi +
m−1∑

j=n+1

bjβj

)
+ Υ,

where Υ does not depend on the parameters αj nor βj (j 6= n,m). From Corol-
lary 4.7 and the assumption P ∈ Esm, at least one of a1, . . . , an−1, bn+1, . . . , bm−1

is not zero. Since V3 = 2an 6= 0, by choosing β1, . . . , βn−1, βn+1, . . . , βm−1 general
enough, we have U4 6= 0. ¤

6. The dual curve of a plane curve in characteristic 3

Throughout this section, we suppose that char k = 3 and (n,m) = (1, 2).

Recall that, in the case (n,m) = (1, 2), the projection π1 : C◦ → X◦ is an
isomorphism, and π2 : C◦ → P is identified with the Gauss map (Remark 3.11).

Theorem 6.1. (1) The critical subscheme E of π2 : C◦ → P is of dimension 0 if
and only if π2 is separable onto its image.

(2) Suppose that π2 is separable onto its image. Then, at every point P of E, the
length of OE,P is a multiple of 3. Let P = (p, [f ]) be a point of EA2 . Then π2 has
a critical point of Tl-type at P , where l := lengthOE,P /3.

Proof. If π2 is inseparable onto its image, then the generic point of C◦ is contained
in E , and hence dim E = dim C◦ = 1. Conversely, suppose that π2 is separable
onto its image. Let P = (p, [f ]) be a point of E . We use the formal parameters
(x1, y1, y2) of X◦ × P given in Construction 4.1. We put

φ0 = c3 x3
1 + c4 x4

1 + · · · =
∞∑

ν=1

c3ν x3ν
1 +

∞∑
ν=1

c3ν+1 x3ν+1
1 +

∞∑
ν=1

c3ν+2 x3ν+2
1 .
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Then C◦ is defined locally at P by the equations

φ0 + y1x1 + y2 = 0 and φ′
0 + y1 = 0.

Therefore
t := x1 | C◦

is a formal parameter of C◦ at P , and π2 : C◦ → P is given by

(6.1)
π∗

2y1 = −φ′
0 | C◦ = −

∑
c3ν+1 t3ν +

∑
c3ν+2 t3ν+1,

π∗
2y2 = (φ′

0x1 − φ0) | C◦ = −
∑

c3ν t3ν +
∑

c3ν+2 t3ν+2.

Since π2 is separable, there exists a positive integer ν such that c3ν+2 6= 0. By Corol-
lary 3.17, the scheme E is defined on C◦ by

∂2Φ
∂x2

1

∣∣∣∣C◦ = φ′′
0 | C◦ = −

∞∑
ν=1

c3ν+2 t3ν = 0.

Therefore dimP E is 0, and the length of OE,P is equal to 3l, where

l := min{ ν | c3ν+2 6= 0 }.

If P ∈ EA2 , then c3 6= 0. Therefore, from (6.1), we see that π2 has a critical point
of Tl-type at P . ¤

In the rest of this section, we will investigate normal forms of a critical point of
Tl-type. Let ϕ : C → S be a morphism given in §2.1.

Proposition 6.2. Suppose that ϕ has a critical point of Tl-type at P ∈ C. Then
there exist a formal parameter t of (OC,P )∧ and a formal parameter system (u, v)
of (OS,ϕ(P ))∧ such that ϕ is given by

ϕ∗u = t3l+1 and ϕ∗v = t3 + t3l+2.

Proof. Let t and (u, v) be arbitrary formal parameters of (OC,P )∧ and (OS,ϕ(P ))∧,
respectively. For F ∈ (OS,ϕ(P ))∧, we denote by F[t,ν] the coefficient of tν in ϕ∗F ∈
(OC,P )∧ = k[[t]]. For A,B ∈ (OC,P )∧, we write A = B+[≥ N ] if A−B is contained
in the Nth power of the maximal ideal of (OC,P )∧. By the definition of the critical
point of Tl-type, we have

ϕ∗u = u[t,3]t
3 + u[t,6]t

6+ · · · +u[t,3l]t
3l + u[t,3l+1]t

3l+1 + u[t,3l+2]t
3l+2+ [≥ 3l + 3],

ϕ∗v = v[t,3]t
3 + v[t,6]t

6+ · · · +v[t,3l]t
3l + v[t,3l+1]t

3l+1 + v[t,3l+2]t
3l+2+ [≥ 3l + 3],

and the coefficients u[t,ν] and v[t,ν] satisfy (2.2). Since (u[t,3], v[t,3]) 6= (0, 0), we can
assume that

(6.2) u[t,3] = 0 and v[t,3] = 1

by a linear transformation of (u, v). If r ≥ 2, then we have

(vr)[t,ν] 6= 0 and ν 6≡ 0 mod 3 =⇒ ν ≥ 3l + 4.

Therefore, replacing u with

u − c2v
2 − · · · − clv

l

with appropriate coefficients c2, . . . , cl, we can assume that

ϕ∗u = u[t,3l+1]t
3l+1 + u[t,3l+2]t

3l+2 + [≥ 3l + 3].
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By (6.2) and the condition (2.2), we have u[t,3l+1] 6= 0. Therefore there exists a
formal parameter s of (OC,P )∧ such that

ϕ∗u = s3l+1.

By u[s,3] = 0 and the condition (2.2), we can assume

v[s,3] = 1 and v[s,3l+1] = 0

by a linear transformation of (u, v). If r ≥ 2, then we have

(vr)[s,ν] 6= 0 and ν 6≡ 0 mod 3 =⇒ ν ≥ 3l + 5.

Therefore, replacing v with

v − d2v
2 − · · · − dlv

l

with appropriate coefficients d2, . . . , dl, we can assume that

ϕ∗v = s3 + v[s,3l+2]s
3l+2 + [≥ 3l + 3].

By the condition (2.2) again, we have v[s,3l+2] 6= 0. Replacing (u, v, s) with
(αu, βv, γs) with appropriate α, β, γ ∈ k×, and denoting s by t, we obtain

ϕ∗u = t3l+1, and
ϕ∗v = t3 + t3l+2 + [≥ 3l + 3].

We put
T := { 3a + (3l + 1)b | a, b ∈ Z≥0 },

and fix functions
m1 : T → Z≥0 and m2 : T → Z≥0

such that
3m1(ν) + (3l + 1)m2(ν) = ν

holds for every ν ∈ T . It is easy to see that a non-negative integer ν is in T if and
only if

(ν ≤ 3l and ν ≡ 0 mod 3)
or (3l < ν ≤ 6l + 1 and ν 6≡ 2 mod 3)
or (6l + 1 < ν)

holds. Therefore, replacing v with

v −
∑

ν≥3l+3, ν∈T

eνum2(ν)vm1(ν)

with coefficients eν chosen appropriately, we obtain

ϕ∗u = t3l+1, and

ϕ∗v = t3 + t3l+2 +
l−1∑
µ=1

Aµt3l+3µ+2

with A1, . . . , Al−1 ∈ k. If the coefficients Aµ are all zero, then the proof is finished.
Assume that Aµ 6= 0 for some µ < l, and put

m := min{ µ | Aµ 6= 0 }.
We put

u′ := u − Amuvm.
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Then we have
ϕ∗u′ = t3l+1 − Amt3l+3m+1 + [≥ 6l + 3m].

There exists a formal parameter s of (OC,P )∧ such that

ϕ∗u′ = s3l+1.

Then we have
s = t − Amt3m+1 + [≥ 3m + 2],

and therefore
t = s + Ams3m+1 + [≥ 3m + 2].

Let Rr (r ≥ 3m + 1) be the coefficients in

t3 = s3 +
∑

r≥3m+1

Rrs
3r.

Because 3l + 2 ≡ −1 mod 3, we have

t3l+2 + Amt3l+3m+2 + [≥ 3l + 3m + 3] = s3l+2 + [≥ 3l + 3m + 3].

Therefore we obtain

ϕ∗v = s3 +
l+m∑

r=3m+1

Rrs
3r + s3l+2 + [≥ 3l + 3m + 3].

If r ≥ 3m + 1, then we have

(vr)[s,ν] 6= 0 and ν 6≡ 0 mod 3 =⇒ ν ≥ 3(r − 1) + 3l + 2 ≥ 3l + 3m + 3.

Therefore, replacing v with

v −
l+m∑

r=3m+1

R′
rv

r

with appropriate coefficients R′
ν , we can assume that

ϕ∗v = s3 + s3l+2 + [≥ 3l + 3m + 3].

Replacing v with
v −

∑
ν≥3l+3m+3, ν∈T

fνum2(ν)vm1(ν)

with appropriate coefficients fν and denoting u′ by u and s by t, we get

ϕ∗u = t3l+1 and

ϕ∗v = t3 + t3l+2 +
l−1∑

µ=m+1

A′
µ t3l+3µ+2

with new coefficients A′
m+1, . . . , A

′
l−1. Thus we have

min{ µ | A′
µ 6= 0 } > m = min{ µ | Aµ 6= 0 }.

Therefore, after repeating this process finitely often, we obtain formal power series
with the desired properties. ¤

Proposition 6.3. Suppose that ϕ has a critical point of Tl-type at P ∈ C. Then
the image of the germ (C,P ) by ϕ is formally isomorphic to the germ of a plane
curve singularity defined by

(6.3) x3l+1 + y3 + x2ly2 = 0.
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Proof. Let Cl ⊂ A2 be the affine curve defined by the equation (6.3), and let

ν : C̃l → Cl

be the normalization in a neighborhood of O := (0, 0). Let P ∈ C̃l be a point such
that ν(P ) = O. It is enough to show that ν−1(O) consists of a single point P (that
is, Cl is locally irreducible at O), and that the composite of ν and the inclusion
Cl ↪→ A2 has a critical point of Tl-type at P .

We denote by Dm,n the affine curve defined by

xm+1 + y3 + xny2 = 0.

We have Cl = D3l,2l. Let β : (A2)∼ → A2 be the blowing-up at O. The proper
transform of Dm,n (m ≥ 3, n ≥ 2) by β is isomorphic to Dm−3,n−1, and the proper
birational morphism

ψm,n := β |Dm−3,n−1

is given by (x, y) 7→ (x, xy). We also have

ψ−1
m,n(O) = {O}.

Since
D0,l : x + y3 + xly2 = 0

is smooth at O, the curve D3l,2l = Cl is locally irreducible at O, and the composite

ν : D0,l
ψ3,l+1−→ D3,l+1

ψ6,l+2−→ · · · ψ3l,2l−→ D3l,2l = Cl

is the normalization of Cl in a neighborhood of O. We put

t := y |D0,l,

which is a formal parameter of D0,l at O. Then

x |D0,l = −t3 − (−1)l t3l+2 + (terms of degree ≥ 3l + 3).

Since
ν∗(x |Cl) = x |D0,l = −t3 − (−1)l t3l+2 + (terms of degree ≥ 3l + 3) and
ν∗(y |Cl) = (xly) |D0,l = (−1)l t3l+1 + (terms of degree ≥ 3l + 3),

we see that the composite of ν : D0,l → Cl and the inclusion Cl ↪→ A2 has a critical
point of Tl-type at O ∈ D0,l. ¤

7. The degree of E

For a smooth projective variety V , we denote by Ak(V ) = Adim V −k(V ) the
abelian group of rational equivalence classes of k-cycles of V , and by A∗(V ) the
Chow group of V . For a closed subscheme W of V , let [W ] ∈ A∗(V ) be the class
of W . We denote by ∫

V

: A0(V ) → Z

the degree map
∑

P nP [P ] 7→
∑

P nP .

In this section, we assume the following:

(7.1) X = X = X◦;

that is, X is smooth, the linear system |M | on X has no base points, and the
morphism Ψ : X → P∨ induced by |M | is a closed immersion formally at every
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point of X. We have C = C◦. For simplicity, we denote by X for X or X◦ and by
C for C◦. We also assume that

(7.2) E is of codimension 1 in C.

Then C and E are closed subschemes of dimensions m − 1 and m − 2, respectively,
in the smooth projective variety X ×P. The purpose of this section is to calculate

deg C :=
∫

X×P

c1(pr∗2 OP(1))m−1 ∩ [C] and deg E :=
∫

X×P

c1(pr∗2 OP(1))m−2 ∩ [E ].

For α ∈ Aa(X) and β ∈ Ab(P), we denote by the same letters α ∈ Aa(X × P)
and β ∈ Ab(X × P) the pull-backs of α and β by the projections. We put

h := c1(OP(1)) and λ := c1(L).

It is easy to see that, if α ∈ Aa(X) and β ∈ Ab(P), then∫
X×P

h(n+m)−(a+b) ∩ αβ =

{
0 if a < n,(∫

X
α
)
·
(∫

P
hm−b ∩ β

)
if a = n.

By the definition of the divisor D of X × P, we have

OX×P(D) = L̃ = pr∗1 L ⊗ pr∗2 OP(1).

Therefore
[D] = (λ + h) ∩ [X × P] in A∗(X × P).

By Proposition 3.4, the subscheme C of D is defined as the degeneracy subscheme
of the homomorphism

(dσX)∨ : (L̃ ⊗ OD)∨ → (p∗1 T (X))∨.

Using Thom-Porteous formula [3, Chapter 14], we have

[C] = ∆(1)
n (c(T (X)∨−L̃∨)) ∩ [D] =

(
(λ + h)

n∑
i=0

(−1)ici(X)(λ + h)n−i

)
∩ [X×P]

in A∗(X ×P). In particular, we obtain the following well-known formula ([14, 15]):

deg C =
n∑

i=0

{
(−1)i(n − i + 1)

∫
X

ci(X)λn−i ∩ [X]
}

.

By Proposition 3.14, the divisor E of C is defined as the degeneracy subscheme of
the symmetric homomorphism

H˜ : π∗
1 T (X) → L̃ ⊗ π∗

1 T (X)∨

By Harris-Tu-Pragacz formula ([5, Theorem 10], [20, Theorem 4.1], see also [10]),
we have

[E ] = 2 c1

(
π∗

1 T (X)∨ ⊗
√

L̃ ⊗ OC

)
∩ [C] ∈ A1(C).

Hence we obtain the following. (Compare with [2, Formula (2.2)].)

Proposition 7.1. In A∗(X × P), we have

[E ] = (−2c1(X) + nλ + nh) ∩ [C]

=

(
(−2c1(X) + nλ + nh)(λ + h)

n∑
i=0

(−1)ici(X)(λ + h)n−i

)
∩ [X × P].
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Therefore we obtain

deg E = n
n∑

j=0

(−1)n−j(j + 1)(j + 2)
2

∫
X

cn−j(X)λj ∩ [X] −

n∑
j=1

(−1)n−jj(j + 1)
∫

X

cn−j(X)c1(X)λj−1 ∩ [X].

Example 7.2. Suppose that char k = 3. Let X be a smooth projective curve of
genus g, and let |M | be a 2-dimensional linear system on X without base points
such that the induced morphism Ψ : X → P∨ = P2 is a closed immersion formally
at every point of X. Let

γ : X → (P2)∨ = P
be the Gauss map of Ψ. For a point p ∈ X, let µp denote the multiplicity at p of
the divisor Ψ∗(γ(p)). Suppose that

(i) µp ≤ 3 at every point p ∈ X, and
(ii) there exists p ∈ X such that µp = 2.

Then γ : X → P is separable onto its image. Hence E is of dimension 0, and every
critical point of γ is of Tl-type by Theorem 6.1. Let tl be the number of the critical
points of Tl-type. Then we have∑

ltl =
lengthOE

3
=

deg E
3

=
∫

X

(λ − c1(X)) ∩ [X] = deg Ψ∗OP2(1) − 2 + 2g.

Therefore the formula (1.1) is proved.

In characteristic 3, the morphism Esm → P factors through the finite morphism
Esm → (Esm)K of degree 3 by Theorem 4.5. If Esm is dense in E , then deg E must
be divisible by 3. If we take L to be a cube of a very ample line bundle, then the
assumptions (7.1) and (7.2) are satisfied and Esm is dense in E by Corollary 4.10.
Therefore we obtain the following non-trivial divisibility relation among the Chern
numbers of a smooth projective variety in characteristic 3:

Corollary 7.3. Let X be a smooth projective variety of dimension n in character-
istic 3. Then the integer∫

X

(n cn(X) + 2 cn−1(X) c1(X)) ∩ [X]

is divisible by 3.

In fact, this divisibility relation follows from the Hirzebruch-Riemann-Roch the-
orem by the argument of Libgober and Wood. See [18, Remark 2.4].
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183.
9. Masaaki Homma, On duals of smooth plane curves, Proc. Amer. Math. Soc. 118 (1993), no. 3,

785–790.
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