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Abstract. Let X be a smooth projective complex surface. Suppose that a
finite set of reduced irreducible curves on X is given. We consider the submod-

ule of the second cohomology group of X with integer coefficients generated
by the classes of these curves. We present a method to calculate the primitive
closure of this submodule, and apply it to cyclic coverings of the projective

plane branching along four lines in general position.

1. Introduction

Let X be a smooth projective complex surface, and let D be an effective divisor
on X with the reduced irreducible components C1, . . . , Ck. We regard

H2(X) := H2(X, Z)/(torsion)

as a unimodular lattice by the cup product, and consider the submodule

L(X,D) := 〈[C1], . . . , [Ck]〉 ⊂ H2(X)

generated by the classes [Ci] of the curves Ci. We denote by

L(X,D) := (L(X,D) ⊗ Q) ∩ H2(X) ⊂ H2(X)

the primitive closure of L(X,D) in H2(X). Then

A(X,D) := L(X,D)/L(X,D)

is a finite abelian group. For a submodule M ⊂ H2(X), we put

disc M := |det(SM )|,

where SM is a symmetric matrix expressing the cup product restricted to M . (If
M is of rank 0, then we define disc M to be 1.) By definition, M is a sublattice of
H2(X) if and only if discM ̸= 0. (See Definition 1.1.) If L(X,D) is a sublattice,
then so is L(X,D) and we have

(1.1) |A(X,D)| =

√
discL(X,D)
discL(X,D)

.

In this paper, we present an algorithm to calculate discL(X,D) based on a simple
topological observation (Theorem 1.2). Combining this algorithm with an algebro-
geometric calculation of L(X,D), we can calculate the order of A(X,D).
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Definition 1.1. A quasi-lattice is a finitely generated Z-module L with a symmetric
bilinear form

L × L → Z (x, y) 7→ x · y.

For a quasi-lattice L, we put

ker(L) := { x ∈ L | x · y = 0 for all y ∈ L },
which is the kernel of the natural homomorphism L → Hom(L, Z) induced by the
symmetric bilinear form. A quasi-lattice is called a lattice if ker(L) = 0.

Note that ker(L) contains the torsion part of L, and that L/ ker(L) has a natural
structure of the lattice.

Theorem 1.2. We put X◦ := X \ D. Let t1, . . . , tN be topological 2-cycles that
generate H2(X◦, Z) modulo torsion. Let TX◦ be the quasi-lattice generated freely
by t1, . . . , tN with the symmetric bilinear form given by the intersection numbers
ti · tj ∈ Z. If L(X,D) is a sublattice of H2(X), then discL(X,D) is equal to
disc(TX◦/ ker(TX◦)).

The primary motivation of this article is the following question due to Shioda.
Let Xm ⊂ P3 be the Fermat surface

xm
0 + xm

1 + xm
2 + xm

3 = 0.

Then Xm contains 3m2 lines. Let Lm be the union of these 3m2 lines. For simplicity,
we assume m ≥ 5. Aoki and Shioda [1] showed that

(m, 6) = 1 ⇐⇒ NS(Xm) ⊗ Q = L(Xm,Lm) ⊗ Q,

where NS(Xm) := H1,1(Xm) ∩ H2(Xm) is the Néron-Severi lattice of Xm. Shioda
then posed the problem whether NS(Xm) = L(Xm,Lm) holds or not for m prime
to 6. In our terminology, this problem is to determine whether A(Xm, Lm) is trivial
or not for m prime to 6. Recently, Schütt, Shioda and van Luijk [5] showed the
following by modulo p reduction technique and computer-aided calculation:

Theorem 1.3 ([5]). Let m be an integer with 5 ≤ m ≤ 100. If m is prime to 6,
then NS(Xm) = L(Xm, Lm) holds.

The Fermat surface Xm is a (Z/mZ)3-covering of

P2 := {y0 + y1 + y2 + y3 = 0} ⊂ P3

branching along the union of the four lines

B := B0 + B1 + B2 + B3 ⊂ P2, where Bi := {yi = 0} ∩ P2,

by the morphism

φm : (x0 : x1 : x2 : x3) 7→ (xm
0 : xm

1 : xm
2 : xm

3 ) ∈ P2.

For i = 1, 2, 3, let Λi be the line connecting the intersection point P0i of B0 and Bi

and Pjk of Bj and Bk, where {0, i, j, k} = {0, 1, 2, 3}. Then we have

Lm = φ∗
m(Λ), where Λ := Λ1 + Λ2 + Λ3.

We generalize and extend the pair (Xm, Lm) as follows. Let

ϕ : Yϕ → P2

be a finite covering branching along B. Since π1(P2 \ B) ∼= Z3, the covering ϕ is
abelian, and there exists m such that φm : Xm → P2 is a composite of a quotient
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morphism Xm → Yϕ and ϕ : Yϕ → P2. Note that the singular points of Yϕ are
located over the six nodes {P01, P02, P03, P12, P13, P23} of B. Let

ρ : Xϕ → Yϕ

be a resolution of Yϕ, and put

ψ := ϕ ◦ ρ : Xϕ → P2.

We then put
Dϕ := ψ∗(B + Λ).

Note that A(Xϕ, Dϕ) does not depend on the choice of the resolution ρ by Propo-
sition 2.1. Applying our method, we prove the following:

Theorem 1.4. If ϕ is cyclic of degree d ≤ 50, then A(Xϕ, Dϕ) = 0.

We will see as a corollary of Proposition 3.2 that

L(Xϕ, ψ∗(Λ)) ⊂ L(Xϕ, Dϕ) ⊂ L(Xϕ, ψ∗(Λ)) = L(Xϕ, Dϕ)

for any covering ϕ of P2 branching along B. When ϕ is the covering φm by the
Fermat surface, we have L(Xϕ, ψ∗(Λ)) = L(Xϕ, Dϕ) by Proposition 3.3. This
equality does not hold in general, and we have examples of cyclic coverings ϕ for
which A(Xϕ, ψ∗(Λ)) is not trivial. See examples in §5.

The method of this paper can be applied to arbitrary covering of P2 branching
along B, and in particular, to Shioda’s original problem. However, even in the case
of Fermat surface of degree 6, we have to deal with the covering of mapping degree
63 = 216, and our computer has run out of memory. Thus we restrict ourselves to
the cyclic coverings in this article.

Our method was initiated in [2]. This method has been recently applied to
extremal elliptic surfaces in a sophisticated way by Degtyarev [4].

In §2, we prove Theorem 1.2. In §3 and §4, we explain in detail how to calculate
A(Xϕ, ψ∗(Λ)). In §3, we calculate the orthogonal complement L(Xϕ, Dϕ)⊥ by the
method of Zariski-van Kampen type. In §4, we calculate the discriminant of the
lattices L(Xϕ, ψ∗(Λ)) and L(Xϕ, Dϕ). The complete result in the case of cyclic
coverings of mapping degree 12 is given in §5. In the last section, we present a
couple of related results concerned with certain classes of cyclic coverings of P2.

When we were finishing this article, Degtyarev proposed an alternative method
for the proof of the primitivity of L(Xϕ, Dϕ) using the idea of Alexander modules.

2. The algorithm

Let X be a smooth projective complex surface, and let D =
∑

miCi be an
effective divisor on X. We put

X◦ := X \ D.

Proposition 2.1. If X ′ is another smooth projective surface containing X◦ such
that D′ := X ′ \ X◦ is a union of curves, then we have

discL(X,D) = discL(X ′, D′), discL(X,D) = discL(X ′, D′),

and A(X,D) ∼= A(X ′, D′).
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Proof. We have a smooth projective surface X ′′ containing X◦ with birational
morphisms f : X ′′ → X and f ′ : X ′′ → X ′ that are isomorphisms over X◦. Then
each of f and f ′ is a composite of blowing-ups at points. If bl : X̃ → X is a blowing
up at a point on D with the exceptional (−1)-curve E, then we have

H2(X̃) = H2(X) ⊕ Z[E] and L(X̃, bl∗(D)) = L(X,D) ⊕ Z[E].

Applying these to blowing ups composing f and f ′, we obtain the proof. ¤

We define a structure of the quasi-lattice on H2(X◦, Z) by the homomorphism

j̃∗ : H2(X◦, Z)
j∗−→ H2(X, Z) ∼= H2(X, Z) →→ H2(X)

and the cup product on H2(X), where j : X◦ ↪→ X is the inclusion and the
isomorphism in the middle is the Poincaré duality.

Proof of Theorem 1.2. For a sublattice M of H2(X), let M⊥ denote the orthogonal
complement of M . By the assumption that L(X,D) be a sublattice, we have

L(X,D) = (L(X,D)⊥)⊥.

Since H2(X) is a unimodular lattice and both of the sublattices L(X,D) and
L(X,D)⊥ are primitive, we have

(2.1) discL(X,D) = discL(X,D)⊥.

(Recall that the discriminant of a lattice of rank 0 is 1.) Note that L(X,D)⊥ is
equal to Ker r/(torsion), where r : H2(X, Z) → H2(D, Z) is the restriction homo-
morphism. Under the Poincaré duality H2(X◦, Z) ∼= H2(X,D, Z) and H2(X, Z) ∼=
H2(X, Z), we have

Im j̃∗ = Ker r/(torsion) = L(X,D)⊥.

Since L(X,D)⊥ is a sublattice by the assumption, we have ker(H2(X◦, Z)) = Ker j̃∗
and hence j̃∗ induces an isomorphism of lattices

(2.2) H2(X◦, Z)/ ker(H2(X◦, Z)) ∼= L(X,D)⊥.

Since the surjection TX◦ →→H2(X◦, Z)/(torsion) that maps ti to its homology class
is a homomorphism of quasi-lattices, it induces an isomorphism of lattices

TX◦/ ker(TX◦) ∼= H2(X◦, Z)/ ker(H2(X◦, Z)).

Combining this with (2.1) and (2.2), we obtain the proof. ¤

3. The discriminant of L(Xϕ, Dϕ)⊥

Let ϕ : Yϕ → P2 be a d-fold covering of P2 (not necessarily cyclic) branching
along a union B := B0+· · ·+B3 of four lines in general position, and let ρ : Xϕ → Yϕ

be a resolution. We put ψ := ϕ ◦ ρ : Xϕ → P2. Let Λ be the union of the three
lines such that Λ∩B is the six nodes of B, and put Dϕ := ψ∗(B + Λ). We explain
in detail the algorithm to calculate L(Xϕ, Dϕ)⊥.

Let b̃ be a base point of P2 \ B, and put F := ψ−1(b̃). Then the covering ϕ is
determined by the monodromy

µ : π1(P2 \ B, b̃) → S(F )
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to the group S(F ) of permutations on F . Since π1(P2\B) is abelian, the homotopy
class βi of a simple loop around Bi is well-defined, and we have

π1(P2 \ B) = H1(P2 \ B, Z) = Z[β0] ⊕ · · · ⊕ Z[β3]/〈[β0] + · · · + [β3]〉.
The input of our algorithm is the permutations

µ(β0), . . . , µ(β3)

that satisfy µ(β0)µ(β1)µ(β2)µ(β3) = 1 and that generate a commutative transitive
subgroup of S(F ).

Remark 3.1. The submodule L(Xϕ, ψ∗(Λ)) contains the classes of the exceptional
curves of ρ and the class h of the total transform of a general line on P2. Since
h2 > 0, the Hodge index theorem implies that L(Xϕ, ψ∗(Λ)) and L(Xϕ, Dϕ) are
sublattices of H2(Xϕ).

Proposition 3.2. Let Γ̃ de an irreducible curve on Xϕ that is mapped onto a line Γ
on P2. Then [Γ̃] is contained in the primitive closure L(Xϕ, ψ∗(Λ)). In particular,
we have L(Xϕ, Dϕ) = L(Xϕ, ψ∗(Λ)).

Proof. Suppose that Γ = Bi for some i, and let r be the ramification index of ϕ at
the generic point of Γ̃. Then ψ∗(Γ) is the sum of rΓ̃ and some exceptional divisors
of ρ. Since [ψ∗(Γ)] = h, we have r[Γ̃] ∈ L(Xϕ, ψ∗(Λ)). Suppose that Γ ̸= Bi for
any i. We denote by N := {P01, . . . , P23} the set of nodes of B. Then we have a
specialization {Γt} from Γ = Γ1 to Γ0 = Λj for some j such that Γt ∩N = Γ1 ∩N
for 0 < t ≤ 1. Then Γ̃ decomposes into a sum of some irreducible components of
the total transform of Γ0 = Λj . Hence [Γ̃] ∈ L(Xϕ, ψ∗(Λ)). ¤
Proposition 3.3. If ϕ : Yϕ → P2 is the (Z/mZ)3-covering by the Fermat surface
φm : Xm → P2 and ρ is the identity, then we have L(Xm, φ∗

m(Λ)) = L(Xm, Dφm).

Proof. Let Ri be the curve Xm ∩ {xi = 0}. Since φ∗
m(Bi) = mRi, it is enough

to prove [Ri] ∈ L(Xm, ψ∗(Λ)). Let ζ ∈ C be an m-th root of −1, and let H be
the curve Xm ∩ {x0 − ζx1 = 0}. Then H is a union of m lines. Thus we have
[Ri] = [H] ∈ L(Xm, ψ∗(Λ)). ¤

By Proposition 3.2, we have

L(Xϕ, ψ∗(Λ))⊥ = L(Xϕ, Dϕ)⊥ = L(Xϕ, Dϕ + ψ∗(Γ1 + · · · + Γk))⊥

for any lines Γ1, . . . , Γk on P2. Hence, in order to calculate L(Xϕ, Dϕ)⊥, it is enough
to take suitable lines Γ1, . . . , Γk on P2, put

U := P2 \ (B + Λ +
∑

Γq),

and calculate the intersection pairing of topological 2-cycles on

XU := ψ−1(U).

We choose U in such a way that U admits a morphism

f : U → C◦ := C \ (a finite set of points)

such that the composite

f ◦ ψ|XU : XU → U → C◦

is a locally trivial fibration (in the classical topology) with fibers being open Rie-
mann surfaces.
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Figure 3.1. Lines Bi, Λj and Γq

Our choice of U and f is as follows. Let (x, y) be affine coordinates on P2 such
that

B0 = {x − y + 1 = 0}, B1 = {x − y − 1 = 0},
B2 = {−x − y + 1 = 0}, B3 = {−x − y − 1 = 0}.

Then Λ1 is the line at infinity, and Λ2 = {x = 0}, Λ3 = {y = 0}. We put

Γ1 := {x = 1}, Γ2 := {x = −1}.

Let f̄ : C2 → C be the projection (x, y) 7→ x. Then the maps

f := f̄ |U : U → C◦ := C \ {−1, 0, 1} and f ◦ ψ|XU : XU → C◦

are locally trivial fibrations. See Figure 3.1, in which the thick lines are B0, . . . , B3.
We choose a base point b ∈ C◦ at a large real number, and put

b̃ := (b, b′) ∈ f−1(b),

where b′ is also a large real number such that

(3.1) b′ ≫ b.

We then put
R := ψ−1(f−1(b)) ⊂ XU , F := ψ−1(b̃) ⊂ R.

Then F is a finite set of d points, and ψ|R : R → f−1(b) is an étale covering of
the punctured line f−1(b). The five punctured points f̄−1(b) \ f−1(b) are located
on the real line of f̄−1(b) = C. We index them as Q1, Q2, Q3, Q4, Q5 from left to
right. Let γi be the homotopy class of the simple loop on f−1(b) around Qi with
the base point b̃ as in Figure 3.2, in which only three of five simple loops are drawn.
These classes γi generate the free group π1(f−1(b), b̃), and they are mapped by the
natural homomorphism π1(f−1(b), b̃) → π1(P2 \ B, b̃) as follows:

γ1 7→ β3, γ2 7→ β2, γ3 7→ 1, γ4 7→ β1, γ5 7→ β0.

Hence, from the input µ : π1(P2 \ B) → S(F ), we can readily calculate the mon-
odromy π1(f−1(b), b̃) → S(F ). The action of the image of γi on p ∈ F is denoted
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Figure 3.2. Simple loops

Figure 3.3. Shifting of loops

by p 7→ γi(p) for simplicity. We denote by p ⊗ γi the path on R that is the lift of
γi starting from p (and hence ending at γi(p)), and consider the module

P :=
5⊕

i=1

⊕
p∈F

Z(p ⊗ γi)

freely generated by these p ⊗ γi. We have a canonical isomorphism

P ∼= H0(F, Z) ⊗ H1(f−1(b), Z).

Elements of P are regarded as topological 1-chains on R. Then we have

H1(R, Z) = Ker( w : P → H0(F, Z) ),

where w is the homomorphism defined by w(p ⊗ γi) := (1 − γi)p. Thus we have a
list of topological 1-cycles on R whose homology classes form a basis of H1(R, Z).
Each member of this list is expressed as an integer vector of length rankP = 5d.
The intersection pairing QR among these cycles are calculated from the intersection
numbers QP of topological chains p ⊗ γj by shifting the path γj as in Figure 3.3.
Namely, we have

QP(p ⊗ γi, p
′ ⊗ γj) =

δ(p, p′) − δ(γi(p), p′) − δ(p, γj(p′)) + δ(γi(p), γj(p′)) if i < j,

−δ(p, p′) + δ(p, γi(p′)) if i = j,

−δ(p, p′) + δ(γi(p), p′) + δ(p, γj(p′)) − δ(γi(p), γj(p′)) if i > j,

where δ is Kronecker’s delta function. (Note that p′ ⊗ γj is the shifted cycle.)
Restricting QP to the submodule H1(R, Z) = Ker w, we obtain QR.

Next we calculate the monodromy action of π1(C◦, b) on H1(R, Z) associated
with the locally trivial fibration f ◦ψ|U : XU → C◦. By (3.1), we have a continuous
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section
s : C◦ → U

of f : U → C◦ that satisfies s(x) = (x, b′) for x inside a sufficiently large disk on
C◦. Since s(b) = b̃, π1(C◦, b) acts on π1(f−1(b), b̃) and hence on H1(f−1(b), Z).
Moreover π1(C◦, b) acts on F and hence on H0(F, Z) by s∗ : π1(C◦, b) → π1(U, b̃).
Thus π1(C◦, b) acts on P ∼= H0(F, Z)⊗H1(f−1(b), Z). This action preserves Ker w,
and the restriction to Kerw = H1(R, Z) is the desired monodromy.

We write the monodromy on P explicitly. Let τ1, τ2, τ3 be the homotopy classes of
the simple loops on C◦ around −1, 0, 1, respectively, with the base point b depicted
in Figure 3.2. (We use Figure 3.2 twice to illustrate completely different objects;
simple loops on the fiber f−1(b) in the previous paragraph and simple loops on the
base curve C◦ here.) The action of π1(C◦, b) on H0(F, Z) is trivial, because of the
property (3.1). When a point t ∈ C◦ moves along τj , the five punctured points
f̄−1(t) \ f−1(t) undergo the braid monodromy. Let B5 denote the braid group on
the strings in C× I connecting (Qi, 0) ∈ C× I and (Qi, 1) ∈ C× I, and let σi ∈ B5

be the simple braid that interchanges Qi and Qi+1 by the positive half-twist and
fixes the other Qi′ . We write the conjunction of braids from right to left so that B5

acts on π1(f−1(b), b̃) from the left:

σi(γj) =


γ−1

j γj+1γj if i = j,

γj−1 if i = j − 1,

γj otherwise.

(The conjunction of loops is also written from right to left.) The braid monodromy
br : π1(C◦, b) → B5 is given as follows:

br(τ1) = (σ2σ3σ2)−1(σ1σ4)−1(σ2σ3σ2)2(σ1σ4)(σ2σ3σ2),
br(τ2) = (σ2σ3σ2)−1(σ1σ4)2(σ2σ3σ2),
br(τ3) = (σ2σ3σ2)2.

Combining them, we obtain the action of τj ∈ π1(C◦, b) on π1(f−1(b), b̃), on
H1(f−1(b), Z), and hence on P and Kerw = H1(R, Z), which we write α 7→ τj(α)
for simplicity. For example, we have

τ1(γ1) = γ−1
1 γ−1

3 γ−1
4 γ−1

5 γ4γ1γ
−1
4 γ5γ4γ3γ1,

and hence

τ1(p ⊗ γ1) = (p ⊗ γ1) + (γ1(p) ⊗ γ3) + (γ3γ1(p) ⊗ γ4) +

+(γ4γ3γ1(p) ⊗ γ5) − (γ−1
4 γ5γ4γ3γ1(p) ⊗ γ4) + (γ−1

4 γ5γ4γ3γ1(p) ⊗ γ1) + · · · .

Remark that the topological chain of the path γ−1
i on R that starts from p ∈ F is

−γ−1
i (p) ⊗ γi in P.

For α ∈ Ker w and τj , we denote by α ⊗ τj the topological 2-chain on XU

that is a tube over the loop τj on U whose fiber over τj(t) is a topological 1-
cycle on (f ◦ ψ)−1(t) that is mapped to α by the inverse of the diffeomorphism
R = (f ◦ ψ)−1(0) ∼= (f ◦ ψ)−1(t) along τj , and let

T := Ker w ⊗ (Z[τ1] ⊕ Z[τ2] ⊕ Z[τ3]) ⊂ P ⊕ P ⊕ P
denote the module of these topological 2-chains. We have a canonical identification

T = H1(R, Z) ⊗ H1(C◦, Z).
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Since the fiber of α ⊗ τj over τj(1) is homologous to τj(α) in R, we have

H2(XU , Z) ∼= Ker(W : T → Ker w),

where W is the homomorphism defined by W (
∑3

j=1 αj ⊗ τj) :=
∑3

j=1(1 − τj)αj .
Therefore we obtain a list of topological 2-cycles whose homology classes form a
basis of H2(XU , Z). Each member is expressed as an integer vector of length 15d.
The intersection pairing QX among these topological 2-cycles are calculated from
the intersection numbers QT of topological 2-chains

∑
αj ⊗ τj by shifting the path

τj as in Figure 3.3. Namely, we have

−QT (
∑

αj ⊗ τj ,
∑

α′
j ⊗ τj )

= QR((1 − τ1)(α1), (1 − τ2)(α′
2)) + QR((1 − τ1)(α1), (1 − τ3)(α′

3))
+QR((1 − τ2)(α2), (1 − τ3)(α′

3))
+QR((1 − τ1)(α1),−τ1(α′

1)) + QR((1 − τ2)(α2),−τ2(α′
2))

+QR((1 − τ3)(α3),−τ3(α′
3)).

The six terms correspond to the six intersection points of τj and their shifts. Re-
stricting QT to Ker W , we obtain the intersection pairing QX on H2(XU , Z).

By Theorem 1.2, the orthogonal complement L(Xϕ, Dϕ)⊥ is then isomorphic to
the lattice Ker W/ ker(KerW ) associated to the quasi-lattice (Ker W,QX).

Remark 3.4. As the explanation above suggests, the method can be applied induc-
tively to calculate the intersection pairing on the middle homology group of smooth
affine varieties with locally trivial fibrations to a product to punctured affine lines.

4. The discriminant of L(Xϕ, Dϕ)

Let the notations be as in the previous section. In this section, we explain how
to calculate the intersection matrices of L(Xϕ, ψ∗(Λ)) and L(Xϕ, Dϕ).

By Remark 3.1, L(Xϕ, ψ∗(Λ)) and L(Xϕ, Dϕ) are lattices. Therefore, if we know
the intersection matrix of a set of generators Ci, our lattices can be calculated as
the quotient of the quasi-lattice

⊕
ZCi by its kernel. We will take the irreducible

components of ψ∗(Λ) and Dϕ as generators.
Recall that Bi ⊂ P2 = {y0 + y1 + y2 + y3 = 0} ⊂ P3 is the line yi = 0 for

0 ≤ i ≤ 3, Pij = Bi ∩ Bj for 0 ≤ i < j ≤ 3 and Λi is the line through P0i and Pjk

where {i, j, k} = {1, 2, 3} and j < k.

Definition 4.1. In what follows, a distinguished point will mean a point in ϕ−1(Pij),
a distinguished curve will mean an irreducible component of ϕ−1(Λi) or its strict
transform on Xϕ, and a boundary curve will be ϕ−1(Bi)red or its strict transform
on Xϕ.

We have to list up the distinguished curves and points, describe the minimal
resolutions of singularities at the distinguished points and calculate the intersection
numbers of curves involved.

4.1. Distinguished points and distinguished curves. First of all, it is neces-
sary to label the distinguished points and distinguished curves in some way. We do
this by regarding them as images of points and lines on the Fermat surface Xm.
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Definition 4.2. Let G ⊂ Gal(Xm/P2) = (Z/mZ)3 be the subgroup corresponding
to the intermediate cover Xm → Yϕ.

Write ξ(p) for exp((2p + 1)π
√
−1/m).

(1) Let i, j, k and l be such that i < j, k < l and {0, 1, 2, 3} = {i, j, k, l}.
(a) Let Uij = {|yi/yk| < ϵ, |yj/yk| < ϵ} be a small polydisc near Pij , hij :

π1(Uij \ B) → Gal(Xm/P2) the natural homomorphism and Hij :=
hij(h−1

ij (G)).
(b) For 0 ≤ p < m, let Pijp be the point (xi = xj = 0, xl = ξ(p)xk) in P3.

(2) Let i, j and k be such that {1, 2, 3} = {i, j, k} and j < k.
(a) Let Vi ⊂ Λi be a disc near P0i, ki : π1(Vi \ B) → Gal(Xm/P2) the

natural homomorphism and Ki := ki(k−1
i (G)).

(b) For 0 ≤ p, q < m, let Lipq be the line (xi = ξ(p)x0, xk = ξ(q)xj) in P3.

Lemma 4.3. (1) (a) φ−1
m (Pij) = {Pijp|0 ≤ p < m}.

(b) The group G acts on {Pijp|0 ≤ p < m} with stabilizer subgroup Hij.
The distinguished points on Yϕ over Pij can be identified with orbits
of the free G/Hij-action on {Pijp}.

(2) (a) φ∗
mΛi =

∑
0≤p,q<m Lipq.

(b) The group G acts on {Lipq|0 ≤ p, q < m} with stabilizer subgroup Ki,
and the distinguished curves (on Yϕ or Xϕ) over Λi can be identified
with orbits of the free G/Ki-action on {Lipq}.

(c) Let L̄ be the image of Lipq on Yϕ. Then deg(Lipq → L̄) = |Ki| and
deg(L̄ → Λi) = m/|Ki|.

Proof. (1a), (2a) Straightforward calculations.
(1b) Let W be the connected component of φ−1

m (Uij) containing Pijp and let P
be a point of W \ φ−1

m (B). For g ∈ G, we have g(Pijp) = Pijp ⇔ g(P ) ∈ W ⇔
g comes from a deck transformation of W → Uij ⇔ g ∈ Hij . Thus the stabilizer
subgroup is Hij , and the remaining assertions follow.

(2b) is similar.
(2c) Since the group Gal(Xm/P2) acts freely on Xm \ φ−1

m (B), the action of
Ki on Lipq is faithful, and deg(Lipq → L̄) = |Ki|. By the same reason, we have
deg(Lipq → Λi) = (deg Xm → P2)/(#{Lipq|0 ≤ p, q < m}) = m. ¤

Definition 4.4. Denote by P̄ijp the image of Pijp on Yϕ (i.e. the distinguished
point corresponding to the orbit of Pijp).

Denote by L̄′
ipq the image of Lipq on Yϕ and by L̄ipq its strict transform on Xϕ

(i.e. the distinguished curves corresponding to the orbit of Lipq).

Let us denote by (C.D)′ the intersection number outside the inverse image of
the distinguished points. For (i, p, q) and (i′, p′, q′) with L̄ipq ̸= L̄i′p′q′ , one can
calculate the intersection number (L̄ipq.L̄i′p′q′)′ as follows:

• If i = i′, then it is 0.
• If i ̸= i′, then it is

∑
ḡ∈G/Ki

(ḡ(Lipq).Li′p′q′)′.

4.2. Factoring the quotient map and the minimal resolution. The only
singularities of Yϕ are at distinguished points. Let us describe the local situation
over Pij .

A linear automorphism g of Cn is called a reflexion if the set (Cn)g of fixed points
is a hyperplane, and a finite group with a faithful linear action on Cn is called small
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if it has no reflexion. It is known that the quotient of Cn by any action of a finite
group is isomorphic to the quotient by a small group as a singularity. Let us give
a detailed description for the case at hand.

Definition 4.5. With the notations of Definition 4.2, write h for hij .
Identify π1(Uij \B) with Z×Z by sending loops around Bi and Bj to (1, 0) and

(0, 1), and let H̃ = h−1(G).
Let a, b, c and d be determined as follows: a and b are maximal positive integers

such that H̃ ⊆ aZ × bZ and c and d are minimal positive integers such that H̃ ⊇
cZ × dZ.

Write H0 = h(cZ×dZ), H1 = h(H̃) = Hij , H2 = h(aZ×bZ) and H3 = h(Z×Z).

Lemma 4.6. (1) We have c = an and d = bn for a positive integer n. Mapping
by s : aZ × bZ → Z × Z; (k, l) 7→ (k/a, l/b), we have Z × Z ⊃ s(H̃) ⊃
s(cZ × dZ) = nZ × nZ, s(H̃) = (nZ × nZ) + Z(q, 1) with 0 ≤ q < n and
gcd(n, q) = 1, and Z×Z = s(H̃)+ Z(1, 0). In particular, (aZ× bZ)/H̃ and
H̃/(cZ × dZ) are cyclic of order n. Furthermore, c and d divide m.

(2) Consider the following commutative diagram.

Xm

π0

xxppppppppppp

²²

Xm/H0

π1

²²
Xm/H1

π2

²²

α1

étale &&NNNNNNNNNN

Xm/H2

π3

²²

Xm/G = Yϕ

ϕ

²²

Xm/H3

α2

étale
''NNNNNNNNNNNN

P2.

Over a neighborhood of Pij, the quotients Xm/H0, Xm/H2 and Xm/H3

are smooth, the quotient maps α1 and α2 are étale, and π0, π2 ◦ π1 and π3

are given by (x, y) 7→ (xm/c, ym/d), (x, y) 7→ (xn, yn) and (x, y) 7→ (xa, yb),
where x = 0 and y = 0 are inverse images of Bi and Bj.

The map π1 is the quotient by the finite cyclic small action (x, y) 7→
(ζq

nx, ζny).

Proof. Although most of the statements are proven in [3, Ch. III §5 (i)], we give a
proof here for the reader’s convenience.

(1) It is obvious that a divides c and b divides d. Write c = an1 and d = bn2.
Using the map s in the statement, we have Z × Z ⊃ H ′ := s(H̃) ⊃ n1Z × n2Z.
The image of H ′ by the second projection is Z by the assumption on b. Thus H ′

contains (q, 1) for some q, which can be assumed to satisfy 0 ≤ q < n1.
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For any y ∈ Z, there can be at most one x ∈ Z such that (x, y) ∈ H ′ and
0 ≤ x < n1, by the assumption on c. This shows that H ′ = (n1Z × n2Z) + Z(q, 1).
If n′ := gcd(n1, q) were greater than 1, then H ′ would be contained in n′Z × Z,
contrary to the assumption on a. Therefore q is prime to n1. From the assumption
on d and the fact that (0, n1) = n1(q, 1) − q(n1, 0) is contained in H ′, n2 divides
n1. By symmetry, we have n1 = n2.

Since cZ × dZ ⊃ Ker h = mZ × mZ, c and d divide m.
(2) By Lemma 4.3(1b), H1 is the set of elements of Gal(Xm/Yϕ) which fix Pijp.

Similarly, H3 is the set of elements of Gal(Xm/P2) which fix Pijp. Therefore α1 and
α2 are étale, and the restriction of Xm → Xm/H3 to the fibers over Pij is one-to-
one. Take (xi/xk, xj/xk) and (yi/yk, yj/yk) (k ̸= i, j) as local coordinate systems
on Xm and Xm/H3, and the map π3 ◦ π2 ◦ π1 ◦ π0 is written as (x, y) 7→ (xm, ym).
The action of H3

∼= Z/mZ × Z/mZ on Xm is given by (p̄, q̄) · (x, y) = (ζp
mx, ζq

my),
and our description of quotient maps follows. ¤

Thus for each point over Pij we are in the following situation: X = C2 → Z = C2

is the (Z/nZ)2-quotient given by (x1, x2) 7→ (z1, z2) = (xn
1 , xn

2 ), and X → Y is the
intermediate quotient by the action (x1, x2) 7→ (ζq

nx1, ζnx2). The inverse images of
Bi and Bj on Z are given by z1 = 0 and z2 = 0. Let i′ be such that Λi′ passes
through Pij , and g = gcd(a, b), a = a′g and b = b′g. Then the inverse image of Λi′

splits into g components of the form xa′
= tyb′ with different constants t.

The singularity Y can be described as follows.

Proposition 4.7. (1) The singularity Y is isomorphic to the Hirzebruch-Jung
singularity An,q. It is the normalization of Y ′ : wn = z1z

n−q
2 , and the maps

X → Y ′ and Y ′ → Z are given by (x1, x2) 7→ (w, z1, z2) = (x1x
n−q
2 , xn

1 , xn
2 )

and (w, z1, z2) 7→ (z1, z2).
(2) Define integers r and f1, . . . , fr > 1 by

n/q = f1 −
1

f2 − 1
f3−···− 1

fr

.

Then the minimal resolution Ỹ of Y can be described as follows. There
are r exceptional curves C1, . . . , Cr, which are isomorphic to P1, and which
form a chain together with the strict transforms C0 and Cr+1 of z1 = 0 and
z2 = 0. The self intersections are given by (C2

i ) = −fi.
(3) det(Ci.Cj)r

i,j=1 = (−1)rn.
(4) In a neighborhood of Ci ∩ Ci+1, Ỹ has an affine open subset Ui with coor-

dinates (ui, vi) with the following properties. The curves Ci and Ci+1 are
defined by ui = 0 and vi = 0 respectively. The rational map X → Ỹ and
the morphism Ỹ → Y ′ are given by (ui, vi) = (xµi+1

1 x
−λi+1
2 , x−µi

1 xλi
2 ) and

(w, z1, z2) = (u
λi+(n−q)µi

n
i v

λi+1+(n−q)µi+1
n

i , uλi
i v

λi+1
i , uµi

i v
µi+1
i ), where λi and

µi are defined as follows. We set λr+1 = 0, λr = 1, µ0 = 0 and µ1 = 1.
For other values of i, they are the numerators of

fi+1 −
1

fi+2 − 1
fi+3−···− 1

fr

and fi−1 −
1

fi−2 − 1
fi−3−···− 1

f1

,

respectively.



PRIMITIVITY OF SUBLATTICES 13

Proof. (1), (2) This is from [3, Ch. III §5], especially Theorem 5.1 and Proposition
5.3.

(3) can be proven inductively by expanding the determinant along the first col-
umn.

(4) One can regard X,Y and Z as affine toric varieties in the following way.
• X is associated to the lattice Z2 and the cone σ = R≥0(1, 0) + R≥0(0, 1).
• Y is associated to the lattice N = Z2 + Z 1

n (q, 1) and the cone σ.
• Z is associated to the lattice

(
1
nZ

)2 and the cone σ.

Vectors vk = 1
n (λk, µk) decompose σ into a fan Σ. Let V be the toric variety

associated to (N, Σ). The equality λkµk+1 − λk+1µk = n from [3, Ch. III §5 (5)]
shows that V is nonsingular and that, if Dk denotes the toric divisor corresponding
to vk, the curves D0, D1, . . . , Dr+1 form a chain in this order. Since the map V → Y

has r exceptional divisors, V is isomorphic to Ỹ , and since D0 corresponds to C0,
Dk has to correspond to Ck. From this, our local description of Ỹ follows. ¤

Our intersection numbers can be calculated in the following way.
• Intersection numbers of the exceptional curves, including self intersection

numbers, are directly given by the previous proposition.
• Write (C.D)′′ for the intersection number on the inverse image of a distin-

guished point. One can write down the local equations for the total and
strict transforms of the distinguished or boundary curves, and calculate
(C.D)′′ in the case C is exceptional and D is distinguished or boundary, or
C and D are distinct distinguished or boundary curves.

• We are left with self intersection numbers of distinguished or boundary
curves. They can be calculated from other intersection numbers. For exam-
ple, one can write ψ∗Λi in the form L̄ipq +

∑
L̄ip′q′ +

∑
mkCk, where (p′, q′)

runs a certain set of indices and Ck are exceptional curves of the resolution.
Then we have (L̄2

ipq) = deg(L̄ipq → Λi) −
∑

(L̄ipq.L̄ip′q′) −
∑

mk(L̄ipq.Ck)

5. Examples

A Z/mZ-covering of P2 branching along B is given by a homomorphism

γ : π1(P2 \ B, b̃) → Z/mZ.

and hence by
a(γ) := [γ(β0), γ(β1), γ(β2), γ(β3)] ∈ (Z/mZ)4.

An element a = [a0, . . . , a3] ∈ (Z/mZ)4 with
∑

ai = 0 corresponds to a cyclic
covering of degree m if and only if a0, . . . , a3 generate Z/mZ. If such quadruples
a(γ) and a(γ′) are contained in the same orbit of (Z/mZ)4 under the action of the
permutation group S4 of the components and the diagonal action by (Z/mZ)∗,
then the corresponding coverings are topologically equivalent.

Below is the table of the data for all topological equivalence classes of the cyclic
coverings of degree d = 12, where

d⊥ := discL(Xϕ, Dϕ)⊥ = discL(Xϕ, Dϕ),

which has turned out to be equal to discL(Xϕ, Dϕ), and

dΛ := discL(Xϕ, ψ∗(Λ)).
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The column rk⊥ denotes the rank of L(Xϕ, Dϕ)⊥, and pg denotes the geometric
genus of Xϕ. Note that rk⊥ and pg does not depend on the choice of the resolution
ρ, and that the signature of L(Xϕ, Dϕ)⊥ is equal to (pg, rk⊥ − pg).

Example 5.1.

No. a d⊥ dΛ rk⊥ pg

1 [0, 0, 1, 11] 1 1 0 0
2 [0, 1, 1, 10] 1 (2)4(3)4 0 0
3 [0, 1, 2, 9] 1 (2)4 0 0
4 [0, 1, 3, 8] 1 1 0 0
5 [0, 1, 4, 7] 1 (3)4 0 0
6 [0, 1, 5, 6] 1 (2)4 0 0
7 [1, 1, 1, 9] (2)2(3) (2)10(3)5 8 3
8 [1, 1, 2, 8] (2)4(3) (2)8(3)5 6 2
9 [1, 1, 3, 7] (3)3 (2)6(3)7 6 2
10 [1, 1, 4, 6] 1 (2)4(3)4 4 1
11 [1, 1, 5, 5] (2)6 (2)14(3)4 6 3
12 [1, 1, 11, 11] 1 (2)6(3)4 0 0
13 [1, 2, 2, 7] (2)4(3)3 (2)10(3)7 6 3
14 [1, 2, 3, 6] (2)2(3)2 (2)8(3)2 4 1
15 [1, 2, 4, 5] (2)4 (2)8(3)4 4 1
16 [1, 2, 10, 11] 1 (2)6(3)4 0 0
17 [1, 3, 3, 5] (2)4(3)2 (2)10(3)2 4 2
18 [1, 3, 4, 4] (3)3 (3)7 6 1
19 [1, 3, 9, 11] 1 (2)6 0 0
20 [1, 3, 10, 10] (3)3 (2)6(3)7 6 1
21 [1, 4, 8, 11] 1 (3)4 0 0
22 [1, 4, 9, 10] (3) (2)4(3)5 6 0
23 [1, 5, 7, 11] 1 (2)6(3)4 0 0
24 [1, 5, 9, 9] (2)6 (2)14 6 1
25 [1, 6, 6, 11] 1 (2)6 0 0
26 [1, 6, 7, 10] (3)2 (2)6(3)6 4 0
27 [1, 6, 8, 9] (2)2 (2)6 4 0
28 [1, 7, 8, 8] (2)4(3)3 (2)4(3)7 6 1
29 [2, 3, 3, 4] (2)4 (2)8 4 1
30 [2, 3, 9, 10] 1 (2)6 0 0
31 [3, 4, 8, 9] 1 1 0 0

6. Miscellaneous facts

In this section, we will show the primitivity of L(Xϕ, Dϕ) in two special cases.
Let a0, . . . , a3 be as in the previous section.

6.1. Case ai ≡ 0 or ai + aj ≡ 0.

Proposition 6.1. (1) If ai ≡ 0 mod m, then Xϕ can be seen as a toric sur-
face in such a way that the support of ψ∗(B −Bi) is the complement of the
big orbit.
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(2) If ai + aj ≡ 0 mod m (i < j), then Xϕ can be seen as a toric surface in
such a way that the support of ψ∗(B + Λi′) contains the complement of the
big orbit, where i′ is chosen so that Λi′ passes through Pij.

Consequently, we have L(Xϕ, Dϕ) = NS(Xϕ) = H2(Xϕ) in these cases.

Proof. (1) We may assume i = 3, and then the cover is in fact branched only along
B0, B1 and B2. The projective plane can be seen as the toric surface associated
to the lattice N = Z2 and the fan Σ whose 1-skeletons are R≥0(1, 0), R≥0(0, 1)
and R≥0(−1,−1), and Yϕ is the toric surface associated to the sublattice {(k, l) ∈
N |a0k + a1l ≡ 0 mod m} and the same fan Σ.

(2) We may assume i = 0, j = 1 and hence i′ = 1. Let S = BlP01,P23P2 and
f = blP01,P23 : S → P2. Then (f−1)∗Λ1 is a (−1)-curve, so let g : S → T be the
blowdown and BT = g(f−1(B + Λ1)). We observe the following.

• The surface T is isomorphic to P1×P1. The curves g((f−1)∗B0), g((f−1)∗B1)
and g(f−1(P23)) belong to one ruling, and g((f−1)∗B2), g((f−1)∗B3) and
g(f−1(P01)) to the other ruling.

• P2 \ (B + Λ1) is isomorphic to T \ BT via f and g, and the covering Yϕ \
ϕ−1(B + Λ1) → T \ BT is unramified along g(f−1(P01)) and g(f−1(P23)).

Therefore Yϕ \ ϕ−1(B + Λ1) is contained in a cover of (P1 \ (2 points)) × (P1 \
(2 points)), and we have the assertion. ¤
6.2. Case m is a prime number.

Proposition 6.2. Assume the following.
(a) m = p is a prime number,
(b) ai ̸≡ 0 mod p for any i, and
(c) ai + aj ̸≡ 0 mod p for any i ̸= j.

Then the discriminant of L(Xϕ, ψ∗(Λ)) is p7 and the discriminant of L(Xϕ, Dϕ) is
p. Hence L(Xϕ, Dϕ) is primitive when m is a prime number.

Proof. Let i, j and k satisfy {i, j, k} = {1, 2, 3} and j < k, and consider the
homomorphism ki in Definition 4.2. The composite γ ◦ki is given by n 7→ n(a0+ai)
mod p, and by assumption (c), the group Ki in Definition 4.2 is trivial. Thus there
is only one distinguished curve L̄i00 over Λi, with mapping degree p, hence there is
only one distinguished point P̄0i0 (resp. P̄jk0) over P0i (resp. Pjk). Denoting the
exceptional curves of the minimal resolutions at P̄0i0 and P̄jk0 by C0iα and Cjkα,
we have ψ∗Λi = L̄i00 +

∑
mαC0iα +

∑
m′

αCjkα for some integers mα and m′
α.

It follows that L(Xϕ, ψ∗(Λ)) = ZL ⊕
⊕

0≤i<j≤3(
⊕

α ZCijα), where L denotes the
pullback of a line on P2. Since ZL and

⊕
α ZCijα for different (i, j) are orthogonal

to each other, we have discL(Xϕ, ψ∗(Λ)) = disc(ZL)
∏

0≤i<j≤3 disc(
⊕

α ZCijα).
Let us look at the resolution at Pij . Let hij be as in Definition 4.2, and then γ ◦hij

is given by (k, l) 7→ aik + aj l mod p. The group H̃ in Definition 4.5 is equal to
Ker γ ◦ hij , and our assumptions imply H̃ = (pZ × pZ) + Z(q, 1) for some q with
0 < q < p. Thus the singularity Pij is of type Ap,q, and we have disc

⊕
α ZCijα = p

by Proposition 4.7(3). Hence discL(Xϕ, ψ∗(Λ)) = p7.
By assumption (b), we have ψ∗B0 = pR0 +

∑3
i=1 Di, where R0 is mapped

isomorphically onto B0 and the support of Di is ψ−1(P0i). Define w : L(Xϕ, Dϕ) →
(Z/pZ)3 by C 7→ ((C.Di) mod p)3i=1.

Since L is the pullback of a line in P2, w(L) is obviously 0. For an exceptional
curve C, we have (C.Di) = 0 if ψ(C) ̸= P0i. If ψ(C) = P0i, then (C.Di) =
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(ψ∗B0.C) − (pR0.C) −
∑

j ̸=i(Dj .C) = −p(R0.C) ≡ 0 mod p. Therefore the sub-
lattice L(Xϕ, ψ∗(Λ)) is contained in Ker w. On the other hand, since the rami-
fication curve Ri over Bi is mapped isomorphically onto Bi, we have (Ri.Di) ≡
(Ri.ψ

∗B0) = 1 mod p. It is obvious that (Ri.Dj) is 0 if i ̸= j. Thus there is
a surjective homomorphism L(Xϕ, Dϕ)/L(Xϕ, ψ∗(Λ)) → (Z/pZ)3, and it follows
that discL(Xϕ, ψ∗(Λ))/discL(Xϕ, Dϕ) is a square number which is a multiple of
p6. Since discL(Xϕ, ψ∗(Λ)) = p7, we have discL(Xϕ, Dϕ) = p. ¤
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