MODULI CURVES OF SUPERSINGULAR $K 3$ SURFACES IN CHARACTERISTIC 2 WITH ARTIN INVARIANT 2

ICHIRO SHIMADA
Dedicated to Professor Igor V. Dolgachev for his 60th birthday

Abstract

We construct explicitly moduli curves of polarized supersingular $K 3$ surfaces in characteristic 2 with Artin invariant 2. As an application, we detect a "jump" phenomenon in a family of automorphism groups of supersingular $K 3$ surfaces with a constant Néron-Severi lattice.

1. Introduction

A $K 3$ surface is called supersingular if its numerical Néron-Severi lattice is of rank 22. Supersingular $K 3$ surfaces exist only in positive characteristics. Artin showed in [1] that, in characteristic $p>0$, the discriminant of the numerical NéronSeveri lattice of a supersingular $K 3$ surface X is of the form $-p^{2 \sigma(X)}$, where $\sigma(X)$ is a positive integer ≤ 10. This integer $\sigma(X)$ is called the Artin invariant of X.

We work over an algebraically closed field k of characteristic 2 .
Definition 1.1. Let X be a supersingular $K 3$ surface, and let \mathcal{L} be a line bundle on X with $\mathcal{L}^{2}=2$. We say that \mathcal{L} is a polarization of type (\sharp) if the following conditions are satisfied:

- the complete linear system $|\mathcal{L}|$ has no fixed components, and
- the set of curves contracted by the morphism $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$ defined by $|\mathcal{L}|$ consists of 21 disjoint (-2)-curves.

In [10], we have shown that every supersingular $K 3$ surface X in characteristic 2 has a polarization of type (\sharp), and that, if \mathcal{L} is a polarization of type (\sharp) on X, then the morphism $\Phi_{|\mathcal{L}|}$ is purely inseparable. In [11], we have constructed a 9 -dimensional moduli space \mathfrak{M} of polarized supersingular $K 3$ surfaces of type (\sharp). In this paper, we investigate the locus \mathfrak{M}_{2} of \mathfrak{M} corresponding to supersingular $K 3$ surfaces with Artin invariant 2. As Artin [1] showed, this locus is of dimension 1. We will show that the curve \mathfrak{M}_{2} is a disjoint union of three affine lines punctured at the origin. We will also construct explicitly the universal family of polarized supersingular $K 3$ surfaces over certain finite covers of these punctured affine lines. The construction involves investigations of configurations of lines and conics on the projective plane in characteristic 2 . These configurations are encoded by certain binary codes. In order to construct the moduli curve, we have to determine the automorphism groups of these codes. The automorphism group of the polarized $K 3$ surface is also obtained from the automorphism group of the corresponding code.

[^0]Let us briefly review the construction of the moduli space \mathfrak{M} in [11]. For a non-zero homogeneous polynomial $G \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$ of degree 6 , we denote by

$$
\pi_{G}: Y_{G} \rightarrow \mathbb{P}^{2}
$$

the purely inseparable double cover of \mathbb{P}^{2} defined by $W^{2}=G(X, Y, Z)$.
Definition 1.2. Let \mathcal{U} denote the locus of all non-zero homogeneous polynomials $G \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$ such that the surface Y_{G} has 21 ordinary nodes as its only singularities.

The locus \mathcal{U} is Zariski open dense in $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$. Indeed, in characteristic 2 , the differential $d G$ of G can be defined as a global section of $\Omega_{\mathbb{P}^{2}}^{1}(6)$ for any homogeneous polynomial $G \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$, because, by the isomorphism $\mathcal{O}_{\mathbb{P}^{2}}(6) \cong \mathcal{O}_{\mathbb{P}^{2}}(3)^{\otimes 2}$, we can assume that the transition functions of the line bundle corresponding to $\mathcal{O}_{\mathbb{P}^{2}}(6)$ are all squares. Since $c_{2}\left(\Omega_{\mathbb{P}^{2}}^{1}(6)\right)=21$, the subscheme $Z(d G)$ defined by $d G=0$ is reduced of dimension 0 if and only if it consists of 21 points. The singular locus $\operatorname{Sing}\left(Y_{G}\right)$ of Y_{G} is equal to $\pi_{G}^{-1}(Z(d G))$, and the singular point of Y_{G} lying over a reduced point of $Z(d G)$ is an ordinary node. Hence the condition that G be a point of \mathcal{U} is equivalent to the open condition that $Z(d G)$ be reduced of dimension 0 .

Let (X, \mathcal{L}) be a polarized supersingular $K 3$ surface of type (\sharp). Then there exists a homogeneous polynomial $G \in \mathcal{U}$ such that the Stein factorization of $\Phi_{|\mathcal{L}|}$ is written as

$$
X \xrightarrow{\rho_{G}} \quad Y_{G} \xrightarrow{\pi_{G}} \mathbb{P}^{2} .
$$

Conversely, suppose that we are given $G \in \mathcal{U}$. Let $\rho_{G}: X_{G} \rightarrow Y_{G}$ be the minimal resolution of the surface Y_{G}. Then X_{G} is a supersingular $K 3$ surface, and the invertible sheaf

$$
\mathcal{L}_{G}:=\left(\pi_{G} \circ \rho_{G}\right)^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)
$$

on X_{G} is a polarization of type (\sharp).
We put

$$
\mathcal{V}:=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)
$$

Because we have $d\left(G+H^{2}\right)=d G$ for any $H \in \mathcal{V}$, the additive group \mathcal{V} acts on the space \mathcal{U} by

$$
(G, H) \in \mathcal{U} \times \mathcal{V} \mapsto G+H^{2} \in \mathcal{U}
$$

Proposition 1.3. Let G and G^{\prime} be homogeneous polynomials in \mathcal{U}. Then the following conditions are equivalent:
(i) Y_{G} and $Y_{G^{\prime}}$ are isomorphic over \mathbb{P}^{2},
(ii) $Z(d G)=Z\left(d G^{\prime}\right)$, and
(iii) there exist $c \in k^{\times}$and $H \in \mathcal{V}$ such that $G^{\prime}=c G+H^{2}$.

See $\S 2$ for the proof.
Therefore the moduli space \mathfrak{M} of polarized supersingular $K 3$ surfaces of type (\sharp) is constructed by

$$
\mathfrak{M}=P G L(3, k) \backslash \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})
$$

For $G \in \mathcal{U}$, let $[G]$ denote the point of \mathfrak{M} corresponding to G, which corresponds to the isomorphism class of the polarized supersingular $K 3$ surface $\left(X_{G}, \mathcal{L}_{G}\right)$ of type (\sharp). By Proposition 1.3, the automorphism group $\operatorname{Aut}\left(X_{G}, \mathcal{L}_{G}\right)$ of the polarized supersingular $K 3$ surface is canonically identified with

$$
\{g \in P G L(3, k) \mid g(Z(d G))=Z(d G)\} .
$$

The moduli space \mathfrak{M} is stratified by the Artin invariant $\sigma\left(X_{G}\right)$ of X_{G}. We put

$$
\mathfrak{M}_{\sigma}:=\left\{[G] \in \mathfrak{M} \mid \sigma\left(X_{G}\right)=\sigma\right\} \quad \text { and } \quad \mathfrak{M}_{\leq \sigma}:=\left\{[G] \in \mathfrak{M} \mid \sigma\left(X_{G}\right) \leq \sigma\right\} .
$$

As was shown in [11], the locus $\mathfrak{M}_{\leq 1}=\mathfrak{M}_{1}$ consists of a single point $\left[G_{\mathrm{DK}}\right]$, where

$$
G_{\mathrm{DK}}:=X Y Z\left(X^{3}+Y^{3}+Z^{3}\right)
$$

is the homogeneous polynomial discovered by Dolgachev and Kondo in [5]. The points $Z\left(d G_{\mathrm{DK}}\right)$ coincide with the \mathbb{F}_{4}-rational points of \mathbb{P}^{2}, and hence the group $\operatorname{Aut}\left(X_{G_{\mathrm{DK}}}, \mathcal{L}_{G_{\mathrm{DK}}}\right)$ is equal to $\operatorname{PGL}\left(3, \mathbb{F}_{4}\right)$. We call $\left[G_{\mathrm{DK}}\right]$ the Dolgachev-Kondo point.

Now we can state our main results.
Theorem 1.4. The locus $\mathfrak{M}_{\leq 2}$ is a union of three irreducible curves $\overline{\mathfrak{M}}_{A}, \overline{\mathfrak{M}}_{B}$ and $\overline{\mathfrak{M}}_{C}$. In \mathfrak{M}, they are situated in such a way that, set-theoretically,

$$
\overline{\mathfrak{M}}_{A} \cap \overline{\mathfrak{M}}_{B}=\overline{\mathfrak{M}}_{B} \cap \overline{\mathfrak{M}}_{C}=\overline{\mathfrak{M}}_{C} \cap \overline{\mathfrak{M}}_{A}=\left\{\left[G_{\mathrm{DK}}\right]\right\} .
$$

For $T=A, B$ and C, we put

$$
\mathfrak{M}_{T}:=\overline{\mathfrak{M}}_{T} \backslash\left\{\left[G_{\mathrm{DK}}\right]\right\} .
$$

Hence \mathfrak{M}_{2} is the disjoint union of $\mathfrak{M}_{A}, \mathfrak{M}_{B}$ and \mathfrak{M}_{C}.
Theorem 1.5. For $T=A, B$ and C, the curve \mathfrak{M}_{T} is isomorphic to an affine line punctured at the origin.

We will describe the curves \mathfrak{M}_{T} more explicitly. Let $\omega \in \mathbb{F}_{4}$ be a primitive third root of unity, and let $\bar{\omega}$ be $\omega+1=\omega^{2}$.

Theorem 1.6. Let Γ_{A} be the group

$$
\left\{\lambda, \lambda+1, \frac{1}{\lambda}, \frac{1}{\lambda+1}, \frac{\lambda}{\lambda+1}, \frac{\lambda+1}{\lambda}\right\}
$$

acting on the punctured λ-line $\mathbb{A}^{1} \backslash\{0,1\}=\operatorname{Spec} k[\lambda, 1 / \lambda(\lambda+1)]$. We put

$$
J_{A}:=\frac{\left(\lambda^{2}+\lambda+1\right)^{3}}{\lambda^{2}(\lambda+1)^{2}}
$$

so that $k[\lambda, 1 / \lambda(\lambda+1)]^{\Gamma_{A}}=k\left[J_{A}\right]$ holds. We also put

$$
G A[\lambda]:=X Y Z(X+Y+Z)\left(X^{2}+Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+X Y+Y Z+Z X\right) .
$$

Then there exists an isomorphism

$$
\mathfrak{M}_{A} \cong \operatorname{Spec} k\left[J_{A}, 1 / J_{A}\right]
$$

such that the family $W^{2}=G A[\lambda]$ of sextic double planes over the finite Galois cover $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}=\operatorname{Spec} k\left[\lambda, 1 /\left(\lambda^{4}+\lambda\right)\right]$ of the moduli curve \mathfrak{M}_{A} yields the universal family of polarized supersingular K3 surfaces. The points $Z(d G A[\lambda])$ are given in Table 4.7. The origin $J_{A}=0$ corresponds to the Dolgachev-Kondo point.

For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}, \operatorname{Aut}\left(X_{G A[\alpha]}, \mathcal{L}_{G A[\alpha]}\right)$ is equal to the group

$$
\left\{\left[\begin{array}{c|c}
A & a \tag{1.1}\\
\hline 00 & 1
\end{array}\right] \in P G L(3, k) \left\lvert\, \begin{array}{l}
A \in G L\left(2, \mathbb{F}_{2}\right), \\
a, b \in\{0,1, \alpha, \alpha+1\}
\end{array}\right.\right\}
$$

of order 96 .

Theorem 1.7. We put

$$
Q_{\lambda}:=(\bar{\omega} \lambda+\omega) X^{2}+\bar{\omega} Y^{2}+\omega \lambda Z^{2}+(\lambda+1) X Y+(\bar{\omega} \lambda+\omega) Y Z+(\lambda+1) Z X
$$

and

$$
G B[\lambda]:=X Y Z(X+Y+Z) Q_{\lambda}
$$

Let Γ_{B} be the group

$$
\begin{aligned}
\left\{\lambda, \omega \lambda+1, \frac{1}{\lambda+1}, \frac{\lambda+\bar{\omega}}{\lambda+1},\right. & \frac{\bar{\omega} \lambda+\omega}{\lambda}, \frac{\bar{\omega}}{\lambda}, \frac{\omega}{\lambda+\bar{\omega}} \\
& \left.\frac{\bar{\omega}(\lambda+1)}{\lambda+\bar{\omega}}, \frac{\bar{\omega} \lambda}{\lambda+1}, \frac{\lambda}{\lambda+\bar{\omega}}, \frac{\lambda+1}{\lambda}, \bar{\omega}(\lambda+1)\right\}
\end{aligned}
$$

acting on the punctured λ-line $\mathbb{A}^{1} \backslash\{0,1, \bar{\omega}\}=\operatorname{Spec} k[\lambda, 1 / \lambda(\lambda+1)(\lambda+\bar{\omega})]$. We put

$$
J_{B}:=\frac{(\lambda+\omega)^{12}}{\lambda^{3}(\lambda+1)^{3}(\lambda+\bar{\omega})^{3}}
$$

so that $k[\lambda, 1 / \lambda(\lambda+1)(\lambda+\bar{\omega})]^{\Gamma_{B}}=k\left[J_{B}\right]$ holds. Then there exists an isomorphism

$$
\mathfrak{M}_{B} \cong \operatorname{Spec} k\left[J_{B}, 1 / J_{B}\right]
$$

such that the family $W^{2}=G B[\lambda]$ of sextic double planes over the finite Galois cover $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}=\operatorname{Spec} k\left[\lambda, 1 /\left(\lambda^{4}+\lambda\right)\right]$ of the moduli curve \mathfrak{M}_{B} yields the universal family of polarized supersingular K3 surfaces. The points $Z(d G B[\lambda])$ are given in Table 5.5. The origin $J_{B}=0$ corresponds to the Dolgachev-Kondo point.

For any $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}, \operatorname{Aut}\left(X_{G B[\alpha]}, \mathcal{L}_{G B[\alpha]}\right)$ is equal to the subgroup of $P G L(3, k)$ generated by

$$
\left[\begin{array}{lll}
0 & \omega & 0 \tag{1.2}\\
\bar{\omega} & 1 & 0 \\
1 & 1 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & \bar{\omega} \\
1 & 1 & 1 \\
\omega & 0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
\bar{\omega} & 1 & 0 \\
\omega & 0 & 1
\end{array}\right] .
$$

In particular, $\operatorname{Aut}\left(X_{G B[\alpha]}, \mathcal{L}_{G B[\alpha]}\right)$ is isomorphic to the extended Heisenberg group of order 18.

Theorem 1.8. Let Γ_{C} be the group

$$
\left\{\alpha \lambda+\beta \mid \alpha \in \mathbb{F}_{4}^{\times}, \beta \in \mathbb{F}_{4}\right\}
$$

of order 12 acting on the λ-line $\mathbb{A}^{1}=k[\lambda]$. We put

$$
J_{C}:=\left(\lambda^{4}+\lambda\right)^{3}
$$

so that $k[\lambda]^{\Gamma_{C}}=k\left[J_{C}\right]$ holds. We also put

$$
G C[\lambda]:=X Y Z\left(X^{3}+Y^{3}+Z^{3}\right)+\left(\lambda^{4}+\lambda\right) X^{3} Y^{3}
$$

Then there exists an isomorphism

$$
\mathfrak{M}_{C} \cong \operatorname{Spec} k\left[J_{C}, 1 / J_{C}\right]
$$

such that the family $W^{2}=G C[\lambda]$ of sextic double planes over the finite Galois cover $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}=\operatorname{Spec} k\left[\lambda, 1 /\left(\lambda^{4}+\lambda\right)\right]$ of the moduli curve \mathfrak{M}_{C} yields the universal family of polarized supersingular K3 surfaces. The points $Z(d G C[\lambda])$ are given in Table 6.4. The origin $J_{C}=0$ corresponds to the Dolgachev-Kondo point.

For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}, \operatorname{Aut}\left(X_{G C[\alpha]}, \mathcal{L}_{G C[\alpha]}\right)$ is equal to

$$
\left\{\left.\left[\begin{array}{ccc}
a & b & 0 \tag{1.3}\\
c & d & 0 \\
a^{2} c^{2} \alpha+e & b^{2} d^{2} \alpha+f & 1
\end{array}\right] \in P G L(3, k) \right\rvert\, \begin{array}{l}
a, b, c, d, e, f \in \mathbb{F}_{4} \\
a d+b c=1
\end{array}\right\}
$$

of order 960 .
Next we consider the isomorphism classes of non-polarized supersingular K3 surfaces with Artin invariant 2.

Definition 1.9. A reduced (possibly reducible) curve D in $\mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}$ is called a correspondence between \mathfrak{M}_{T} and $\mathfrak{M}_{T^{\prime}}$. For a correspondence $D \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}$, let ${ }^{t} D$ denote the correspondence in $\mathfrak{M}_{T^{\prime}} \times \mathfrak{M}_{T}$ obtained from D by interchanging the first and the second factors. When D is a union of two curves D_{1} and D_{2} without common irreducible components, we write $D=D_{1}+D_{2}$ and $D_{2}=D-D_{1}$. Let $D_{1} \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}$ and $D_{2} \subset \mathfrak{M}_{T^{\prime}} \times \mathfrak{M}_{T^{\prime \prime}}$ be correspondences. The composite $D_{1} * D_{2} \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime \prime}}$ of D_{1} and D_{2} is defined to be the image of

$$
\left(D_{1} \times \mathfrak{M}_{T^{\prime \prime}}\right) \cap\left(\mathfrak{M}_{T} \times D_{2}\right) \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}} \times \mathfrak{M}_{T^{\prime \prime}}
$$

by the natural projection to $\mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime \prime}}$.
Definition 1.10. A correspondence D in $\mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}$ is called an isomorphism correspondence if, for every point $\left([G],\left[G^{\prime}\right]\right)$ of D, the supersingular $K 3$ surfaces X_{G} and $X_{G^{\prime}}$ (without polarization) are isomorphic. An isomorphism correspondence $D \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}$ is said to be trivial if T is equal to T^{\prime} and D is the diagonal Δ_{T} of $\mathfrak{M}_{T} \times \mathfrak{M}_{T}$.

Using Cremona transformations by quintic curves, which played a central role in the study of $\operatorname{Aut}\left(X_{G_{\mathrm{DK}}}\right)$ in [5], we have obtained examples of non-trivial isomorphism correspondences.

Definition 1.11. Let G be a homogeneous polynomial in \mathcal{U}. We say that a subset $\Sigma \subset Z(d G)$ of cardinality 6 is a center of Cremona transformation for $\left(X_{G}, \mathcal{L}_{G}\right)$ or for G if Σ satisfies the following conditions:

- no three points of Σ are collinear, and
- for each $p_{i} \in \Sigma$, there exists a conic curve $N_{i}^{\prime} \subset \mathbb{P}^{2}$ such that $N_{i}^{\prime} \cap Z(d G)=$ $\Sigma \backslash\left\{p_{i}\right\}$.
Note that the conic curve N_{i}^{\prime} is necessarily nonsingular.
Let $\Sigma=\left\{p_{1}, \ldots, p_{6}\right\}$ be a center of Cremona transformation for $\left(X_{G}, \mathcal{L}_{G}\right)$. Consider the linear system $\left|\mathcal{I}_{\Sigma}^{2}(5)\right| \subset\left|\mathcal{O}_{\mathbb{P}^{2}}(5)\right|$ of quintic curves that pass through all the points of Σ and are singular at each point of Σ. Then $\left|\mathcal{I}_{\Sigma}^{2}(5)\right|$ is of dimension 2 , and defines a birational map

$$
\mathrm{CT}_{\Sigma}: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{2}
$$

The birational map CT_{Σ} is the composite of the blowing up $\beta: S \rightarrow \mathbb{P}^{2}$ of the points of Σ and the blowing down $\beta^{\prime}: S \rightarrow \mathbb{P}^{2}$ of the strict transforms N_{i} of the conic curves N_{i}^{\prime}. We denote by p_{i}^{\prime} the image of N_{i} by β^{\prime}. Note that, if $p \in \mathbb{P}^{2} \backslash \Sigma$, then the point $\mathrm{CT}_{\Sigma}(p) \in \mathbb{P}^{2}$ is well-defined.

Proposition 1.12 (Dolgachev-Kondo [5]). We put

$$
Z^{\prime}:=\left\{\mathrm{CT}_{\Sigma}(p) \mid p \in Z(d G) \backslash \Sigma\right\} \cup\left\{p_{1}^{\prime}, \ldots, p_{6}^{\prime}\right\}
$$

Then there exists a homogeneous polynomial $G^{\prime} \in \mathcal{U}$ such that $Z^{\prime}=Z\left(d G^{\prime}\right)$. The birational map CT_{Σ} of \mathbb{P}^{2} lifts to an isomorphism

$$
\widetilde{\mathrm{CT}}_{\Sigma}: X_{G} \xrightarrow{\sim} X_{G^{\prime}}
$$

of supersingular K3 surfaces.
See also $\S 8$ of this paper for the proof of Proposition 1.12. Note that the polynomial G^{\prime} is not uniquely determined, but the point $\left[G^{\prime}\right] \in \mathfrak{M}$ is uniquely determined by G and Σ. We call $\widetilde{\mathrm{CT}}_{\Sigma}$ the Cremona transformation of X_{G} with center Σ.

Let T be A, B or C. As Tables 4.7, 5.5 and 6.4 show, the family

$$
\{(p, \lambda) \mid p \in Z(d G T[\lambda])\} \quad \subset \mathbb{P}^{2} \times\left(\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right)
$$

of the points $Z(d G T[\lambda])$ consists of 21 connected components, each of which is étale of degree 1 over the punctured λ-line $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. Therefore it makes sense to talk about a family $\Sigma[\lambda]$ of subsets of $Z(d G T[\lambda])$ that depends on λ continuously. It can be shown that, if $\Sigma[\alpha]$ is a center of Cremona transformation for $G T[\alpha]$ at one $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$, then so is $\Sigma[\alpha]$ at every $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$. In this case, we say that $\Sigma[\lambda]$ is a center of Cremona transformation for $G T[\lambda]$ or for $\left(X_{G T[\lambda]}, \mathcal{L}_{G T[\lambda]}\right)$.

Suppose that $\Sigma[\lambda]$ is a center of Cremona transformation for $G T[\lambda]$. Then there exist a family $G^{\prime}[\lambda]$ of homogeneous polynomials in \mathcal{U} and a family of isomorphisms

$$
\widetilde{\mathrm{CT}}_{\Sigma[\lambda]}: X_{G T[\lambda]} \xrightarrow{\sim} X_{G^{\prime}[\lambda]}
$$

depending on the parameter λ. The points $\left[G^{\prime}[\lambda]\right]$ are of course contained in $\mathfrak{M}_{2}=$ $\mathfrak{M}_{A} \sqcup \mathfrak{M}_{B} \sqcup \mathfrak{M}_{C}$. Suppose that $\left[G^{\prime}[\lambda]\right] \in \mathfrak{M}_{T^{\prime}}$. Then the curve

$$
\left\{\left([G T[\lambda]],\left[G^{\prime}[\lambda]\right]\right) \in \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}} \mid \lambda \in \mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right\}
$$

is an irreducible isomorphism correspondence between \mathfrak{M}_{T} and $\mathfrak{M}_{T^{\prime}}$.
Theorem 1.13. (1) There exist 1644 centers of Cremona transformation for the family $\left(X_{G A[\lambda]}, \mathcal{L}_{G A[\lambda]}\right)$. They yield the following isomorphism correspondences:

- 156 of them give the trivial correspondence Δ_{A},
- 144 of them give the correspondence

$$
D_{A, A, 1}: 1+J_{A} J_{A}^{\prime}+J_{A}^{2}{J_{A}^{\prime}}^{2}+J_{A}^{2} J_{A}^{\prime}{ }^{3}+J_{A}^{3} J_{A}^{\prime 2}=0
$$

in $\mathfrak{M}_{A} \times \mathfrak{M}_{A}$,

- 720 of them give the correspondence

$$
D_{A, A, 2}:=D_{A, A, 1} * D_{A, A, 1}-\Delta_{A} \subset \mathfrak{M}_{A} \times \mathfrak{M}_{A}
$$

- 576 of them give the correspondence

$$
D_{A, B, 1}: J_{B}+J_{A} J_{B}+J_{A}{J_{B}}^{2}+J_{A}{ }^{2} J_{B}+J_{A}^{4}=0
$$

in $\mathfrak{M}_{A} \times \mathfrak{M}_{B}$,

- 48 of them give the correspondence

$$
D_{A, C, 1}: J_{C}+J_{A}+J_{A} J_{C}+J_{A}^{2} J_{C}+J_{A}{ }^{4} J_{C}{ }^{2}=0
$$

in $\mathfrak{M}_{A} \times \mathfrak{M}_{C}$.
(2) There exist 1374 centers of Cremona transformation for $\left(X_{G B[\lambda]}, \mathcal{L}_{G B[\lambda]}\right)$. They yield the following isomorphism correspondences:

- 798 of them give the trivial correspondence Δ_{B},

T	T^{\prime}	name	the equation
A	A	$D_{A, A, 1}$	$J_{A}{ }^{3} J_{A}^{\prime}{ }^{2}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{3}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{2}+J_{A} J_{A}^{\prime}+1$
A	A	$D_{A, A, 2}$	$\begin{aligned} & J_{A}{ }^{6} J_{A}^{\prime}{ }^{2}+J_{A}{ }^{4} J_{A}^{\prime}{ }^{4}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{6}+J_{A}{ }^{4} J_{A}^{\prime}{ }^{3}+J_{A}{ }^{3} J_{A}^{\prime}{ }^{4}+J_{A}{ }^{4} J_{A}^{\prime}{ }^{2}+ \\ & J_{A}{ }^{3} J_{A}^{\prime 3}+J_{A}{ }^{2} J_{A}^{\prime 4}+J_{A}{ }^{4} J_{A}^{\prime}+J_{A} J_{A}^{\prime 4}+J_{A}{ }^{3} J_{A}^{\prime}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{2}+J_{A} J_{A}^{\prime 3}+ \\ & J_{A}{ }^{3}+J_{A}{ }^{2} J_{A}^{\prime}+J_{A} J_{A}^{\prime}{ }^{2}+J_{A}^{\prime}{ }^{3} \end{aligned}$
B	B	$D_{B, B, 1}$	$J_{B}{ }^{4} J_{B}^{\prime}+J_{B}{ }^{3} J_{B}^{\prime}{ }^{2}+J_{B}{ }^{2} J_{B}^{\prime}{ }^{3}+J_{B}{J_{B}^{\prime}}^{4}+{J_{B}}^{3} J_{B}^{\prime}+J_{B}{ }^{2} J_{B}^{\prime}{ }^{2}+J_{B} J_{B}^{\prime}{ }^{3}+1$
C	C	$D_{C, C, 1}$	$J_{C}{ }^{4} J_{C}^{\prime}{ }^{4}+J_{C}{ }^{3} J_{C}^{\prime}+J_{C}{ }^{2}{J_{C}^{\prime}}^{2}+J_{C}{J_{C}^{\prime}}^{3}+J_{C}{ }^{3}+J_{C}{ }^{2} J_{C}^{\prime}+J_{C} J_{C}^{\prime}{ }^{2}+J_{C}^{\prime}{ }^{3}$
A	B	$D_{A, B, 1}$	$J_{A}{ }^{4}+J_{A}{ }^{2} J_{B}+J_{A} J_{B}{ }^{2}+J_{A} J_{B}+J_{B}$
A	B	$D_{A, B, 2}$	$\begin{aligned} & J_{A}{ }^{6} J_{B}+J_{A}{ }^{5} J_{B}+J_{A}{ }^{4} J_{B}{ }^{2}+J_{A}{ }^{3} J_{B}{ }^{3}+J_{A}{ }^{4} J_{B}+J_{A}{ }^{2} J_{B}{ }^{2}+J_{A}{ }^{2} J_{B}+ \\ & J_{A} J_{B}+1 \end{aligned}$
B	C	$D_{B, C, 1}$	$J_{B} J_{C}+1$
B	C	$D_{B, C, 2}$	$J_{B}{ }^{4} J_{C}{ }^{3}+J_{B}{ }^{3} J_{C}{ }^{3}+J_{B}{ }^{3} J_{C}{ }^{2}+J_{B}{ }^{2} J_{C}{ }^{2}+J_{C}{ }^{4}+J_{B}{ }^{2} J_{C}+J_{B} J_{C}+J_{B}$
C	A	$D_{C, A, 1}$	$J_{C}{ }^{2} J_{A}{ }^{4}+J_{C} J_{A}{ }^{2}+J_{C} J_{A}+J_{C}+J_{A}$
C	A	$D_{C, A, 2}$	$\begin{aligned} & J_{C}{ }^{2} J_{A}{ }^{6}+J_{C}{ }^{2} J_{A}{ }^{5}+J_{C}{ }^{2} J_{A}{ }^{4}+J_{C} J_{A}{ }^{4}+J_{C}{ }^{2} J_{A}{ }^{2}+J_{C}{ }^{3}+J_{C}{ }^{2} J_{A}+ \\ & J_{C} J_{A}{ }^{2}+J_{A}^{3} \end{aligned}$

Table 1.1. Non-trivial irreducible isomorphism correspondences

- 216 of them give the correspondence

$$
D_{B, A, 1}:={ }^{t} D_{A, B, 1} \subset \mathfrak{M}_{B} \times \mathfrak{M}_{A},
$$

- 360 of them give the correspondence

$$
D_{B, B, 1}:=D_{B, A, 1} * D_{A, B, 1}-\Delta_{B} \subset \mathfrak{M}_{B} \times \mathfrak{M}_{B} .
$$

(3) There exist 2224 centers of Cremona transformation for $\left(X_{G C[\lambda]}, \mathcal{L}_{G C[\lambda]}\right)$. They yield the following isomorphism correspondences:

- 1200 of them give the trivial correspondence Δ_{C},
- 960 of them give the correspondence

$$
D_{C, A, 1}:={ }^{t} D_{A, C, 1} \subset \mathfrak{M}_{C} \times \mathfrak{M}_{A},
$$

- 64 of them give the correspondence

$$
D_{C, C, 1}:=D_{C, A, 1} * D_{A, C, 1}-\Delta_{C} \subset \mathfrak{M}_{C} \times \mathfrak{M}_{C}
$$

Starting from the isomorphism correspondences by Cremona transformation above, making transposes and composites, and taking irreducible components, we obtain non-trivial irreducible isomorphism correspondences given in Table 1.1. When $T \neq T^{\prime}$, we denote by $D_{T^{\prime}, T, \nu}$ the correspondence ${ }^{t} D_{T, T^{\prime}, \nu}$ for $\nu=1$ and 2 . They have the relations in Table 8.5 at the end of $\S 8$.
Question 1.14. Are there any non-trivial irreducible isomorphism correspondences other than the ones in Table 1.1 and their transposes?

The Cremona transformations that yield the trivial isomorphism correspondence are also interesting, because they give automorphisms of the supersingular $K 3$ surface X that may not be contained in $\operatorname{Aut}(X, \mathcal{L})$. See Remark 7.12.

Observation 1.15. Consider a Cremona transformation $\widetilde{\mathrm{CT}}_{\Sigma}$ on $\left(X_{G A[\lambda]}, \mathcal{L}_{G A[\lambda]}\right)$ that yields the non-trivial isomorphism correspondence $D_{A, A, 1}$. The curve $D_{A, A, 1}$ intersects the diagonal Δ_{A} at two points $\left(J_{A}, J_{A}^{\prime}\right)=(\omega, \omega)$ and $(\bar{\omega}, \bar{\omega})$. Let η be an element of k such that the J_{A}-invariant of $\left(X_{G A[\eta]}, \mathcal{L}_{G A[\eta]}\right)$ is ω or $\bar{\omega}$; that is, η is a root of

$$
\left(\lambda^{4}+\lambda^{3}+1\right)\left(\lambda^{4}+\lambda+1\right)\left(\lambda^{4}+\lambda^{3}+\lambda^{2}+\lambda+1\right)=0
$$

The Cremona transformation $\widetilde{\mathrm{CT}}_{\Sigma}$ gives rise to an automorphism of $X_{G A[\eta]}$, which cannot be deformed to any automorphisms of $X_{G A[\lambda]}$ for a generic λ. In other words, the automorphism group $\operatorname{Aut}\left(X_{G A[\lambda]}\right)$ of the non-polarized supersingular $K 3$ surface $X_{G A[\lambda]}$ jumps at $\lambda=\eta$, even though the numerical Néron-Severi lattice of $X_{G A[\lambda]}$ is constant around $\lambda=\eta$. Note that the automorphism group of a supersingular $K 3$ surface is always embedded into the orthogonal group of its numerical Néron-Severi lattice ([8, $\S 8$, Proposition 3]).

The plan of this paper is as follows. In $\S 2$, we recall from [11] the definition of the binary code associated with a polarized supersingular $K 3$ surface of type (\sharp). We stratify the moduli space \mathfrak{M} according to the isomorphism classes $[\mathbf{C}]$ of the codes, and give a method to construct the stratum $\mathfrak{M}_{[\mathbf{C}]}$ from the code C. In $\S 3$, we present three isomorphism classes $\left[\mathbf{C}_{A}\right],\left[\mathbf{C}_{B}\right]$ and $\left[\mathbf{C}_{C}\right]$ of codes that are associated with polarized supersingular $K 3$ surfaces of type (\sharp) with Artin invariant 2 . In $\S 4, \S 5$ and $\S 6$, we carry out the method of the construction of $\mathfrak{M}_{[\mathbf{C}]}$ for $\mathbf{C}=\mathbf{C}_{A}, \mathbf{C}_{B}$ and \mathbf{C}_{C}, and prove Theorems 1.6, 1.7 and 1.8, respectively. In $\S 7$, we review from [5] the theory of Cremona transformations by quintic curves. In §8, we explain the algorithm to calculate the isomorphism correspondences given by Cremona transformations, and prove Theorem 1.13.

The isomorphism classes of codes associated with polarized supersingular K3 surfaces of Artin invariant $\sigma \geq 3$ are also given in [11]. For $\sigma=3$, there are 13 isomorphism classes, and for $\sigma=4$, there are 41 isomorphism classes. It would be a challenging problem in computational algebraic geometry to construct explicitly the moduli spaces of dimension $\sigma-1$ corresponding to these isomorphism classes of codes, and to investigate the relations between them.

In [7], Rudakov and Shafarevich gave explicitly families of supersingular K3 surfaces in characteristic 2 for Artin invariants $\sigma=1, \ldots, 10$. The equation of the family for $\sigma=2$ is

$$
y^{2}=x^{3}+\mu t^{6} x+t^{5}(t+1)^{4}
$$

where μ is the "modulus". We would like to know the relation between μ and our moduli J_{A}, J_{B} and J_{C}.

The polarized supersingular $K 3$ surface of type (\sharp) is an example of Zariski surfaces. A general theory of Zariski surfaces has been developed in [2].

Notation and terminologies.

(1) Let A be a commutative ring, and S a set. We denote by A^{S} the A-module of all maps from S to A.
(2) Let S be a finite set. The full symmetric group of S is denoted by $\mathfrak{S}(S)$, which acts on S from left. We denote by $\operatorname{Pow}(S)$ the power set of S. A canonical identification between $\operatorname{Pow}(S)$ and \mathbb{F}_{2}^{S} is given by $f \in \mathbb{F}_{2}^{S} \mapsto f^{-1}(1) \subset S$. Hence $\operatorname{Pow}(S)$ has a structure of the \mathbb{F}_{2}-vector space by the symmetric difference

$$
T_{1}+T_{2}=\left(T_{1} \cup T_{2}\right) \backslash\left(T_{1} \cap T_{2}\right) \quad\left(T_{1}, T_{2} \subset S\right)
$$

A linear subspace of $\mathbb{F}_{2}^{S}=\operatorname{Pow}(S)$ is called a code, and an element of a code is called a word. A word is expressed either as a vector of dimension $|S|$ with coefficients in \mathbb{F}_{2}, or as a subset of S. The cardinality $|A|$ of a word $A \subset S$ is called the weight of A. The automorphism group $\operatorname{Aut}(\mathbf{C})$ of a code $\mathbf{C} \subset \operatorname{Pow}(S)$ is the subgroup of $\mathfrak{S}(S)$ consisting of all permutations preserving \mathbf{C}. Two codes \mathbf{C} and \mathbf{C}^{\prime} in $\operatorname{Pow}(S)$ are said to be isomorphic if there exists a permutation $\sigma \in \mathfrak{S}(S)$ such that $\sigma(\mathbf{C})=\mathbf{C}^{\prime}$. The isomorphism class of codes represented by a code \mathbf{C} is denoted by [C].
(3) A lattice is a free \mathbb{Z}-module Λ of finite rank equipped with a non-degenerate symmetric bilinear form $\Lambda \times \Lambda \rightarrow \mathbb{Z}$. A lattice is called even if $v^{2} \in 2 \mathbb{Z}$ holds for every $v \in \Lambda$. A lattice is called hyperbolic if the signature of the symmetric bilinear form on $\Lambda \otimes \mathbb{R}$ is $(1, r-1)$, where r is the rank of Λ. The dual lattice Λ^{\vee} of Λ is the \mathbb{Z}-module $\operatorname{Hom}(\Lambda, \mathbb{Z})$. There exists a canonical embedding $\Lambda \hookrightarrow \Lambda^{\vee}$ of finite cokernel. Hence Λ^{\vee} can be regarded as a submodule of $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$. We have a natural \mathbb{Q}-valued symmetric bilinear form on Λ^{\vee} that extends the \mathbb{Z}-valued bilinear form on Λ. An overlattice of Λ is a submodule Λ^{\prime} of Λ^{\vee} containing Λ such that the canonical \mathbb{Q}-valued symmetric bilinear form on Λ^{\vee} takes values in \mathbb{Z} on Λ^{\prime}.

2. The codes associated with the supersingular K3 surfaces

First we give a proof of Proposition 1.3.
Proof of Proposition 1.3. The equivalence of (i) and (iii) follows from the structure of the graded ring $\oplus_{m \geq 0} H^{0}\left(X, \mathcal{L}^{\otimes m}\right)$, where X is a $K 3$ surface and \mathcal{L} is a line bundle of degree 2. (See [11, §7].) By [11, Theorem 2.1], $Z(d G)=Z\left(d G^{\prime}\right)$ holds if and only if $d G=c \cdot d G^{\prime}$ for some $c \in k^{\times}$. Since the kernel of $G \mapsto d G$ is equal to $\left\{H^{2} \mid H \in \mathcal{V}\right\}$, the equivalence of (ii) and (iii) follows.
2.1. Definition of the $\operatorname{code} \mathcal{C}(X, \mathcal{L}, \gamma)$. Let us fix a finite set

$$
\mathcal{P}:=\left\{P_{1}, \ldots, P_{21}\right\}
$$

consisting of 21 elements, on which the full symmetric group $\mathfrak{S}(\mathcal{P})$ acts from left.
Definition 2.1. We denote by \mathcal{G} the space of all injective maps $\gamma: \mathcal{P} \hookrightarrow \mathbb{P}^{2}$ such that there exists a homogeneous polynomial $G \in \mathcal{U}$ satisfying $\gamma(\mathcal{P})=Z(d G)$.

The space \mathcal{G} are constructed as follows. For $G \in \mathcal{U}$, let $\langle G\rangle \in \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})$ denote the point corresponding to G. We denote by

$$
\mathcal{Z}:=\left\{(p,\langle G\rangle) \in \mathbb{P}^{2} \times \mathbb{P}_{*}(\mathcal{U} / \mathcal{V}) \mid p \in Z(d G)\right\} \rightarrow \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})
$$

the family of $Z(d G)$, which is finite and étale of degree 21 over $\mathbb{P}_{*}(\mathcal{U} / \mathcal{V})$. We prepare 21 copies of \mathcal{Z} and make the fiber-product $\mathcal{Z}^{(21)}$ of them over $\mathbb{P}_{*}(\mathcal{U} / \mathcal{V})$. Then \mathcal{G} is the union of irreducible components of $\mathcal{Z}^{(21)}$ that do not intersect the big diagonal.
Remark 2.2. We fix a base point $\left\langle G_{0}\right\rangle \in \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})$, and consider the monodromy action

$$
\mu: \pi_{1}\left(\mathbb{P}_{*}(\mathcal{U} / \mathcal{V}),\left\langle G_{0}\right\rangle\right) \rightarrow \mathfrak{S}\left(Z\left(d G_{0}\right)\right)
$$

of the algebraic fundamental group of $\mathbb{P}_{*}(\mathcal{U} / \mathcal{V})$ on $Z\left(d G_{0}\right)$. Then the number of irreducible components of \mathcal{G} is equal to the index of the image of μ in $\mathfrak{S}\left(Z\left(d G_{0}\right)\right)$. It was shown in [2, Chapter 4, Appendix 2] that the monodromy group on the singular points of a generic Zariski surface in characteristic ≥ 5 is equal to the full-symmetric group.

The group $\mathfrak{S}(\mathcal{P})$ acts on \mathcal{G} from right, and $\operatorname{PGL}(3, k)$ acts on \mathcal{G} from left. By Proposition 1.3, we have

$$
\mathfrak{M}=P G L(3, k) \backslash \mathcal{G} / \mathfrak{S}(\mathcal{P}) .
$$

Let

$$
N_{0}:=\mathbb{Z}^{\mathcal{P}} \oplus \mathbb{Z} h=\bigoplus_{i=1}^{21} \mathbb{Z} e_{i} \oplus \mathbb{Z} h
$$

be a free \mathbb{Z}-module of rank 22 generated by vectors e_{1}, \ldots, e_{21} corresponding to $P_{1}, \ldots, P_{21} \in \mathcal{P}$ and a vector h. We equip N_{0} with a structure of the even hyperbolic lattice by

$$
e_{i}^{2}=-2, \quad h^{2}=2, \quad e_{i} e_{j}=0 \quad(i \neq j), \quad h e_{i}=0
$$

The dual lattice

$$
N_{0}^{\vee}=\operatorname{Hom}\left(N_{0}, \mathbb{Z}\right) \subset N_{0} \otimes_{\mathbb{Z}} \mathbb{Q}
$$

is generated by $e_{i} / 2(i=1, \ldots, 21)$ and $h / 2$. Thus we have a canonical isomorphism

$$
N_{0}^{\vee} / N_{0} \cong \mathbb{F}_{2}^{\mathcal{P}} \oplus \mathbb{F}_{2}=\operatorname{Pow}(\mathcal{P}) \oplus \mathbb{F}_{2}
$$

Hence we can write an element of N_{0}^{\vee} / N_{0} in the form (A, α), where A is a subset of \mathcal{P} and $\alpha \in \mathbb{F}_{2}$. We denote by

$$
\operatorname{pr}: N_{0}^{\vee} \rightarrow N_{0}^{\vee} / N_{0}=\operatorname{Pow}(\mathcal{P}) \oplus \mathbb{F}_{2}
$$

the natural projection. We also denote by

$$
\rho: N_{0}^{\vee} / N_{0}=\operatorname{Pow}(\mathcal{P}) \oplus \mathbb{F}_{2} \rightarrow \operatorname{Pow}(\mathcal{P})
$$

the natural projection onto the first factor. The following is obvious:
Lemma 2.3. Let $\widetilde{\mathcal{C}}$ be a subspace of the \mathbb{F}_{2}-vector space $\operatorname{Pow}(\mathcal{P}) \oplus \mathbb{F}_{2}$. Then the submodule $\mathrm{pr}^{-1}(\widetilde{\mathcal{C}})$ of N_{0}^{\vee} is an even overlattice of N_{0} if and only if

$$
|A| \equiv \begin{cases}0 \bmod 4 & \text { if } \alpha=0 \\ 1 \bmod 4 & \text { if } \alpha=1\end{cases}
$$

holds for every $(A, \alpha) \in \widetilde{\mathcal{C}}$.
Let (X, \mathcal{L}) be a polarized supersingular $K 3$ surface of type (\sharp), and let $N S(X)$ denote the numerical Néron-Severi lattice of X. There exists $G \in \mathcal{U}$ such that $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$ factors through $\pi_{G}: Y_{G} \rightarrow \mathbb{P}^{2}$. We put

$$
Z_{(X, \mathcal{L})}:=Z(d G)=\pi_{G}\left(\operatorname{Sing} Y_{G}\right)
$$

There also exists a point $\gamma: \mathcal{P} \hookrightarrow \mathbb{P}^{2}$ of \mathcal{G}, unique up to the action of $\mathfrak{S}(\mathcal{P})$, that induces a bijection from \mathcal{P} to $Z_{(X, \mathcal{L})}$. We fix such a point $\gamma \in \mathcal{G}$. Let E_{i} be the (-2)-curve on X such that $\Phi_{|\mathcal{L}|}\left(E_{i}\right)$ is the point $\gamma\left(P_{i}\right) \in Z_{(X, \mathcal{L})}$. Then we obtain an embedding

$$
\iota_{\gamma}: N_{0} \hookrightarrow N S(X)
$$

of the lattice N_{0} into $N S(X)$ by $e_{i} \mapsto\left[E_{i}\right]$ and $h \mapsto[\mathcal{L}]$. By the embedding ι_{γ}, we can regard $N S(X)$ as a submodule of N_{0}^{\vee}. We put

$$
\begin{aligned}
& \widetilde{\mathcal{C}}(X, \mathcal{L}, \gamma):=N S(X) / N_{0} \subset \operatorname{Pow}(\mathcal{P}) \oplus \mathbb{F}_{2}, \quad \text { and } \\
& \mathcal{C}(X, \mathcal{L}, \gamma):=\rho(\widetilde{\mathcal{C}}(X, \mathcal{L}, \gamma)) \subset \operatorname{Pow}(\mathcal{P})
\end{aligned}
$$

Since $N S(X)$ is an even overlattice of N_{0}, the code $\widetilde{\mathcal{C}}(X, \mathcal{L}, \gamma)$ is uniquely recovered from $\mathcal{C}(X, \mathcal{L}, \gamma)$ by Lemma 2.3, and hence the lattice $N S(X)$ is also uniquely
recovered from the code $\mathcal{C}(X, \mathcal{L}, \gamma)$. In particular, the Artin invariant $\sigma(X)$ of X is given by

$$
\sigma(X)=11-\operatorname{dim}_{\mathbb{F}_{2}} \mathcal{C}(X, \mathcal{L}, \gamma)
$$

Note that the isomorphism class of the code $\mathcal{C}(X, \mathcal{L}, \gamma)$ does not depend on the choice of γ. The following is one of the main results of [11]:

Theorem 2.4. For an isomorphism class $[\mathbf{C}]$ of codes in $\operatorname{Pow}(\mathcal{P})$, the following two conditions are equivalent.
(i) There exists a polarized supersingular K3 surface (X, \mathcal{L}) of type (\sharp) such that, for a (and hence any) bijection γ from \mathcal{P} to $Z_{(X, \mathcal{L})}$, the code $\mathcal{C}(X, \mathcal{L}, \gamma)$ is in the isomorphism class $[\mathbf{C}]$.
(ii) A (and hence any) code $\mathbf{C} \in[\mathbf{C}]$ satisfies the following:

- $\operatorname{dim} \mathbf{C} \leq 10$,
- the word $\mathcal{P} \in \operatorname{Pow}(\mathcal{P})$ is contained in \mathbf{C}, and
- $|A| \in\{0,5,8,9,12,13,16,21\}$ for every word $A \in \mathbf{C}$.
2.2. Geometry of $Z_{(X, \mathcal{L})}$ and the code $\mathcal{C}(X, \mathcal{L}, \gamma)$. Let (X, \mathcal{L}) be a polarized supersingular $K 3$ surface of type (\sharp). We fix a bijection γ from \mathcal{P} to $Z_{(X, \mathcal{L})}$. Let $G \in \mathcal{U}$ be a homogeneous polynomial such that $\Phi_{|\mathcal{L}|}$ factors through Y_{G}, or equivalently, such that $Z(d G)=Z_{(X, \mathcal{L})}$ holds. For the proofs of the facts stated in this subsection, we refer the reader to $[11, \S 6$ and $\S 7]$.

Definition 2.5. Let $C \subset \mathbb{P}^{2}$ be a reduced irreducible curve. We say that C splits in (X, \mathcal{L}) if the proper transform of C by $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$ is non-reduced. We say that a reduced (possibly reducible) curve C^{\prime} splits in (X, \mathcal{L}) if every irreducible component of C^{\prime} splits in (X, \mathcal{L}).

Since $\Phi_{|\mathcal{L}|}$ is purely inseparable of degree 2 , the proper transform of a splitting curve C by $\Phi_{|\mathcal{L}|}$ is written as $2 F_{C}$, where F_{C} is a reduced divisor of X. We denote by $w(C) \in \operatorname{Pow}(\mathcal{P})$ the image of the numerical equivalence class $\left[F_{C}\right] \in N S(X)$ by

$$
N S(X) \quad \longrightarrow \quad N S(X) / N_{0} \quad \hookrightarrow \quad N_{0}^{\vee} / N_{0} \quad \xrightarrow{\rho} \quad \operatorname{Pow}(\mathcal{P}),
$$

where $N_{0} \hookrightarrow N S(X)$ is obtained from the fixed bijection $\gamma: \mathcal{P} \xrightarrow{\sim} Z_{(X, \mathcal{L})}$. By definition, we have

$$
w(C) \in \mathcal{C}(X, \mathcal{L}, \gamma)
$$

It is easy to see that

$$
w(C)=\left\{P_{i} \in \mathcal{P} \mid \text { the multiplicity of } C \text { at } \gamma\left(P_{i}\right) \text { is odd }\right\} .
$$

If C is a nonsingular curve splitting in (X, \mathcal{L}), then

$$
w(C)=\gamma^{-1}\left(C \cap Z_{(X, \mathcal{L})}\right) .
$$

If C_{1} and C_{2} are two splitting curves without common irreducible components, then $w\left(C_{1} \cup C_{2}\right)=w\left(C_{1}\right)+w\left(C_{2}\right)$ holds.

Proposition 2.6. Let $\mathcal{I}_{Z(d G)} \subset \mathcal{O}_{\mathbb{P}^{2}}$ be the ideal sheaf defining the subscheme $Z(d G)$. The linear system $\left|\mathcal{I}_{Z(d G)}(5)\right|$ of quintic curves passing through all the points of $Z(d G)$ is of dimension 2, and spanned by the curves defined by

$$
\partial G / \partial X=0, \quad \partial G / \partial Y=0 \quad \text { and } \quad \partial G / \partial Z=0
$$

A general member C of $\left|\mathcal{I}_{Z(d G)}(5)\right|$ splits in (X, \mathcal{L}), and the word $w(C) \in \mathcal{C}(X, \mathcal{L}, \gamma)$ is equal to $\mathcal{P} \in \operatorname{Pow}(\mathcal{P})$.

Proposition 2.7. Let C be a reduced curve splitting in (X, \mathcal{L}), and let p be a point of C. (1) If p is an ordinary node of C, then $p \in Z_{(X, \mathcal{L})}$. (2) If p is an ordinary tacnode of C, then $p \notin Z_{(X, \mathcal{L})}$.

Proposition 2.8. Let C be a reduced curve of degree 6 splitting in (X, \mathcal{L}), and let $G^{\prime}=0$ be a defining equation of C. If C has only ordinary nodes as its singularities, then the homogeneous polynomial G^{\prime} is a point of \mathcal{U}, and the point $\left[G^{\prime}\right] \in \mathfrak{M}$ corresponds to the isomorphism class of (X, \mathcal{L}).

Proposition 2.9. Let $L \subset \mathbb{P}^{2}$ be a line. The following conditions are equivalent: (i) L splits in (X, \mathcal{L}), (ii) $\left|L \cap Z_{(X, \mathcal{L})}\right| \geq 3$, and (iii) $\left|L \cap Z_{(X, \mathcal{L})}\right|=5$.

Proposition 2.10. Let $Q \subset \mathbb{P}^{2}$ be a nonsingular conic curve. The following conditions are equivalent: (i) Q splits in (X, \mathcal{L}), (ii) $\left|Q \cap Z_{(X, \mathcal{L})}\right| \geq 6$, and (iii) $\left|Q \cap Z_{(X, \mathcal{L})}\right|=8$.
Corollary 2.11. The word $w(L)=\gamma^{-1}\left(L \cap Z_{(X, \mathcal{L})}\right)$ of a splitting line L is of weight 5 , and the word $w(Q)=\gamma^{-1}\left(Q \cap Z_{(X, \mathcal{L})}\right)$ of a splitting nonsingular conic curve Q is of weight 8 .

Definition 2.12. A pencil \mathcal{E} of cubic curves in \mathbb{P}^{2} is called a regular pencil if the following hold:

- the base locus $\operatorname{Bs}(\mathcal{E})$ of \mathcal{E} consists of distinct 9 points, and
- every singular member of \mathcal{E} has only one ordinary node as its singularities.

We say that a regular pencil \mathcal{E} splits in (X, \mathcal{L}) if every member of $\mathcal{E} \operatorname{splits}$ in (X, \mathcal{L}).
Proposition 2.13. Let \mathcal{E} be a regular pencil of cubic curves spanned by E_{0} and E_{∞}. Let $H_{0}=0$ and $H_{\infty}=0$ be the defining equations of E_{0} and E_{∞}, respectively. Then \mathcal{E} splits in (X, \mathcal{L}) if and only if there exist $c \in k^{\times}$and $H \in \mathcal{V}$ such that

$$
\begin{equation*}
G=c H_{0} H_{\infty}+H^{2} \tag{2.1}
\end{equation*}
$$

holds. If \mathcal{E} splits in (X, \mathcal{L}), then $\operatorname{Bs}(\mathcal{E})$ is contained in $Z_{(X, \mathcal{L})}$, and

$$
w\left(E_{t}\right)=\gamma^{-1}(\operatorname{Bs}(\mathcal{E}))
$$

holds for every member E_{t} of \mathcal{E}. In particular, the word $w\left(E_{t}\right)$ is of weight 9 .
Remark 2.14. The condition (2.1) is equivalent to

$$
Z\left(d\left(H_{0} H_{\infty}\right)\right)=Z(d G)=Z_{(X, \mathcal{L})}
$$

by Proposition 1.3.
Remark 2.15. A regular pencil \mathcal{E} has 12 singular members $E^{(1)}, \ldots, E^{(12)}$. We denote by $N^{(i)}$ the ordinary node of $E^{(i)}$. Suppose that \mathcal{E} splits in (X, \mathcal{L}). Then $Z_{(X, \mathcal{L})}$ is a disjoint union of $\operatorname{Bs}(\mathcal{E})$ and $\left\{N^{(1)}, \ldots, N^{(12)}\right\}$.

Let L_{1} and L_{2} be distinct lines splitting in (X, \mathcal{L}). Then the intersection point of L_{1} and L_{2} is in $Z_{(X, \mathcal{L})}$ by Proposition 2.7, and hence

$$
w\left(L_{1} \cup L_{2}\right)=w\left(L_{1}\right)+w\left(L_{2}\right)
$$

is a word of weight 8 .
Let L_{1}, L_{2} and L_{3} be lines splitting in (X, \mathcal{L}) such that $L_{1} \cap L_{2} \cap L_{3}=\emptyset$. Then the three ordinary nodes of $L_{1} \cup L_{2} \cup L_{3}$ are in $Z_{(X, \mathcal{L})}$ by Proposition 2.7, and hence

$$
w\left(L_{1} \cup L_{2} \cup L_{3}\right)=w\left(L_{1}\right)+w\left(L_{2}\right)+w\left(L_{3}\right)
$$

is a word of weight 9 .
Let Q be a nonsingular conic curve splitting in (X, \mathcal{L}), and let L be a line splitting in (X, \mathcal{L}). Using Proposition 2.7, we see that L intersects Q transversely if and only if $w(L \cup Q)=w(L)+w(Q)$ is of weight 9 . We also see that L is tangent to Q if and only if $w(L) \cap w(Q)=\emptyset$.

Definition 2.16. Let $\mathbf{C} \subset \operatorname{Pow}(\mathcal{P})$ be a code satisfying the conditions in (ii) of Theorem 2.4, and let A be a word of \mathbf{C} with $|A| \in\{5,8,9\}$.
(i) We say that A is a linear word of \mathbf{C} if $|A|=5$.
(ii) Suppose $|A|=8$. If A is not a sum of two linear words of \mathbf{C}, then we say that A is a quadratic word of \mathbf{C}.
(iii) Suppose $|A|=9$. If A is neither a sum of three linear words of \mathbf{C} nor a sum of a linear and a quadratic word of \mathbf{C}, then we say that A is a cubic word of \mathbf{C}.
Proposition 2.17. (1) The correspondence $L \mapsto w(L)$ yields a bijection from the set of lines splitting in (X, \mathcal{L}) to the set of linear words in $\mathcal{C}(X, \mathcal{L}, \gamma)$.
(2) The correspondence $Q \mapsto w(Q)$ yields a bijection from the set of nonsingular conic curves splitting in (X, \mathcal{L}) to the set of quadratic words in $\mathcal{C}(X, \mathcal{L}, \gamma)$.
(3) The correspondence $\mathcal{E} \mapsto \gamma^{-1}(\operatorname{Bs}(\mathcal{E}))$ yields a bijection from the set of regular pencils of cubic curves splitting in (X, \mathcal{L}) to the set of cubic words in $\mathcal{C}(X, \mathcal{L}, \gamma)$.

By Theorem 2.4, the code $\mathcal{C}(X, \mathcal{L}, \gamma)$ is generated by the word \mathcal{P} and by the linear, quadratic and cubic words in $\mathcal{C}(X, \mathcal{L}, \gamma)$. Combining this fact with Proposition 2.17 , we obtain the following:

Corollary 2.18. Let g be an element of the group

$$
\operatorname{Aut}(X, \mathcal{L})=\left\{h \in P G L(3, k) \mid h\left(Z_{(X, \mathcal{L})}\right)=Z_{(X, \mathcal{L})}\right\}
$$

Then we have $\mathcal{C}(X, \mathcal{L}, \gamma)=\mathcal{C}(X, \mathcal{L}, g \circ \gamma)$. Hence there exists a unique element $\sigma_{g} \in \operatorname{Aut}(\mathcal{C}(X, \mathcal{L}, \gamma))$ such that $g \circ \gamma=\gamma \circ \sigma_{g}$ holds. By $g \mapsto \sigma_{g}$, we can embed $\operatorname{Aut}(X, \mathcal{L})$ into $\operatorname{Aut}(\mathcal{C}(X, \mathcal{L}, \gamma))$.
2.3. Construction of $\mathfrak{M}_{[\mathbf{C}]}$ from C. Let $[\mathbf{C}]$ be an isomorphism class of codes satisfying the conditions in (ii) of Theorem 2.4. We denote by

$$
\mathfrak{M}_{[\mathbf{C}]} \subset \mathfrak{M}
$$

the locus of all isomorphism classes of polarized supersingular $K 3$ surfaces (X, \mathcal{L}) of type (\sharp) such that $\mathcal{C}(X, \mathcal{L}, \gamma)$ is contained in $[\mathbf{C}]$ for a (and hence any) bijection γ from \mathcal{P} to $Z_{(X, \mathcal{L})}$. We also denote by $\mathcal{G}_{[\mathbf{C}]}$ the pull-back of $\mathfrak{M}_{[\mathbf{C}]}$ by the quotient map

$$
\mathcal{G} \quad \longrightarrow \quad \mathfrak{M}=P G L(3, k) \backslash \mathcal{G} / \mathfrak{S}(\mathcal{P}) .
$$

We will describe the locus $\mathcal{G}_{[\mathbf{C}]}$.
Definition 2.19. For a point γ of \mathcal{G}, let $\mathcal{C}[\gamma]$ denote the code in $\operatorname{Pow}(\mathcal{P})$ generated by the following words:

- $\mathcal{P} \in \operatorname{Pow}(\mathcal{P})$,
- words A of weight 5 such that the points $\gamma(A)$ are collinear,
- words A of weight 8 such that there exists a nonsingular conic curve containing $\gamma(A)$, and
- words A of weight 9 such that there exists a regular pencil \mathcal{E} of cubic curves spanned by $E_{0}=\left\{H_{0}=0\right\}$ and $E_{\infty}=\left\{H_{\infty}=0\right\}$ such that $\operatorname{Bs}(\mathcal{E})=\gamma(A)$ and $Z\left(d\left(H_{0} H_{\infty}\right)\right)=\gamma(\mathcal{P})$ hold.

From the results above, we obtain the following:
Corollary 2.20. Suppose that $\gamma \in \mathcal{G}$, and let (X, \mathcal{L}) be a polarized supersingular $K 3$ surface of type (\sharp) such that $\gamma(\mathcal{P})=Z_{(X, \mathcal{L})}$. Then the code $\mathcal{C}[\gamma]$ coincides with the code $\mathcal{C}(X, \mathcal{L}, \gamma)$.

By definition, we have

$$
\mathcal{C}[\gamma \circ \sigma]=\sigma^{-1}(\mathcal{C}[\gamma]) \quad \text { for any } \sigma \in \mathfrak{S}(\mathcal{P})
$$

For each code $\mathbf{C} \in[\mathbf{C}]$, we put

$$
\mathcal{G}_{\mathbf{C}}:=\{\gamma \in \mathcal{G} \mid \mathcal{C}[\gamma]=\mathbf{C}\} .
$$

Then we have

$$
\mathcal{G}_{\mathbf{C}}^{\sigma}=\mathcal{G}_{\sigma^{-1}}(\mathbf{C}),
$$

where $\mathcal{G}_{\mathbf{C}}^{\sigma}$ denotes the image of $\mathcal{G}_{\mathbf{C}}$ by the action of $\sigma \in \mathfrak{S}(\mathcal{P})$. Therefore we obtain

$$
\mathcal{G}_{[\mathbf{C}]}=\bigsqcup_{\mathbf{C}^{\prime} \in[\mathbf{C}]} \mathcal{G}_{\mathbf{C}^{\prime}}=\bigsqcup_{\sigma} \mathcal{G}_{\mathbf{C}}^{\sigma} \quad \text { (disjoint union) }
$$

where σ runs through the set of representatives for the right cosets in $\mathfrak{S}(\mathcal{P})$ with respect to the subgroup $\operatorname{Aut}(\mathbf{C}) \subset \mathfrak{S}(\mathcal{P})$. Hence we have

$$
\mathfrak{M}_{[\mathbf{C}]}=P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}} / \operatorname{Aut}(\mathbf{C}) .
$$

For $\gamma \in \mathcal{G}_{\mathbf{C}}$, let $[\gamma] \in P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}}$ denote the projective equivalence class of γ. From Corollary 2.18, we obtain the following:

Corollary 2.21. Let (X, \mathcal{L}) be a polarized supersingular K3 surface of type (\sharp) corresponding to the image of $[\gamma] \in P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}}$ by the quotient map

$$
P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}} \quad \rightarrow \mathfrak{M}_{[\mathbf{C}]}=P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}} / \operatorname{Aut}(\mathbf{C}) .
$$

Via the natural embedding of $\operatorname{Aut}(X, \mathcal{L})$ into $\operatorname{Aut}(\mathcal{C}(X, \mathcal{L}, \gamma))=\operatorname{Aut}(\mathbf{C})$, the automorphism group $\operatorname{Aut}(X, \mathcal{L})$ is equal to the stabilizer subgroup of the point $[\gamma]$.

3. The isomorphism classes of codes with Artin invariant 1 and 2

We have classified all isomorphism classes of codes satisfying the conditions in (ii) of Theorem 2.4. The list is given in $[11, \S 8]$. Using the classification, we have obtained the following [11, Corollary 1.11]:

Theorem 3.1. There exists exactly one isomorphism class $\left[\mathbf{C}_{0}\right]$ of codes of dimension 10 satisfying the conditions in (ii) of Theorem 2.4. The moduli space $\mathfrak{M}_{\left[\mathbf{C}_{0}\right]}$ consists of a single point corresponding to the Dolgachev-Kondo polynomial

$$
G_{\mathrm{DK}}:=X Y Z\left(X^{3}+Y^{3}+Z^{3}\right)
$$

We call the point $\left[G_{\mathrm{DK}}\right]$ constituting $\mathfrak{M}_{1}=\mathfrak{M}_{\left[\mathbf{C}_{0}\right]}$ the Dolgachev-Kondo point. We define the Dolgachev-Kondo code

$$
\mathbf{C}_{\mathrm{DK}} \subset \operatorname{Pow}\left(\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)\right)
$$

to be the code generated by the words $\Lambda\left(\mathbb{F}_{4}\right)$, where Λ are \mathbb{F}_{4}-rational lines in \mathbb{P}^{2}. The codes in the isomorphism class $\left[\mathbf{C}_{0}\right]$ are precisely the codes $\gamma^{-1}\left(\mathbf{C}_{\mathrm{DK}}\right)$, where γ runs through the set of all bijections from \mathcal{P} to $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)=Z\left(d G_{\mathrm{DK}}\right)$. The weight enumerator of any code in $\left[\mathbf{C}_{0}\right]$ is

$$
1+21 z^{5}+210 z^{8}+280 z^{9}+280 z^{12}+210 z^{13}+21 z^{16}+z^{21}
$$

$\left[\begin{array}{llllllllllllllllllllll}1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &] \\ {[0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 &] \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 &] \\ {[0} & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 &] \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 &]\end{array}\right]$

Table 3.1. Generators of the code \mathbf{C}_{A}
$\left[\begin{array}{llllllllllllllllllllll}1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 &] \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 &] \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &] \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 &] \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 &]\end{array}\right]$

Table 3.2. Generators of the code \mathbf{C}_{B}
$\left[\begin{array}{llllllllllllllllllllll}1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &] \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 &] \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 &] \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 &] \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 &] \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 &]\end{array}\right]$

Table 3.3. Generators of the code \mathbf{C}_{C}

There are no quadratic nor cubic words in \mathbf{C}_{0}.

From the list in $[11, \S 8]$, we obtain the following:
Proposition 3.2. There are exactly three isomorphism classes $\left[\mathbf{C}_{A}\right],\left[\mathbf{C}_{B}\right],\left[\mathbf{C}_{C}\right]$ of codes of dimension 9 satisfying the conditions in (ii) of Theorem 2.4.

As representatives of these isomorphism classes, we can take codes $\mathbf{C}_{A}, \mathbf{C}_{B}$ and \mathbf{C}_{C} generated by vectors in Tables 3.1, 3.2 and 3.3. The numbers of linear,
quadratic and cubic words in these codes are given in the following table:

	linear	quadratic	cubic	
\mathbf{C}_{A}	13	28	0	
\mathbf{C}_{B}	9	66	0	
\mathbf{C}_{C}	5	120	0	.

The weight enumerators of these codes are as follows:

$$
\begin{aligned}
& \mathbf{C}_{A}: 1+13 z^{5}+106 z^{8}+136 z^{9}+136 z^{12}+106 z^{13}+13 z^{16}+z^{21} \\
& \mathbf{C}_{B}: 1+9 z^{5}+102 z^{8}+144 z^{9}+144 z^{12}+102 z^{13}+9 z^{16}+z^{21} \\
& \mathbf{C}_{C}: 1+5 z^{5}+130 z^{8}+120 z^{9}+120 z^{12}+130 z^{13}+5 z^{16}+z^{21}
\end{aligned}
$$

Remark 3.3. The Dolgachev-Kondo code \mathbf{C}_{DK} is related to the binary Golay code \mathbf{C}_{24} in the following way. Let $M:=\left\{\mu_{1}, \ldots, \mu_{24}\right\}$ be the set of positions of the Miracle Octad Generator (MOG) as is indicated in [9, Table 6.1]. The definition of \mathbf{C}_{24} as a subcode of $\operatorname{Pow}(M)$ is described in [3, Chapter 11]. We put $N:=$ $\left\{\mu_{22}, \mu_{23}, \mu_{24}\right\} \subset M$, and consider the 10-dimensional subcode

$$
\mathbf{C}_{22}:=\left\{w \in \mathbf{C}_{24} \mid w \supset N \text { or } w \cap N=\emptyset\right\}
$$

of \mathbf{C}_{24}. We then define a map

$$
\mathbb{P}^{2}\left(\mathbb{F}_{4}\right) \longrightarrow M
$$

by [9, Table 6.2]. The pull-back of \mathbf{C}_{22} by this map is just the Dolgachev-Kondo code \mathbf{C}_{DK}.

Remark 3.4. The codes $\mathbf{C}_{A}, \mathbf{C}_{B}$ and \mathbf{C}_{C} are isomorphic to linear subcodes of \mathbf{C}_{DK} defined as follows. Let $F=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$ be a set of four points of $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$, and let \mathbf{C}_{F} be the 9-dimensional linear subcode of \mathbf{C}_{DK} defined by

$$
\mathbf{C}_{F}:=\left\{w \in \mathbf{C}_{\mathrm{DK}}| | w \cap F \mid \text { is even }\right\} .
$$

If no three points of F are collinear, then \mathbf{C}_{F} is isomorphic to \mathbf{C}_{A}; if exactly one triplet of the points of F are collinear, then \mathbf{C}_{F} is isomorphic to \mathbf{C}_{B}; while if F is on a line, then \mathbf{C}_{F} is isomorphic to \mathbf{C}_{C}.

For $T=A, B$ and C, we will write \mathfrak{M}_{T} instead of $\mathfrak{M}_{\left[\mathbf{C}_{T}\right]}$, and \mathcal{G}_{T} instead of $\mathcal{G}_{\mathbf{C}_{T}}$. In the next three sections, we will construct explicitly the space

$$
\mathfrak{M}_{T}=P G L(3, k) \backslash \mathcal{G}_{T} / \operatorname{Aut}\left(\mathbf{C}_{T}\right)
$$

for $T=A, B, C$, and prove Theorems 1.6, 1.7 and 1.8 stated in Introduction. For this purpose, we have to determine the group $\operatorname{Aut}\left(\mathbf{C}_{T}\right)$ and the space \mathcal{G}_{T}. Since \mathbf{C}_{T} is generated by \mathcal{P} and the set of linear and quadratic words, we obtain the following:

Proposition 3.5. Let $W_{1}\left(\mathbf{C}_{T}\right)$ and $W_{2}\left(\mathbf{C}_{T}\right)$ be the sets of linear and quadratic words in \mathbf{C}_{T}, respectively. An element σ of $\mathfrak{S}(\mathcal{P})$ is contained in $\operatorname{Aut}\left(\mathbf{C}_{T}\right)$ if and only if the following hold:

$$
\sigma\left(W_{1}\left(\mathbf{C}_{T}\right)\right)=W_{1}\left(\mathbf{C}_{T}\right) \quad \text { and } \quad \sigma\left(W_{2}\left(\mathbf{C}_{T}\right)\right)=W_{2}\left(\mathbf{C}_{T}\right)
$$

Proposition 3.6. Suppose that a map $\gamma: \mathcal{P} \rightarrow \mathbb{P}^{2}$ is given. Then γ is contained in $\mathcal{G}_{T}=\left\{\gamma \in \mathcal{G} \mid \mathcal{C}[\gamma]=\mathbf{C}_{T}\right\}$ if and only if the following hold:
(i) γ is injective,
(ii) there exists a homogeneous polynomial G of degree 6 such that $\gamma(\mathcal{P})=Z(d G)$,
(iii) for every linear word l of \mathbf{C}_{T}, there exists a line $L \subset \mathbb{P}^{2}$ containing $\gamma(l)$, and
(iv) for every quadratic word q of \mathbf{C}_{T}, there exists a nonsingular conic curve $Q \subset \mathbb{P}^{2}$ containing $\gamma(q)$.

Proof. The "only if " part is obvious from the definition of \mathcal{G}_{T}. Suppose that γ satisfies (i)-(iv). By (i) and (ii), we have $\gamma \in \mathcal{G}$. Since \mathbf{C}_{T} is generated by the word \mathcal{P} and linear and quadratic words, the properties (iii) and (iv) implies that $\mathbf{C}_{T} \subseteq \mathcal{C}[\gamma]$. If $\mathbf{C}_{T} \neq \mathcal{C}[\gamma]$, then, by Theorem 3.1, the code $\mathcal{C}[\gamma] \subset \operatorname{Pow}(\mathcal{P})$ is isomorphic to the Dolgachev-Kondo code $\mathbf{C}_{\text {DK }} \subset \operatorname{Pow}\left(\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)\right)$ by some bijection from \mathcal{P} to $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$. Hence there exists $g \in P G L(3, k)$ such that

$$
g(\gamma(\mathcal{P}))=Z\left(d G_{\mathrm{DK}}\right)=\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)
$$

However, there are no eight points in $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$ that are contained in a nonsingular conic curve.

It will turn out that, for $T=A, B$ and C, the following hold.
(1) The space $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{T}$ has exactly two connected components, both of which are isomorphic to $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. Let $N_{T} \subset \operatorname{Aut}\left(\mathbf{C}_{T}\right)$ be the subgroup consisting of the elements that do not interchange the two connected components, and let Γ_{T} be the image of N_{T} in $\operatorname{Aut}\left(\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right)$. Then N_{T} is of index 2 in $\operatorname{Aut}\left(\mathbf{C}_{T}\right)$. The moduli curve \mathfrak{M}_{T} is the quotient of $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ by Γ_{T}.
(2) The action of Γ_{T} on the punctured affine line $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ is free. Hence the order of the stabilizer subgroup $\operatorname{Stab}([\gamma]) \subset \operatorname{Aut}\left(\mathbf{C}_{T}\right)$ of a point $[\gamma] \in P G L(3, k) \backslash \mathcal{G}_{T}$ is constant on $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{T}$. By Corollary $2.21, \operatorname{Stab}([\gamma])$ is equal to $\operatorname{Aut}(X, \mathcal{L})$, where (X, \mathcal{L}) corresponds to the image of $[\gamma]$ in \mathfrak{M}_{T}. Hence we have an exact sequence

$$
1 \rightarrow \operatorname{Aut}(X, \mathcal{L}) \rightarrow N_{T} \rightarrow \Gamma_{T} \rightarrow 1
$$

for any polarized supersingular $K 3$ surface (X, \mathcal{L}) corresponding to a point of \mathfrak{M}_{T}.
The orders of the groups above are given as follows.

T	$\left\|\operatorname{Aut}\left(\mathbf{C}_{T}\right)\right\|$	$=$	2	\times	$\left\|\Gamma_{T}\right\|$	\times	$\|\operatorname{Aut}(X, \mathcal{L})\|$
A	1152	$=$	2	\times	6	\times	96
B	432	$=$	2	\times	12	\times	18
C	23040	$=$	2	\times	12	\times	960

Remark 3.7. The following algorithm will be used frequently. Suppose that we are given eight points

$$
p_{i}=\left[\xi_{i}, \eta_{i}, \zeta_{i}\right] \quad(i=1, \ldots, 8)
$$

on \mathbb{P}^{2}. In order for them to be on a (possibly singular) conic curve, it is necessary and sufficient that the 8×6 matrix

$$
M:=\left[\begin{array}{ccccc}
\xi_{1}^{2}, & \eta_{1}^{2}, & \zeta_{1}^{2}, & \xi_{1} \eta_{1}, & \eta_{1} \zeta_{1}, \\
\cdots \cdots \cdots & \zeta_{1} \xi_{1} \\
\cdots \cdots & \\
\xi_{8}^{2}, & \eta_{8}^{2}, & \zeta_{8}^{2}, & \xi_{8} \eta_{8}, & \eta_{8} \zeta_{8}, \\
\zeta_{8} \xi_{8}
\end{array}\right]
$$

is of $\operatorname{rank}<6$. When the rank of M is <6, a non-zero solution

$$
{ }^{T}[A, B, C, D, E, F]
$$

of the linear equation $M \mathbf{x}=0$ gives us a defining equation

$$
\begin{equation*}
A X^{2}+B Y^{2}+C Z^{2}+D X Y+E Y Z+F Z X=0 \tag{3.1}
\end{equation*}
$$

of a conic curve containing p_{1}, \ldots, p_{8}.
The following are phenomena peculiar to projective geometry in characteristic 2.

Remark 3.8. The conic curve defined by the equation (3.1) is singular if and only if the following holds:

$$
A E^{2}+B F^{2}+C D^{2}+D E F=0
$$

Definition 3.9. Let $L \subset \mathbb{P}^{2}$ be a line, and let $Q \subset \mathbb{P}^{2}$ be a (possibly singular) conic curve. We say that L and Q are tangent if they fail to intersect at distinct two points.

Remark 3.10. Let L be a line. Then the conic curves tangent to L form a linear system in $\left|\mathcal{O}_{\mathbb{P}^{2}}(2)\right|$. If three distinct lines L_{1}, L_{2} and L_{3} are concurrent, then every conic curve that is tangent to L_{1} and L_{2} is tangent to L_{3}.

Remark 3.11. Let $A, B, C, D \in \mathbb{P}^{2}$ be distinct points. Suppose that no three of them are collinear. Let O (resp. P) (resp. Q) be the intersection point of the lines $\overline{A B}$ and $\overline{C D}$ (resp. $\overline{A C}$ and $\overline{B D}$) (resp. $\overline{A D}$ and $\overline{B C}$). Then O, P and Q are collinear.

4. The moduli Curve corresponding to the code \mathbf{C}_{A}

In this section, we prove Theorem 1.6.
The linear words of \mathbf{C}_{A} are listed in Table 4.1. From now on, we sometimes abbreviate, for example, the set $\left\{P_{8}, P_{9}, P_{12}, P_{15}, P_{19}\right\}$ to $\{8,9,12,15,19\}$. The linear word m stands out from the rest in that there are two points P_{1} and P_{2} in m through which no other linear words pass. We call m the special linear word. The other linear words are divided into three groups according to the intersection point with m. For $\nu=12,13,18$ and $i=1,2,3,4$, the non-special linear word $l_{\nu, i}$

m	\{	1,	2 ,	12,	13,	18
$l_{12,1}$: \{	10	11,	12,	16,	20
$l_{12,2}$: \{	8 ,	9,	12,	15,	19
$l_{12,3}$: \{	5 ,	6,	12,	14,	17
$l_{12,4}$:	3 ,	4,	7,	12,	21
$l_{13,1}$	\{	13	14,	15,	16,	21
$l_{13,2}$:	7 ,	8,	10,	13,	17
$l_{13,3}$: \{	4 ,	6,	11,	13,	19
$l_{13,4}$: \{	3 ,	5,	9,	13,	20
$l_{18,1}$: \{	17	18,	19,	20,	21
$l_{18,2}$: \{	7 ,	9,	11,	14,	18
$l_{18,3}$		4 ,	5,	10,	15,	18
$l_{18,4}$:	3 ,	6 ,	8,	16,	18

Table 4.1. Linear words in \mathbf{C}_{A}

$\beta \backslash \alpha$	1	2	3	4
1	4	3	2	1
2	3	4	1	2
3	2	1	4	3
4	1	2	3	4

Table 4.2. Concurrent triples $(\alpha, \beta, \gamma(\alpha, \beta))$

$\alpha \beta \gamma$	114	123	132	141	213	224	231	242
$T_{\alpha \beta \gamma}$	P_{16}	P_{10}	P_{11}	P_{20}	P_{15}	P_{8}	P_{19}	P_{9}
$\alpha \beta \gamma$	312	321	334	343	411	422	433	444
$T_{\alpha \beta \gamma}$	P_{14}	P_{17}	P_{6}	P_{5}	P_{21}	P_{7}	P_{4}	P_{3}

Table 4.3. Points $T_{\alpha \beta \gamma}$
intersects m at the point P_{ν}. For each of P_{1} and P_{2}, there exists only one linear word m containing it. For each of P_{12}, P_{13} and P_{18}, there exist exactly five linear words containing it. For each of the other 16 points, there exist exactly three linear words containing it. For each $\alpha, \beta=1, \ldots, 4$, there exists a unique $\gamma=\gamma(\alpha, \beta)$ such that the three linear words $l_{12, \alpha}, l_{13, \beta}$ and $l_{18, \gamma}$ have a point in common. We call such a triple (α, β, γ) a concurrent triple. The list of concurrent triples is given in Table 4.2. For a concurrent triple (α, β, γ), we denote by $T_{\alpha \beta \gamma}$ the intersection point of $l_{12, \alpha}, l_{13, \beta}$ and $l_{18, \gamma}$.

The 28 quadratic words in \mathbf{C}_{A} are divided into two groups. The quadratic words $q_{1}^{\prime}, \ldots, q_{12}^{\prime}$ listed in Table 4.4 are disjoint from the special linear word m, and intersect each of the non-special linear words $l_{\nu, i}$ at distinct two points. On the other hand, for each concurrent triple (α, β, γ), there exists a unique quadratic word $q_{\alpha \beta \gamma}$ that is disjoint from the three linear words $l_{12, \alpha}, l_{13, \beta}, l_{18, \gamma}$, and intersects other ten linear words at distinct two points. The list of these quadratic words $q_{\alpha \beta \gamma}$ is given in Table 4.5.

In order to study $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$, we embed \mathbf{C}_{A} into the Dolgachev-Kondo code $\mathbf{C}_{\mathrm{DK}} \subset \operatorname{Pow}\left(\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)\right)$ by the bijection $\phi: \mathcal{P} \xrightarrow{\sim} \mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$ given in Table 4.6. The following can be checked easily.
(1) If l is a linear word of \mathbf{C}_{A}, then the points in $\phi(l)$ are collinear. The linear words of \mathbf{C}_{A} coincide with $\phi^{-1}\left(\Lambda\left(\mathbb{F}_{4}\right)\right)$, where Λ are \mathbb{F}_{4}-rational lines containing at least one of $\phi\left(P_{12}\right), \phi\left(P_{13}\right), \phi\left(P_{18}\right)$.
(2) The words $q_{1}^{\prime}, \ldots, q_{12}^{\prime}$ coincide with the words written as

$$
\phi^{-1}\left(\Lambda_{1}\left(\mathbb{F}_{4}\right)+\Lambda_{2}\left(\mathbb{F}_{4}\right)\right),
$$

where Λ_{1} and Λ_{2} are distinct \mathbb{F}_{4}-rational lines such that both of $\Lambda_{1}\left(\mathbb{F}_{4}\right)$ and $\Lambda_{2}\left(\mathbb{F}_{4}\right)$ are disjoint from $\left\{\phi\left(P_{12}\right), \phi\left(P_{13}\right), \phi\left(P_{18}\right)\right\}$, and such that the intersection point of $\Lambda_{1}\left(\mathbb{F}_{4}\right)$ and $\Lambda_{2}\left(\mathbb{F}_{4}\right)$ is either $\phi\left(P_{1}\right)$ or $\phi\left(P_{2}\right)$.
(3) For a concurrent triple (α, β, γ), let Λ_{i} be the \mathbb{F}_{4}-rational line passing through $\phi\left(T_{\alpha \beta \gamma}\right)$ and $\phi\left(P_{i}\right)$ for $i=1,2$. Then we have $q_{\alpha \beta \gamma}=\phi^{-1}\left(\Lambda_{1}\left(\mathbb{F}_{4}\right)+\Lambda_{2}\left(\mathbb{F}_{4}\right)\right)$.

Table 4.4. Quadratic words q_{ν}^{\prime} in \mathbf{C}_{A}

TABLE 4.5. Quadratic words $q_{\alpha \beta \gamma}$ in \mathbf{C}_{A}

Let $P G^{\prime}$ be the subgroup of $P G L\left(3, \mathbb{F}_{4}\right)$ consisting of $g \in P G L\left(3, \mathbb{F}_{4}\right)$ satisfying

$$
\left\{g\left(\phi\left(P_{12}\right)\right), g\left(\phi\left(P_{13}\right)\right), g\left(\phi\left(P_{18}\right)\right)\right\}=\left\{\phi\left(P_{12}\right), \phi\left(P_{13}\right), \phi\left(P_{18}\right)\right\}
$$

and let $P G$ be the subgroup $\phi^{-1} \circ P G^{\prime} \circ \phi$ of $\mathfrak{S}(\mathcal{P})$. The order of $P G$ is 288. Let $F^{\prime} \in \mathfrak{S}\left(\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)\right)$ be the element of order 2 obtained by the conjugation $\omega \mapsto \bar{\omega}$ of \mathbb{F}_{4} over \mathbb{F}_{2}. We then put
$F:=\phi^{-1} \circ F^{\prime} \circ \phi=\left(P_{1} P_{2}\right)\left(P_{3} P_{5}\right)\left(P_{4} P_{6}\right)\left(P_{7} P_{14}\right)\left(P_{8} P_{15}\right)\left(P_{10} P_{16}\right)\left(P_{17} P_{21}\right) \in \mathfrak{S}(\mathcal{P})$.
We also put

$$
T:=\left(P_{1} P_{2}\right) .
$$

$$
\begin{array}{rlrl}
\phi\left(P_{1}\right) & =[1, \omega, 0], & & \phi\left(P_{12}\right)=[0,1,0], \\
\phi\left(P_{2}\right) & =[1, \bar{\omega}, 0], & & \phi\left(P_{13}\right)=[1,1,0], \\
\phi\left(P_{3}\right) & =[1,1, \omega], & & \phi\left(P_{14}\right)=[1, \bar{\omega}, \bar{\omega}], \\
\phi\left(P_{4}\right) & =[1, \bar{\omega}, \omega], & \phi\left(P_{15}\right)=[1, \omega, 1], \\
\phi\left(P_{5}\right) & =[1,1, \bar{\omega}], & \phi\left(P_{16}\right)=[0,1, \omega], \\
\phi\left(P_{6}\right) & =[1, \omega, \bar{\omega}], & \phi\left(P_{17}\right)=[1,0, \bar{\omega}], \\
\phi\left(P_{7}\right) & =[1, \omega, \omega], & \phi\left(P_{18}\right)=[1,0,0], \\
\phi\left(P_{8}\right) & =[1, \bar{\omega}, 1], & \phi\left(P_{19}\right)=[1,0,1], \\
\phi\left(P_{9}\right) & =[1,1,1], & \phi\left(P_{20}\right)=[0,0,1], \\
\phi\left(P_{10}\right) & =[0,1, \bar{\omega}], & \phi\left(P_{21}\right)=[1,0, \omega] . \\
\phi\left(P_{11}\right) & =[0,1,1], & &
\end{array}
$$

Table 4.6. Bijection ϕ from \mathcal{P} to $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$

Proposition 4.1. The group $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$ is of order 1152, and is generated by $P G$, F and T.

Proof. Since the actions of $P G^{\prime}$ and F^{\prime} on $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$ leave the set

$$
\{[0,1,0],[1,1,0],[1,0,0]\}=\left\{\phi\left(P_{12}\right), \phi\left(P_{13}\right), \phi\left(P_{18}\right)\right\}
$$

invariant, and preserve the line-point incidence configuration, we see that $P G \subset$ $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$ and $F \in \operatorname{Aut}\left(\mathbf{C}_{A}\right)$. It is obvious that $T \in \operatorname{Aut}\left(\mathbf{C}_{A}\right)$. By direct calculation, we see that the subgroup of $\mathfrak{S}(\mathcal{P})$ generated by $P G, F$ and T is of order 1152.

Every automorphism of \mathbf{C}_{A} leaves each of the sets $\left\{P_{1}, P_{2}\right\}$ and $\left\{P_{12}, P_{13}, P_{18}\right\}$ invariant. Hence we have a homomorphism

$$
\begin{equation*}
\operatorname{Aut}\left(\mathbf{C}_{A}\right) \rightarrow \mathfrak{S}\left(\left\{P_{1}, P_{2}\right\}\right) \times \mathfrak{S}\left(\left\{P_{12}, P_{13}, P_{18}\right\}\right) \tag{4.1}
\end{equation*}
$$

Since $P G$ acts on $\left\{P_{12}, P_{13}, P_{18}\right\}$ as the full-symmetric group, and since T is contained in $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$, the homomorphism (4.1) is surjective. Let K denote the kernel of (4.1). We have a homomorphism

$$
\begin{equation*}
K \rightarrow \mathfrak{S}_{4} \times \mathfrak{S}_{4}, \quad g \mapsto\left(\sigma, \sigma^{\prime}\right), \tag{4.2}
\end{equation*}
$$

where σ and σ^{\prime} are given by

$$
g\left(l_{12, \alpha}\right)=l_{12, \sigma(\alpha)}, \quad g\left(l_{13, \beta}\right)=l_{13, \sigma^{\prime}(\beta)} .
$$

We also have a homomorphism

$$
\begin{equation*}
\mathfrak{S}_{4} \times \mathfrak{S}_{4} \rightarrow \mathfrak{S}(\mathcal{P}), \quad\left(\sigma, \sigma^{\prime}\right) \mapsto g_{\sigma, \sigma^{\prime}} \tag{4.3}
\end{equation*}
$$

where $g_{\sigma, \sigma^{\prime}}$ is given by

$$
\begin{aligned}
g_{\sigma, \sigma^{\prime}}\left(P_{i}\right)= & P_{i} \quad \text { if } P_{i} \in m \\
g_{\sigma, \sigma^{\prime}}\left(T_{\alpha \beta \gamma}\right)= & T_{\sigma(\alpha) \sigma^{\prime}(\beta) \gamma^{\prime}} \\
& \text { where }(\alpha, \beta, \gamma) \text { and }\left(\sigma(\alpha), \sigma^{\prime}(\beta), \gamma^{\prime}\right) \text { are concurrent triples. }
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{\lambda}\left(P_{1}\right) & =[1, \omega, 0], & \gamma_{\lambda}\left(P_{12}\right) & =[0,1,0], \\
\gamma_{\lambda}\left(P_{2}\right) & =[1, \bar{\omega}, 0], & \gamma_{\lambda}\left(P_{13}\right) & =[1,1,0], \\
\gamma_{\lambda}\left(P_{3}\right) & =[1+\lambda, 1+\lambda, 1], & \gamma_{\lambda}\left(P_{14}\right) & =[\lambda, 1,1], \\
\gamma_{\lambda}\left(P_{4}\right) & =[1+\lambda, \lambda, 1], & \gamma_{\lambda}\left(P_{15}\right) & =[1, \lambda, 1], \\
\gamma_{\lambda}\left(P_{5}\right) & =[\lambda, \lambda, 1], & \gamma_{\lambda}\left(P_{16}\right) & =[0,1+\lambda, 1], \\
\gamma_{\lambda}\left(P_{6}\right) & =[\lambda, 1+\lambda, 1], & \gamma_{\lambda}\left(P_{17}\right) & =[\lambda, 0,1], \\
\gamma_{\lambda}\left(P_{7}\right) & =[1+\lambda, 1,1], & \gamma_{\lambda}\left(P_{18}\right) & =[1,0,0], \\
\gamma_{\lambda}\left(P_{8}\right) & =[1,1+\lambda, 1], & \gamma_{\lambda}\left(P_{19}\right) & =[1,0,1], \\
\gamma_{\lambda}\left(P_{9}\right) & =[1,1,1], & \gamma_{\lambda}\left(P_{20}\right) & =[0,0,1], \\
\gamma_{\lambda}\left(P_{10}\right) & =[0, \lambda, 1], & \gamma_{\lambda}\left(P_{21}\right) & =[1+\lambda, 0,1] . \\
\gamma_{\lambda}\left(P_{11}\right) & =[0,1,1], & &
\end{aligned}
$$

Table 4.7. Definition of γ_{λ} for \mathbf{C}_{A}

Since the composite of (4.2) and (4.3) is the identity of K, the homomorphism (4.2) is injective. For each pair $\left(\sigma, \sigma^{\prime}\right)$ of $\mathfrak{S}_{4} \times \mathfrak{S}_{4}$, we check whether $g_{\sigma, \sigma^{\prime}}$ is in $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$; that is, whether $g_{\sigma, \sigma^{\prime}}$ satisfies the following (see Proposition 3.5):

$$
\begin{equation*}
g_{\sigma, \sigma^{\prime}}\left(W_{1}\left(\mathbf{C}_{A}\right)\right)=W_{1}\left(\mathbf{C}_{A}\right) \quad \text { and } \quad g_{\sigma, \sigma^{\prime}}\left(W_{2}\left(\mathbf{C}_{A}\right)\right)=W_{2}\left(\mathbf{C}_{A}\right) \tag{4.4}
\end{equation*}
$$

Among (4! $)^{2}=576$ pairs, exactly 96 pairs satisfy (4.4). Hence $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$ is of order $|K|\left|\mathfrak{S}_{2}\right|\left|\mathfrak{S}_{3}\right|=96 \cdot 12=1152$, and is generated by $P G, F$ and T.

For a parameter λ of the affine line \mathbb{A}^{1}, we define a map

$$
\gamma_{\lambda}: \mathcal{P} \rightarrow \mathbb{P}^{2}
$$

by Table 4.7. Note that γ_{ω} coincides with ϕ defined above. We denote by \widetilde{T} the subgroup $\{1, T\}$ of $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$.

Proposition 4.2. The map $\lambda \mapsto \gamma_{\lambda}$ induces an isomorphism from $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ to $P G L(3, k) \backslash \mathcal{G}_{A} / \widetilde{T}$.

Proof. First note that γ_{λ} is injective if and only if

$$
\begin{equation*}
\lambda \neq 0 \quad \text { and } \quad \lambda \neq 1 \tag{4.5}
\end{equation*}
$$

From now on, we assume (4.5).
We will show the following:
Claim 4.3. Let γ^{\prime} be an arbitrary element of \mathcal{G}_{A}. Then there exists a unique triple

$$
(g, t, \lambda) \in P G L(3, k) \times \widetilde{T} \times(k \backslash\{0,1, \omega, \bar{\omega}\})
$$

such that

$$
g \circ \gamma^{\prime} \circ t=\gamma_{\lambda} .
$$

Because the points $\gamma^{\prime}\left(P_{18}\right), \gamma^{\prime}\left(P_{19}\right), \gamma^{\prime}\left(P_{20}\right)$ of $\gamma^{\prime}\left(l_{18,1}\right)$ are on a line and the points $\gamma^{\prime}\left(P_{12}\right), \gamma^{\prime}\left(P_{13}\right), \gamma^{\prime}\left(P_{18}\right)$ of $\gamma^{\prime}(m)$ are on another line, there exists a unique
element $g \in \operatorname{PGL}(3, k)$ such that $\gamma:=g \circ \gamma^{\prime}$ satisfies the following:

$$
\begin{align*}
& \gamma\left(P_{18}\right)=[1,0,0], \\
& \gamma\left(P_{12}\right)=[0,1,0], \gamma\left(P_{13}\right)=[1,1,0], \tag{4.6}\\
& \gamma\left(P_{20}\right)=[0,0,1], \gamma\left(P_{19}\right)=[1,0,1] .
\end{align*}
$$

Let $L_{12, \alpha}, L_{13, \beta}$ and $L_{18, \gamma}$ be the lines containing $\gamma\left(l_{12, \alpha}\right), \gamma\left(l_{13, \beta}\right)$ and $\gamma\left(l_{18, \gamma}\right)$, respectively. We put $x:=X / Z, y:=Y / Z$. Then the defining equations of these lines can be written as follows:

$$
\begin{align*}
L_{12, \alpha} & : x+a_{\alpha}=0, \\
L_{13, \beta} & : x+y+b_{\beta}=0, \tag{4.7}\\
L_{18, \gamma} & : y+c_{\gamma}=0 .
\end{align*}
$$

From (4.6), we have

$$
\begin{equation*}
a_{1}=0, \quad a_{2}=1, \quad b_{3}=1, \quad b_{4}=0, \quad c_{1}=0 \tag{4.8}
\end{equation*}
$$

The condition that (α, β, γ) is a concurrent triple is equivalent to

$$
a_{\alpha}+b_{\beta}+c_{\gamma}=0 .
$$

Solving the linear equations corresponding to the 16 concurrent triples and combining the result with (4.8), we obtain the following solutions:

$$
\begin{align*}
\left(a_{1}, a_{2}, a_{3}, a_{4}\right) & =(0,1, \lambda, 1+\lambda), \\
\left(b_{1}, b_{2}, b_{3}, b_{4}\right) & =(1+\lambda, \lambda, 1,0), \tag{4.9}\\
\left(c_{1}, c_{2}, c_{3}, c_{4}\right) & =(0,1, \lambda, 1+\lambda),
\end{align*}
$$

where λ is a parameter. The coordinates of the points $T_{\alpha \beta \gamma}$ are given by $\left[a_{\alpha}, c_{\gamma}, 1\right]$. Using Table 4.3, we see that $\gamma\left(P_{i}\right)=\gamma_{\lambda}\left(P_{i}\right)$ holds for every i except for $i=1$ and $i=2$. The line M containing $\gamma(m)$ is defined by $Z=0$. Hence we can put

$$
\gamma\left(P_{1}\right)=\left[1, \tau_{1}, 0\right], \quad \gamma\left(P_{2}\right)=\left[1, \tau_{2}, 0\right] .
$$

By the algorithm in Remark 3.7, we see that a conic curve containing $\gamma\left(q_{114}\right)$ exists if and only if the following hold:

$$
\begin{align*}
& \left(1+\tau_{2}+\tau_{2}^{2}\right)(\lambda+1)^{2} \lambda^{2}=0, \\
& \left(\tau_{1}+\tau_{2}\right)\left(1+\tau_{2}+\tau_{2}^{2}\right)(\lambda+1) \lambda=0, \tag{4.10}\\
& \left(\tau_{1}+\tau_{2}\right)\left(\tau_{1}+\tau_{2}+1\right)(\lambda+1) \lambda=0 .
\end{align*}
$$

Here we have used the Buchberger algorithm to calculate the Gröbner basis of the ideal in $k\left[\lambda, \tau_{1}, \tau_{2}\right]$ generated by 6×6-minors of the 8×6-matrix corresponding to the eight points in $\gamma\left(q_{114}\right)$. Replacing γ by $\gamma \circ T$ if necessary, we have

$$
\tau_{1}=\omega \quad \text { and } \quad \tau_{2}=\bar{\omega}
$$

by (4.5), (4.10) and $\tau_{1} \neq \tau_{2}$. Then the conic curve containing $\gamma\left(q_{114}\right)$ is defined by

$$
X^{2}+Y^{2}+\lambda Z^{2}+X Y+(\lambda+1) Z X=0
$$

which is nonsingular if and only if $\lambda^{2}+\lambda+1 \neq 0$. (See Remark 3.8.) Thus we have proved the existence and the uniqueness of the triple (g, t, λ) satisfying $g \circ \gamma^{\prime} \circ t=\gamma_{\lambda}$. In particular, for each double coset in $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{A} / \widetilde{T}$, there exists a unique $\lambda \in k \backslash\{0,1, \omega, \bar{\omega}\}$ such that γ_{λ} is contained in the coset.

$$
\begin{aligned}
& Q_{1}^{\prime}: \quad \lambda X^{2}+Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+Y Z+\lambda^{2} Z X=0, \\
& Q_{2}^{\prime}:(\lambda+1) X^{2}+Y^{2}+Y Z+\left(\lambda^{2}+1\right) Z X=0, \\
& Q_{3}^{\prime}:(\lambda+1) X^{2}+\lambda Y^{2}+\lambda^{2} Y Z+\left(\lambda^{2}+1\right) Z X=0, \\
& Q_{4}^{\prime}: \lambda X^{2}+(\lambda+1) Y^{2}+\left(\lambda^{2}+1\right) Y Z+\lambda^{2} Z X=0, \\
& Q_{5}^{\prime}: X^{2}+\lambda Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+\lambda^{2} Y Z+Z X=0, \\
& Q_{6}^{\prime}: X^{2}+(\lambda+1) Y^{2}+\left(\lambda^{2}+1\right) Y Z+Z X=0, \\
& Q_{7}^{\prime}: X^{2}+(\lambda+1) Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+\left(\lambda^{2}+1\right) Y Z+Z X=0, \\
& Q_{8}^{\prime}: \quad X^{2}+\lambda Y^{2}+\lambda^{2} Y Z+Z X=0, \\
& Q_{9}^{\prime}: \lambda X^{2}+(\lambda+1) Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+\left(\lambda^{2}+1\right) Y Z+\lambda^{2} Z X=0, \\
& Q_{10}^{\prime}:(\lambda+1) X^{2}+\lambda Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+\lambda^{2} Y Z+\left(\lambda^{2}+1\right) Z X=0, \\
& Q_{11}^{\prime}:(\lambda+1) X^{2}+Y^{2}+\left(\lambda^{2}+\lambda\right) Z^{2}+Y Z+\left(\lambda^{2}+1\right) Z X=0, \\
& Q_{12}^{\prime}: \quad \lambda X^{2}+Y^{2}+Y Z+\lambda^{2} Z X=0 \text {. }
\end{aligned}
$$

TABLE 4.8. Defining equations of the conic curves Q_{i}^{\prime}

Conversely, let λ be an element of $k \backslash\{0,1, \omega, \bar{\omega}\}$. We will show that γ_{λ} is in \mathcal{G}_{A}. The points $\gamma_{\lambda}(\mathcal{P})$ coincides with $Z(d G A[\lambda])$, where $G A[\lambda]$ is given in Theorem 1.6. Indeed, we can check that

$$
\frac{\partial G A[\lambda]}{\partial X}\left(\gamma_{\lambda}\left(P_{i}\right)\right)=\frac{\partial G A[\lambda]}{\partial Y}\left(\gamma_{\lambda}\left(P_{i}\right)\right)=\frac{\partial G A[\lambda]}{\partial Z}\left(\gamma_{\lambda}\left(P_{i}\right)\right)=0
$$

holds for $i=1, \ldots, 21$. For each linear word l of \mathbf{C}_{A}, there exists a line containing $\gamma_{\lambda}(l)$. The defining equations of them are given by (4.7) and (4.9). (The line M containing $\gamma_{\lambda}(m)$ is defined by $Z=0$.) For each quadratic word q_{i}^{\prime} of \mathbf{C}_{A} (resp. $q_{\alpha \beta \gamma}$), there exists a nonsingular conic curve Q_{i}^{\prime} (resp. $Q_{\alpha \beta \gamma}$) containing $\gamma_{\lambda}\left(q_{i}^{\prime}\right)$ (resp. $\left.\gamma_{\lambda}\left(q_{\alpha \beta \gamma}\right)\right)$. The defining equations of them are given in Tables 4.8 and 4.9. Hence $\gamma_{\lambda} \in \mathcal{G}_{A}$ by Proposition 3.6.

Remark 4.4. The polynomial $G A[\lambda]$ defines the nodal splitting curve

$$
M \cup L_{12,1} \cup L_{18,1} \cup L_{13,3} \cup Q_{242}
$$

See Proposition 2.8.
Remark 4.5. When $\lambda \in\{\omega, \bar{\omega}\}$, the set $\gamma_{\lambda}(\mathcal{P})$ coincides with $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$, and the point $[G A[\lambda]] \in \mathfrak{M}$ is the Dolgachev-Kondo point.

Let $k(\lambda)$ be the rational function field with variable λ. For each $\sigma \in \operatorname{Aut}\left(\mathbf{C}_{A}\right)$, we calculate the unique triple

$$
\left(g_{\sigma}, t_{\sigma}, \lambda^{\sigma}\right) \in P G L(3, k(\lambda)) \times \widetilde{T} \times k(\lambda)
$$

such that

$$
g_{\sigma} \circ\left(\gamma_{\lambda} \circ \sigma\right) \circ t_{\sigma}=\gamma_{\lambda^{\sigma}}
$$

$$
\begin{array}{l:l}
Q_{114} & : \\
X^{2}+Y^{2}+X Y+\lambda Z^{2}+(\lambda+1) Z X=0, \\
Q_{123} & : \\
X^{2}+Y^{2}+X Y+(\lambda+1) Z^{2}+\lambda Z X=0, \\
Q_{132} & : \\
X^{2}+Y^{2}+X Y+\left(\lambda^{2}+\lambda\right) Z^{2}+Z X=0, \\
Q_{141} & : \\
X^{2}+Y^{2}+X Y+\left(\lambda^{2}+\lambda+1\right) Z^{2}=0, \\
Q_{213} & : \\
X^{2}+Y^{2}+X Y+Y Z+\lambda Z X=0, \\
Q_{224} & : \\
X^{2}+Y^{2}+X Y+Y Z+(\lambda+1) Z X=0, \\
Q_{231} & : \\
X^{2}+Y^{2}+X Y+\left(\lambda^{2}+\lambda\right) Z^{2}+Y Z=0, \\
Q_{242} & : \\
X^{2}+Y^{2}+X Y+\left(\lambda^{2}+\lambda\right) Z^{2}+Y Z+Z X=0, \\
Q_{312} & : \\
X^{2}+Y^{2}+X Y+\lambda Y Z+Z X=0, \\
Q_{321} & : \\
X^{2}+Y^{2}+X Y+(\lambda+1) Z^{2}+\lambda Y Z=0, \\
Q_{334} & : \\
X^{2}+Y^{2}+X Y+\lambda Y Z+(\lambda+1) Z X=0, \\
Q_{343} & : \\
X^{2}+Y^{2}+X Y+(\lambda+1) Z^{2}+\lambda Y Z+\lambda Z X=0, \\
Q_{411} & : \\
X^{2}+Y^{2}+X Y+\lambda Z^{2}+(\lambda+1) Y Z=0, \\
Q_{422} & : \\
X^{2}+Y^{2}+X Y+(\lambda+1) Y Z+Z X=0, \\
Q_{433} & : \\
X^{2}+Y^{2}+X Y+(\lambda+1) Y Z+\lambda Z X=0, \\
Q_{444} & :
\end{array} X^{2}+Y^{2}+X Y+\lambda Z^{2}+(\lambda+1) Y Z+(\lambda+1) Z X=0 .
$$

Table 4.9. Defining equations of the conic curves $Q_{\alpha \beta \gamma}$

holds (see Claim 4.3.) The calculation is done as follows: g_{σ} is the unique linear automorphism of \mathbb{P}^{2} characterized by

$$
\begin{array}{ll}
g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{18}\right)\right)\right)=[1,0,0], \\
g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{12}\right)\right)\right)=[0,1,0], & g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{13}\right)\right)\right)=[1,1,0] \quad \text { and } \\
g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{20}\right)\right)\right)=[0,0,1], & g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{19}\right)\right)\right)=[1,0,1] ;
\end{array}
$$

$t_{\sigma} \in \widetilde{T}$ is given by

$$
t_{\sigma}= \begin{cases}\text { id } & \text { if } g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{1}\right)\right)\right)=[1, \omega, 0] \\ T & \text { if } g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{1}\right)\right)\right)=[1, \bar{\omega}, 0]\end{cases}
$$

and λ^{σ} is the rational function of the parameter λ satisfying

$$
g_{\sigma}\left(\gamma_{\lambda}\left(\sigma\left(P_{10}\right)\right)\right)=\left[0, \lambda^{\sigma}, 1\right] .
$$

The map $\sigma \mapsto t_{\sigma}$ is a homomorphism from $\operatorname{Aut}\left(\mathbf{C}_{A}\right)$ to \widetilde{T}. We put

$$
N_{A}:=\operatorname{Ker}\left(\operatorname{Aut}\left(\mathbf{C}_{A}\right) \rightarrow \widetilde{T}\right)
$$

From the proof of Proposition 4.2, we obtain the following:
Corollary 4.6. The space $P G L(3, k) \backslash \mathcal{G}_{A}$ has exactly two connected components, each of which is isomorphic to $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. Set-theoretically, they are given by

$$
\begin{aligned}
& \left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+}:=\left\{\left[\gamma_{\alpha}\right] \mid \alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}\right\}, \quad \text { and } \\
& \left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{-}
\end{aligned}:=\left\{\left[\gamma_{\alpha} \circ T\right] \mid \alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}\right\} .
$$

The group N_{A} acts on $\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+}$, and the moduli curve \mathfrak{M}_{A} is equal to the quotient space $\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+} / N_{A}$.

Let

$$
p_{A}: \mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\} \cong\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+} \rightarrow \mathfrak{M}_{A}=\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+} / N_{A}
$$

denote the natural projection. For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$, let $P[\alpha]$ be the point of $\mathbb{A}^{1} \backslash$ $\{0,1, \omega, \bar{\omega}\}$ given by $\lambda=\alpha$. Then $p_{A}(P[\alpha]) \in \mathfrak{M}_{A}$ corresponds to the isomorphism class of the polarized supersingular $K 3$ surface $\left(X_{G A[\alpha]}, \mathcal{L}_{G A[\alpha]}\right)$.

Proposition 4.7. The set $p_{A}^{-1}\left(p_{A}(P[\alpha])\right)$ is equal to
(4.11) $\{P[\alpha], P[1 / \alpha], P[\alpha+1], P[1 /(\alpha+1)], P[\alpha /(\alpha+1)], P[(\alpha+1) / \alpha]\}$, and $\operatorname{Aut}\left(X_{G A[\alpha]}, \mathcal{L}_{G A[\alpha]}\right)$ is equal to the group (1.1).

Proof. The set $\left\{\lambda^{\sigma} \mid \sigma \in N_{A}\right\} \subset k(\lambda)$ coincides with the group Γ_{A} given in Theorem 1.6. The fiber $p_{A}^{-1}\left(p_{A}(P[\alpha])\right)$ is therefore equal to (4.11). Note that the fiber $p_{A}^{-1}\left(p_{A}(P[\alpha])\right)$ consists of six distinct points for any $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$; that is, the action of Γ_{A} on $\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+}$is free. Hence, for any $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$ and any $\sigma \in \operatorname{Aut}\left(\mathbf{C}_{A}\right)$, the projective equivalence classes $\left[\gamma_{\alpha}\right]$ and

$$
\left[\gamma_{\alpha} \circ \sigma\right]=\left[\gamma_{\alpha^{\sigma}} \circ t_{\sigma}\right] \in P G L(3, k) \backslash \mathcal{G}_{C}
$$

coincide if and only if $t_{\sigma}=$ id and $\lambda^{\sigma}=\lambda$ hold. Therefore, using Corollary 2.21, we can obtain $\operatorname{Aut}\left(X_{G A[\alpha]}, \mathcal{L}_{G A[\alpha]}\right)$ from the subgroup

$$
\left\{g_{\sigma} \mid t_{\sigma}=\mathrm{id} \quad \text { and } \quad \lambda^{\sigma}=\lambda\right\} \subset P G L(3, k(\lambda))
$$

by substituting α for λ.
Corollary 4.8. We have $\mathfrak{M}_{A}=\operatorname{Spec} k\left[J_{A}, 1 / J_{A}\right]$, where $J_{A}=\left(\lambda^{2}+\lambda+1\right) / \lambda^{2}(\lambda+$ $1)^{2}$. The morphism p_{A} is an étale Galois covering with Galois group Γ_{A}, which is isomorphic to \mathfrak{S}_{3}.

5. The moduli curve corresponding to the code \mathbf{C}_{B}

In this section, we prove Theorem 1.7.
Let $A F$ be the affine plane over $\mathbb{F}_{3}, P(A F)$ the set of rational points of $A F$, and $L(A F)$ the set of rational affine lines of $A F$. Each element of $P(A F)$ is expressed by a pair $a a^{\prime}$ of elements of \mathbb{F}_{3}, and each element of $L(A F)$ is expressed as a subset $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ of $P(A F)$ with cardinality 3 . We have

$$
|P(A F)|=9 \quad \text { and } \quad|L(A F)|=12
$$

The incidence relation

$$
\{(p, \ell) \in P(A F) \times L(A F) \mid p \in \ell\}
$$

is called the Hesse configuration ([4]). The automorphism group

$$
G_{\text {Hesse }}:=\{\sigma \in \mathfrak{S}(P(A F)) \mid \sigma(\ell) \in L(A F) \text { for all } \ell \in L(A F)\}
$$

of this configuration is isomorphic to the group of affine transformations of $A F$ defined over \mathbb{F}_{3}. In particular, the order of $G_{\text {Hesse }}$ is 432 .

We define injective maps

$$
C: P(A F) \rightarrow \mathcal{P} \quad \text { and } \quad T: L(A F) \rightarrow \mathcal{P}
$$

by Table 5.1. Then \mathcal{P} is a disjoint union of $C(P(A F))$ and $T(L(A F))$. A point $P \in \mathcal{P}$ is called a C-point or a T-point according to whether $P \in C(P(A F))$ or $P \in T(L(A F))$. The code \mathbf{C}_{B} is described as follows.

$a a^{\prime}$	00	01	02	10	11	12	20	21	22
$C\left(a a^{\prime}\right)$	P_{17}	P_{13}	P_{5}	P_{10}	P_{8}	P_{6}	P_{2}	P_{3}	P_{1}

$a a^{\prime}$	$b b^{\prime}$	$c c^{\prime}$	$T(\ell)$
00	01	02	P_{21}
00	10	20	P_{20}
00	11	22	P_{19}
00	12	21	P_{18}
01	10	22	P_{16}
01	11	21	P_{15}

$a a^{\prime}$	$b b^{\prime}$	$c c^{\prime}$	$T(\ell)$
01	12	20	P_{14}
02	10	21	P_{11}
02	11	20	P_{9}
02	12	22	P_{7}
10	11	12	P_{12}
20	21	22	P_{4}

Table 5.1. C-points $C\left(a a^{\prime}\right)$ and T-points $T(\ell)$ for $\ell=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$

The linear words of \mathbf{C}_{B} are precisely the words

$$
l_{a a^{\prime}}:=\left\{C\left(a a^{\prime}\right), T\left(\ell_{1}\right), T\left(\ell_{2}\right), T\left(\ell_{3}\right), T\left(\ell_{4}\right)\right\} \quad\left(a a^{\prime} \in P(A F)\right)
$$

where $\ell_{1}, \ldots, \ell_{4} \in L(A F)$ are the four affine lines passing through the point $a a^{\prime} \in$ $P(A F)$.

There are two types of quadratic words.
(I) Let $\ell=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ be an element of $L(A F)$. There exists a unique pair of distinct affine lines

$$
\ell_{1}=\left\{a_{1} a_{1}^{\prime}, b_{1} b_{1}^{\prime}, c_{1} c_{1}^{\prime}\right\} \neq \ell, \quad \ell_{2}=\left\{a_{2} a_{2}^{\prime}, b_{2} b_{2}^{\prime}, c_{2} c_{2}^{\prime}\right\} \neq \ell
$$

that are parallel to ℓ. Then the word

$$
q_{\ell}:=\left\{C\left(a_{1} a_{1}^{\prime}\right), C\left(b_{1} b_{1}^{\prime}\right), C\left(c_{1} c_{1}^{\prime}\right), C\left(a_{2} a_{2}^{\prime}\right), C\left(b_{2} b_{2}^{\prime}\right), C\left(c_{2} c_{2}^{\prime}\right), T\left(\ell_{1}\right), T\left(\ell_{2}\right)\right\}
$$

is a quadratic word of \mathbf{C}_{B}.
(II) Let ℓ_{1} and ℓ_{2} be two distinct elements of $L(A F)$ that are not parallel, and let $a a^{\prime} \in P(A F)$ be the intersection point of ℓ_{1} and ℓ_{2}. Then there exists a pair $\{m, n\}$ of elements of $L(A F)$ with the following properties:
(i) m and n are parallel,
(ii) $a a^{\prime} \notin m, a a^{\prime} \notin n$, and
(iii) none of the pairs $\left(\ell_{1}, m\right),\left(\ell_{2}, m\right),\left(\ell_{1}, n\right),\left(\ell_{2}, n\right)$ are parallel.

For such a pair $\{m, n\}$, there exists a unique line $\ell^{\prime} \in L(A F)$ such that
(a) $a a^{\prime} \in \ell^{\prime}$,
(b) is distinct from ℓ_{1} and ℓ_{2}, and
(c) intersects both of m and n.

We denote the intersection points of these affine lines as in Figure 5.1. Then the word

$$
q_{\ell_{1}, \ell_{2}}^{\prime}:=\left\{C\left(M_{1}\right), C\left(M_{2}\right), C\left(N_{1}\right), C\left(N_{2}\right), T\left(M_{1} N^{\prime}\right), T\left(M_{2} N^{\prime}\right), T\left(N_{1} M^{\prime}\right), T\left(N_{2} M^{\prime}\right)\right\}
$$

is a quadratic word of \mathbf{C}_{B}, where $M N \in L(A F)$ denotes the affine line containing the points M and N. For each $\left(\ell_{1}, \ell_{2}\right)$, there exist exactly two pairs satisfying (i), (ii) and (iii). However, the word $q_{\ell_{1}, \ell_{2}}^{\prime}$ is independent of the choice of the pair.

Figure 5.1. Intersection points
$\left.\begin{array}{l:lcccccc}l_{00}: & \{ & 17, & 18, & 19, & 20, & 21\end{array}\right\}$,

Table 5.2. Linear words of \mathbf{C}_{B}

There exist 12 quadratic words of type I, and 54 quadratic words of type II. The quadratic words of \mathbf{C}_{B} are precisely these 66 words. The linear and quadratic words of \mathbf{C}_{B} are explicitly presented in Tables 5.2, 5.3 and 5.4.

The following proposition can be checked easily:
Proposition 5.1. Let $\ell=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ be an element of $L(A F)$. Then the quadratic word q_{ℓ} of type I is disjoint from the three linear words $l_{a a^{\prime}}, l_{b b^{\prime}}, l_{c c^{\prime}}$ containing $T(\ell) \in \mathcal{P}$.

We define a homomorphism

$$
\Psi: G_{\text {Hesse }} \rightarrow \mathfrak{S}(\mathcal{P})
$$

by

$$
\Psi(g)\left(C\left(a a^{\prime}\right)\right):=C\left(g\left(a a^{\prime}\right)\right) \quad \Psi(g)(T(\ell)):=T(g(\ell))
$$

It is obvious that Ψ is injective.
Proposition 5.2. The automorphism group $\operatorname{Aut}\left(\mathbf{C}_{B}\right)$ of the code \mathbf{C}_{B} coincides with the image of Ψ.

Proof. The above description of the linear and quadratic words in \mathbf{C}_{B} shows that every element in the image of Ψ preserves the sets of these words. Since \mathbf{C}_{B} is

$q_{00,01,02}$	$:$	$\{$	1,	2,	3,	4,	6,	8,	10,	12	$\}$,
$q_{00,10,20}$	$:$	$\{$	1,	3,	5,	6,	7,	8,	13,	15	$\}$,
$q_{00,11,22}$	$:$	$\{$	2,	3,	5,	6,	10,	11,	13,	14	$\}$,
$q_{00,12,21}$	$:$	$\{$	1,	2,	5,	8,	9,	10,	13,	16	$\}$,
$q_{01,10,22}$	$:$	$\{$	2,	3,	5,	6,	8,	9,	17,	18	$\}$,
$q_{01,11,21}$	$:$	$\{$	1,	2,	5,	6,	7,	10,	17,	20	$\}$,
$q_{01,12,20}$	$:$	$\{$	1,	3,	5,	8,	10,	11,	17,	19	$\}$,
$q_{02,10,21}$	$:$	$\{$	1,	2,	6,	8,	13,	14,	17,	19	$\}$,
$q_{02,11,20}$	$:$	$\{$	1,	3,	6,	10,	13,	16,	17,	18	$\}$,
$q_{02,12,22}$	$:$	$\{$	2,	3,	8,	10,	13,	15,	17,	20	$\}$,
$q_{10,11,12}$	$:$	$\{$	1,	2,	3,	4,	5,	13,	17,	21	$\}$,
$q_{20,21,22}$	$:$	$\{$	5,	6,	8,	10,	12,	13,	17,	21	$\}$,

Table 5.3. Quadratic words of type I in \mathbf{C}_{B}
generated by the word $\mathcal{P} \in \operatorname{Pow}(\mathcal{P})$ and these words, the image of Ψ is contained in $\operatorname{Aut}\left(\mathbf{C}_{B}\right)$.

Suppose that $\sigma \in \operatorname{Aut}\left(\mathbf{C}_{B}\right)$ is given. A point $P \in \mathcal{P}$ is a C-point if and only if there exists exactly one linear word in \mathbf{C}_{B} that contains P. Hence σ preserves the set of C-points. Via the bijection $C: P(A F) \cong \operatorname{Im} C$, we obtain a unique element $\tilde{\sigma} \in \mathfrak{S}(P(A F))$ such that $\sigma \circ C=C \circ \tilde{\sigma}$ holds. When $P=C\left(a a^{\prime}\right)$, the unique linear word in \mathbf{C}_{B} containing P is just $l_{a a^{\prime}}$. The Hesse configuration on $A F$ is recovered from \mathbf{C}_{B} as follows; a set $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$ of cardinality 3 is an element of $L(A F)$ if and only if the three linear words $l_{a a^{\prime}}, l_{b b^{\prime}}, l_{c c^{\prime}}$ have a point in common. In this case, the common point of $l_{a a^{\prime}}, l_{b b^{\prime}}, l_{c c^{\prime}}$ is just $T\left(\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}\right)$. Therefore we see that $\tilde{\sigma} \in G_{\text {Hesse }}$, and that $\sigma \circ T=T \circ \tilde{\sigma}$ holds. Thus $\sigma=\Psi(\tilde{\sigma})$.

Let λ be a parameter of the affine line \mathbb{A}^{1}. We define $\gamma_{\lambda}: \mathcal{P} \rightarrow \mathbb{P}^{2}$ by Table 5.5. We also denote by $\widetilde{T}=\langle T\rangle$ the subgroup of $\operatorname{Aut}\left(\mathbf{C}_{B}\right)$ of order 2 generated by

$$
T:=\left(P_{2} P_{5}\right)\left(P_{3} P_{6}\right)\left(P_{4} P_{7}\right)\left(P_{10} P_{13}\right)\left(P_{11} P_{14}\right)\left(P_{12} P_{15}\right)\left(P_{20} P_{21}\right),
$$

which corresponds to the automorphism of the Hesse configuration given by $a a^{\prime} \mapsto$ $a^{\prime} a$.

Proposition 5.3. The map $\lambda \mapsto \gamma_{\lambda}$ induces an isomorphism from $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ to $P G L(3, k) \backslash \mathcal{G}_{B} / \widetilde{T}$.

Proof. First note that γ_{λ} is injective if and only if

$$
\lambda \neq 0, \quad \lambda \neq 1 \quad \text { and } \quad \lambda \neq \bar{\omega}
$$

hold.
Suppose that $\lambda \neq 0,1, \omega$ and $\bar{\omega}$. Then γ_{λ} is injective, and the image $\gamma_{\lambda}(\mathcal{P})$ coincides with $Z(d G B[\lambda])$, where $G B[\lambda]$ is given in Theorem 1.7. Moreover, for each linear word $l_{a a^{\prime}}$ (resp. each quadratic word q_{ℓ} of type I) (resp. each quadratic word $q_{\ell, \ell^{\prime}}^{\prime}$ of type II) of the code \mathbf{C}_{B}, there exists a line $L_{a a^{\prime}}$ containing $\gamma_{\lambda}\left(\ell_{a a^{\prime}}\right)$ (resp. a conic curve Q_{ℓ} containing $\gamma_{\lambda}\left(q_{\ell}\right)$) (resp. a conic curve $Q_{\ell, \ell^{\prime}}^{\prime}$ containing $\left.\gamma_{\lambda}\left(q_{\ell, \ell^{\prime}}^{\prime}\right)\right)$ given in Tables 5.6, 5.7, 5.8. The conic curves in Tables 5.7 and 5.8 are nonsingular because $\lambda \notin\{0,1, \omega, \bar{\omega}\}$. Hence γ_{λ} is in \mathcal{G}_{B} by Proposition 3.6.

Table 5.4. Quadratic words of type II in \mathbf{C}_{B}

Conversely, let γ^{\prime} be an arbitrary element of \mathcal{G}_{B}. We will show the following:
Claim 5.4. There exists a unique triple

$$
(g, t, \lambda) \in P G L(3, k) \times \widetilde{T} \times(k \backslash\{0,1, \omega, \bar{\omega}\})
$$

such that $g \circ \gamma^{\prime} \circ t=\gamma_{\lambda}$ holds.
The points $\gamma^{\prime}\left(P_{15}\right), \gamma^{\prime}\left(P_{16}\right), \gamma^{\prime}\left(P_{21}\right)$ of $\gamma^{\prime}\left(\ell_{01}\right)$ are on a line, and the points $\gamma^{\prime}\left(P_{12}\right), \gamma^{\prime}\left(P_{16}\right), \gamma^{\prime}\left(P_{20}\right)$ of $\gamma^{\prime}\left(\ell_{10}\right)$ are on another line. Hence there exists a unique element $g \in P G L(3, k)$ such that $\gamma:=g \circ \gamma^{\prime}$ satisfies the following:

$$
\begin{align*}
& \gamma\left(P_{16}\right)=[1,0,0], \\
& \gamma\left(P_{12}\right)=[1,1,0], \tag{5.1}\\
& \gamma\left(P_{20}\right)=[0,1,0] \\
& \gamma\left(P_{15}\right)=[1,0,1], \\
& \gamma\left(P_{21}\right)=[0,0,1]
\end{align*}
$$

P_{i}	$\gamma_{\lambda}\left(P_{i}\right)$
$P_{1}=C(22)$	$[\lambda+1, \bar{\omega} \lambda+\omega, \bar{\omega} \lambda+\omega]$
$P_{2}=C(20)$	$[1, \omega \lambda+\omega, \omega]$
$P_{3}=C(21)$	$[\lambda+\bar{\omega}, 1, \lambda+1]$
$P_{4}=T(20,21,22)$	$[1, \omega, \omega]$
$P_{5}=C(02)$	$[\lambda, \bar{\omega} \lambda, \bar{\omega} \lambda+\bar{\omega}]$
$P_{6}=C(12)$	$[\lambda+\bar{\omega}, \bar{\omega} \lambda+\bar{\omega}, \bar{\omega} \lambda]$
$P_{7}=T(02,12,22)$	$[1, \bar{\omega}, \bar{\omega}]$
$P_{8}=C(11)$	$[\lambda+1,1, \lambda]$
$P_{9}=T(02,11,20)$	$[1, \bar{\omega}, \omega]$
$P_{10}=C(10)$	$[1, \omega \lambda+1,0]$
$P_{11}=T(02,10,21)$	$[1, \bar{\omega}, 0]$
$P_{12}=T(10,11,12)$	$[1,1,0]$
$P_{13}=C(01)$	$[\lambda, 0, \lambda+\bar{\omega}]$
$P_{14}=T(01,12,20)$	$[1,0, \omega]$
$P_{15}=T(01,11,21)$	$[1,0,1]$
$P_{16}=T(01,10,22)$	$[1,0,0]$
$P_{17}=C(00)$	$[0, \lambda, 1]$
$P_{18}=T(00,12,21)$	$[0,1, \omega]$
$P_{19}=T(00,11,22)$	$[0,1,1]$
$P_{20}=T(00,10,20)$	$[0,1,0]$
$P_{21}=T(00,01,02)$	$[0,0,1]$

Table 5.5. Definition of γ_{λ} for \mathbf{C}_{B}

$a a^{\prime}$	The defining equation of $L_{a a^{\prime}}$
00	$X=0$
01	$Y=0$
02	$X+\omega Y=0$
10	$Z=0$
11	$X+Y+Z=0$
12	$\omega X+\omega Y+Z=0$
20	$\omega X+Z=0$
21	$X+\omega Y+Z=0$
22	$Y+Z=0$

Table 5.6. Defining equations of the lines $L_{a a^{\prime}}$

For $a a^{\prime} \in P(A F)$, let $L_{a a^{\prime}} \subset \mathbb{P}^{2}$ be the line containing $\gamma\left(l_{a a^{\prime}}\right)$, and let

$$
\xi_{a a^{\prime}} X+\eta_{a a^{\prime}} Y+\zeta_{a a^{\prime}} Z=0
$$

$a a^{\prime}$	$b b^{\prime}$	$c c^{\prime}$	The defining equation of $Q_{a a^{\prime}, b b^{\prime}, c c^{\prime}}$
00	01	02	$(\lambda+\bar{\omega}) X^{2}+\bar{\omega} Y^{2}+(\lambda+\omega) Z^{2}+\lambda X Y$
00	10	20	$(\omega \lambda+1) X^{2}+(\bar{\omega} \lambda+1) Y^{2}+\omega \lambda Z^{2}+Z X$
00	11	22	$(\bar{\omega} \lambda+\omega) X^{2}+\bar{\omega} Y^{2}+\omega \lambda Z^{2}+(\lambda+1) X Y+(\lambda+1) Z X$
00	12	21	$Y^{2}+\lambda Z^{2}+(\omega \lambda+1) X Y+(\lambda+\bar{\omega}) Z X$
01	10	22	$(\bar{\omega} \lambda+1) X^{2}+Y^{2}+\bar{\omega} \lambda Z^{2}+(\lambda+\bar{\omega}) Y Z$
01	11	21	$(\omega \lambda+1) X^{2}+\lambda Z^{2}+X Y+Y Z$
01	12	20	$(\lambda+\bar{\omega}) X^{2}+Y^{2}+\lambda Z^{2}+(\omega \lambda+\omega) X Y+(\lambda+1) Y Z$
02	11	20	$\omega Y^{2}+\lambda Z^{2}+(\bar{\omega} \lambda+\omega) X Y+(\omega \lambda+1) Y Z+(\lambda+\bar{\omega}) Z X$
02	12	22	$(\omega \lambda+1) X^{2}+\omega \lambda Z^{2}+X Y+\omega Y Z+Z X$
10	11	12	$(\lambda+\bar{\omega}) X^{2}+Y^{2}+\lambda Y Z+\lambda Z X$
20	21	22	$(\lambda+\bar{\omega}) X^{2}+\bar{\omega} Y^{2}+\lambda X Y+\bar{\omega} \lambda Y Z+\lambda Z X$

Table 5.7. Defining equations of the conic curves of type I
be the defining equation of $L_{a a^{\prime}}$. By (5.1), we can put

$$
\begin{array}{lll}
\xi_{00}=1, & \eta_{00}=0, & \zeta_{00}=0 \\
\xi_{01}=0, & \eta_{01}=1, & \zeta_{01}=0 \\
\xi_{02}=1, & & \zeta_{02}=0 \\
\xi_{10}=0, & \eta_{10}=0, & \zeta_{10}=1 \\
\xi_{11}=1, & \eta_{11}=1, & \zeta_{11}=1, \\
\xi_{12}=1, & \eta_{12}=1, & \\
\xi_{20}=1, & \eta_{20}=0, & \\
\xi_{21}=1, & & \zeta_{21}=1, \\
\xi_{22}=0, & \eta_{22}=1 &
\end{array}
$$

The three lines $L_{a a^{\prime}}, L_{b b^{\prime}}, L_{c c^{\prime}}$ are concurrent if $\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\} \in L(A F)$. Hence we obtain a system of equations

$$
\operatorname{det}\left[\begin{array}{lll}
\xi_{a a^{\prime}} & \eta_{a a^{\prime}} & \zeta_{a a^{\prime}} \tag{5.2}\\
\xi_{b b^{\prime}} & \eta_{b b^{\prime}} & \zeta_{b b^{\prime}} \\
\xi_{c c^{\prime}} & \eta_{c c^{\prime}} & \zeta_{c c^{\prime}}
\end{array}\right]=0 \quad \text { for every }\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\} \in L(A F) .
$$

A Gröbner basis of the ideal generated by the left hand side of (5.2) in the polynomial ring $k\left[\eta_{02}, \eta_{21}, \zeta_{12}, \zeta_{20}, \zeta_{22}\right]$ is calculated as follows:

$$
\left\langle 1+\zeta_{22}, 1+\zeta_{20}+\eta_{21}, \quad 1+\zeta_{12}+\eta_{21}, \quad \eta_{02}+\eta_{21}, \quad 1+\eta_{21}+\eta_{21}^{2}\right\rangle .
$$

Hence there are two solutions of this system of equations,

$$
\begin{array}{lll}
\eta_{21}=\eta_{02}=\omega, & \zeta_{12}=\zeta_{20}=\bar{\omega}, & \zeta_{22}=1,
\end{array} \quad \text { or }, ~ 子 \eta_{21}=\eta_{02}=\bar{\omega}, \quad \zeta_{12}=\zeta_{20}=\omega, \quad \zeta_{22}=1, \quad l
$$

$T(\ell)$	$T\left(\ell^{\prime}\right)$	The defining equation of $Q_{\ell, \ell^{\prime}}^{\prime}$
18	19	$\bar{\omega} \lambda Y^{2}+\bar{\omega} Z^{2}+\omega \lambda X Y+Z X$
18	20	$Y^{2}+(\lambda+1) Z^{2}+(\omega \lambda+1) X Y+(\lambda+1) Z X$
18	21	$(\lambda+1) Y^{2}+\lambda Z^{2}+(\lambda+1) X Y+(\lambda+\bar{\omega}) Z X$
19	20	$(\bar{\omega} \lambda+\omega) X^{2}+\bar{\omega} Y^{2}+(\omega \lambda+1) Z^{2}+(\lambda+1) X Y+(\lambda+\bar{\omega}) Z X$
19	21	$(\bar{\omega} \lambda+\omega) X^{2}+(\lambda+\bar{\omega}) Y^{2}+\omega \lambda Z^{2}+(\omega \lambda+1) X Y+(\lambda+1) Z X$
20	21	$(\omega \lambda+1) X^{2}+Y^{2}+\omega \lambda Z^{2}+\omega \lambda X Y+Z X$
11	12	$\omega X^{2}+(\bar{\omega} \lambda+\omega) Y^{2}+(\bar{\omega} \lambda+\omega) Y Z+Z X$
11	16	$(\bar{\omega} \lambda+\omega) X^{2}+\bar{\omega} \lambda Y^{2}+\omega \lambda Z^{2}+\lambda Y Z+(\lambda+1) Z X$
11	20	$\bar{\omega} \lambda X^{2}+\omega Y^{2}+\omega \lambda Z^{2}+\omega(\lambda+1) Y Z+\lambda Z X$
12	16	$(\lambda+\bar{\omega}) X^{2}+\bar{\omega}(\lambda+1) Y^{2}+\omega(\lambda+1) Y Z+\lambda Z X$
12	20	$(\lambda+1) X^{2}+Y^{2}+\lambda Y Z+(\lambda+1) Z X$
16	20	$(\omega \lambda+1) X^{2}+\bar{\omega} Y^{2}+\omega \lambda Z^{2}+(\bar{\omega} \lambda+\omega) Y Z+Z X$
4	9	$\bar{\omega}(\lambda+1) Y^{2}+\bar{\omega}(\lambda+1) X Y+\omega(\lambda+1) Y Z+Z X$
4	14	$(\lambda+\bar{\omega}) X^{2}+(\omega \lambda+1) Y^{2}+(\bar{\omega} \lambda+\omega) X Y+(\omega \lambda+1) Y Z+\lambda Z X$
4	20	$(\lambda+\bar{\omega}) X^{2}+\bar{\omega} Y^{2}+\lambda X Y+\bar{\omega} \lambda Y Z+(\lambda+\bar{\omega}) Z X$
9	14	$\omega \lambda Y^{2}+\lambda Z^{2}+\lambda X Y+\bar{\omega} \lambda Y Z+(\lambda+\bar{\omega}) Z X$
9	20	$\omega Y^{2}+\lambda Z^{2}+(\bar{\omega} \lambda+\omega) X Y+(\omega \lambda+1) Y Z+\lambda Z X$
14	20	$(\omega \lambda+1) X^{2}+\omega Y^{2}+\omega \lambda Z^{2}+\bar{\omega}(\lambda+1) X Y+\omega(\lambda+1) Y Z+Z X$
14	15	$\lambda X^{2}+(\lambda+\bar{\omega}) Z^{2}+\omega \lambda X Y+(\lambda+\bar{\omega}) Y Z$
14	16	$(\bar{\omega} \lambda+\omega) X^{2}+\bar{\omega} Y^{2}+\omega Z^{2}+(\lambda+1) X Y+Y Z$
14	21	$\bar{\omega} X^{2}+Y^{2}+\lambda Z^{2}+\omega X Y+(\lambda+1) Y Z$
15	16	$(\bar{\omega}+\omega) X^{2}+\bar{\omega}(\lambda+1) Z^{2}+\omega X Y+(\lambda+1) Y Z$
15	21	$(\lambda+1) X^{2}+\lambda Z^{2}+(\lambda+1) X Y+Y Z$
16	21	$(\omega \lambda+1) X^{2}+Y^{2}+\bar{\omega} \lambda Z^{2}+\omega \lambda X Y+(\lambda+\bar{\omega}) Y Z$
9	12	$\bar{\omega} Y^{2}+(\lambda+\bar{\omega}) X Y+\omega Y Z+(\lambda+1) Z X$
9	15	$\lambda Z^{2}+(\bar{\omega} \lambda+\bar{\omega}) X Y+\omega \lambda Y Z+(\lambda+\bar{\omega}) Z X$
9	19	$Y^{2}+\bar{\omega} \lambda Z^{2}+\bar{\omega} X Y+(\lambda+\bar{\omega}) Y Z+\lambda Z X$
12	12	$14+\bar{\omega} X^{2}+\bar{\omega} X Y+(\lambda+\bar{\omega}) Y Z+\lambda Z X$
12	18	18

Table 5.8. Defining equations of the conic curves of type II
which are conjugate over \mathbb{F}_{2}. If the latter holds, then we replace γ with $g_{0} \circ \gamma \circ T$, where

$$
g_{0}:=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

so that we can assume the former always holds. The image of the T-points by γ is therefore equal to the ones given in Table 5.5, and the lines $L_{a a^{\prime}}$ are given by equations in Table 5.6.

We next determine the coordinates of the image of C-points by γ. The point $\gamma(C(00))=\gamma\left(P_{17}\right)$ is on the line $L_{00}=\{X=0\}$ and is different from $\gamma\left(P_{20}\right)=$ $[0,1,0]$ and $\gamma\left(P_{21}\right)=[0,0,1]$. Hence we can put

$$
\begin{equation*}
\gamma\left(P_{17}\right)=[0, \lambda, 1] \tag{5.3}
\end{equation*}
$$

where λ is a parameter $\neq 0$. Let ℓ, ℓ_{1}, ℓ_{2} be three distinct elements of $L(A F)$ that are parallel to each other. The conic curves Q satisfying the following conditions form a pencil $P Q_{\ell}$:
(i) Q contains $\gamma\left(T\left(\ell_{1}\right)\right)$ and $\gamma\left(T\left(\ell_{2}\right)\right)$, and
(ii) Q is tangent to the lines $L_{a a^{\prime}}, L_{b b^{\prime}}, L_{c c^{\prime}}$, where $\ell=\left\{a a^{\prime}, b b^{\prime}, c c^{\prime}\right\}$. (Recall Definition 3.9 and Remark 3.10.)
Using the coordinates of the points $\gamma(T(\ell))$ and the defining equations of the nine lines $L_{a a^{\prime}}$ determined so far, we can calculate this pencil explicitly. By Proposition 5.1, the conic curve Q_{ℓ} containing $\gamma\left(q_{\ell}\right)$ is a nonsingular member of the pencil $P Q_{\ell}$. Starting from (5.3), we can determine the coordinates of $\gamma\left(C\left(a a^{\prime}\right)\right)$, and see that they coincide with Table 5.5. For example, consider $\ell=\{01,10,22\} \in L(A F)$. We have

$$
\ell_{1}=\{02,11,20\}, \quad \ell_{2}=\{00,12,21\}
$$

The pencil of conic curves passing through the points

$$
\gamma\left(T\left(\ell_{1}\right)\right)=\gamma\left(P_{9}\right)=[1, \bar{\omega}, \omega], \quad \gamma\left(T\left(\ell_{2}\right)\right)=\gamma\left(P_{18}\right)=[0,1, \omega],
$$

and tangent to the lines

$$
L_{01}=\{Y=0\}, \quad L_{10}=\{Z=0\}, \quad L_{22}=\{Y+Z=0\}
$$

is spanned by the two conic curves defined by

$$
\omega X^{2}+\bar{\omega} Y^{2}+Z^{2}=0 \quad \text { and } \quad \omega X^{2}+\omega Y^{2}+Y Z=0 .
$$

Because the conic curve Q_{ℓ} passes through $\gamma\left(P_{17}\right)=[0, \lambda, 1]$, it is defined by

$$
\lambda\left(\omega X^{2}+\bar{\omega} Y^{2}+Z^{2}\right)+(\omega \lambda+1)\left(\omega X^{2}+\omega Y^{2}+Y Z\right)=0 .
$$

The intersection points of Q_{ℓ} with the line $L_{12}=\{\omega X+\omega Y+Z=0\}$ are $\gamma\left(T\left(\ell_{2}\right)\right)=$ $\gamma\left(P_{18}\right)=[0,1, \omega]$ and $\gamma(C(12))=\gamma\left(P_{6}\right)$. Hence we obtain

$$
\gamma(C(12))=\gamma\left(P_{6}\right)=[\omega \lambda+1, \lambda+1, \lambda] .
$$

See Table 5.9 for the detail of the calculation. Thus we have proved that γ is equal to γ_{λ}. Because γ_{λ} is injective, λ is not among $\{0,1, \bar{\omega}\}$.

There exists a unique conic curve containing $\gamma_{\lambda}(q)$ for each quadratic word q of \mathbf{C}_{B}, and the defining equations of those conic curves are given in Tables 5.7 and 5.8. The smoothness of these curves implies that $\lambda \neq \omega$. Thus we have proved Claim 5.4.

ℓ	F_{1}, F_{2}	β_{ℓ}
$00,01,02$	$\omega X^{2}+\omega Y^{2}+Z^{2}, \quad \bar{\omega} X^{2}+\omega Y^{2}+X Y$	$\left(\lambda^{2}+\bar{\omega}\right) / \lambda^{2}$
$00,10,20$	$X^{2}+\omega Y^{2}+Z^{2}, \quad X^{2}+Y^{2}+Z X$	$\left(\omega \lambda^{2}+1\right) / \lambda^{2}$
$00,11,22$	$\bar{\omega} X^{2}+\omega Y^{2}+Z^{2}, \quad \omega X^{2}+\bar{\omega} Y^{2}+X Y+Z X$	$\left(\bar{\omega} \lambda^{2}+\omega\right) / \lambda^{2}$
$00,12,21$	$\omega Y^{2}+Z^{2}, \quad \omega Y^{2}+\omega X Y+Z X$	$\left(\lambda^{2}+\bar{\omega}\right) / \lambda^{2}$
$01,10,22$	$\omega X^{2}+\bar{\omega} Y^{2}+Z^{2}, \quad \omega X^{2}+\omega Y^{2}+Y Z$	$(\omega \lambda+1) / \lambda$
$01,11,21$	$\omega X^{2}+Z^{2}, \quad X^{2}+X Y+Y Z$	$1 / \lambda$
$01,12,20$	$\omega X^{2}+Y^{2}+Z^{2}, \quad \bar{\omega} X^{2}+Y^{2}+\omega X Y+Y Z$	$(\lambda+1) / \lambda$
$02,10,21$	$\bar{\omega} X^{2}+Y^{2}+Z^{2}, \quad \omega X^{2}+\omega Y^{2}+\omega Y Z+Z X$	$(\bar{\omega} \lambda+\bar{\omega}) / \lambda$
$02,11,20$	$\bar{\omega} Y^{2}+Z^{2}, \quad \bar{\omega} Y^{2}+\bar{\omega} X Y+\omega Y Z+Z X$	$(\lambda+\bar{\omega}) / \lambda$
$02,12,22$	$X^{2}+Z^{2}, \quad X^{2}+X Y+\omega Y Z+Z X$	$\bar{\omega} / \lambda$
$10,11,12$	$\bar{\omega} X^{2}+Y^{2}, \quad X^{2}+Y Z+Z X$	λ
$20,21,22$	$X^{2}+Y^{2}, \quad X^{2}+X Y+\bar{\omega} Y Z+Z X$	$\omega \lambda$

Table 5.9. Basis $\left\{F_{1}=0, F_{2}=0\right\}$ of the pencil $P Q_{\ell}$ and the member $Q_{\ell}=\left\{F_{1}+\beta_{\ell} F_{2}=0\right\}$

Remark 5.5. The polynomial $G B[\lambda]$ is the defining equation of the nodal splitting curve

$$
L_{00} \cup L_{01} \cup L_{10} \cup L_{11} \cup Q_{\ell, \ell^{\prime}}^{\prime}
$$

where $T(\ell)=P_{16}$ and $T\left(\ell^{\prime}\right)=P_{19}$. See Proposition 2.8.
Remark 5.6. Consider the projective plane $\left(\mathbb{P}^{2}\right)^{\vee}$ of lines on \mathbb{P}^{2}. Let $[U, V, W]$ be the homogeneous coordinates of $\left(\mathbb{P}^{2}\right)^{\vee}$ dual to the homogeneous coordinates $[X, Y, Z]$ of \mathbb{P}^{2}. Let E_{λ} be the cubic curve in $\left(\mathbb{P}^{2}\right)^{\vee}$ defined by

$$
\begin{aligned}
\bar{\omega} U^{2} W+U W^{2}+\omega \lambda U V^{2}+ & (\omega \lambda+1) V^{2} W+ \\
& +(\omega \lambda+1) V W^{2}+\bar{\omega} \lambda U^{2} V+(\omega+\lambda) U V W=0 .
\end{aligned}
$$

Then the points $\gamma_{\lambda}(C(P(A F)))$ correspond to the nine flex tangents to E_{λ}, and the points $\gamma_{\lambda}(T(L(A F)))$ correspond to the twelve lines containing three flex points of E_{λ}.

Remark 5.7. When $\lambda=\omega$, the set $\gamma_{\lambda}(\mathcal{P})$ coincides with $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$, and the point $[G B[\lambda]] \in \mathfrak{M}$ is equal to the Dolgachev-Kondo point.

For each $\sigma \in \operatorname{Aut}\left(\mathbf{C}_{B}\right)$, we calculate the unique triple

$$
\left(g_{\sigma}, t_{\sigma}, \lambda^{\sigma}\right) \in P G L(3, k(\lambda)) \times \widetilde{T} \times k(\lambda)
$$

such that $g_{\sigma} \circ\left(\gamma_{\lambda} \circ \sigma\right) \circ t_{\sigma}=\gamma_{\lambda^{\sigma}}$ holds. The map $\sigma \mapsto t_{\sigma}$ is a homomorphism from $\operatorname{Aut}\left(\mathbf{C}_{B}\right)$ to \widetilde{T}. We put $N_{B}:=\operatorname{Ker}\left(\operatorname{Aut}\left(\mathbf{C}_{B}\right) \rightarrow \widetilde{T}\right)$.
Corollary 5.8. The space $P G L(3, k) \backslash \mathcal{G}_{B}$ has exactly two connected components, each of which is isomorphic to $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. One of them is given, set-theoretically, by

$$
\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+}:=\left\{\left[\gamma_{\alpha}\right] \mid \alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}\right\},
$$

l_{1}	$:=\left\{\begin{array}{llllll}17, & 18, & 19, & 20, & 21\end{array}\right\}$,
l_{2}	$:=\left\{\begin{array}{lllll}13, & 14, & 15, & 16, & 21\end{array}\right\}$,
l_{3}	$:=\left\{\begin{array}{lllll}9, & 10, & 11, & 12, & 21\end{array}\right\}$,
l_{4}	$:=\left\{\begin{array}{lllll}5, & 6, & 7, & 8, & 21\end{array}\right\}$,
l_{5}	$:=\left\{\begin{array}{llll}1, & 2, & 3, & 4, \\ 2\end{array}\right.$

TABLE 6.1. Linear words of \mathbf{C}_{C}
and the other one is equal to $\left(\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+}\right) \cdot T$. The group N_{B} acts on $\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+}$, and the moduli curve \mathfrak{M}_{B} is equal to the quotient space $\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+} / N_{B}$.

Consider the natural projection

$$
p_{B}: \mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\} \cong\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+} \rightarrow \mathfrak{M}_{B}=\left(P G L(3, k) \backslash \mathcal{G}_{B}\right)^{+} / N_{B}
$$

For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$, let $P[\alpha]$ denote the point of $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ given by $\lambda=\alpha$. Then $p_{B}(P[\alpha]) \in \mathfrak{M}_{B}$ corresponds to the isomorphism class of the polarized supersingular $K 3$ surface $\left(X_{G B[\alpha]}, \mathcal{L}_{G B[\alpha]}\right)$. The following is proved in the same way as Proposition 4.7.

Proposition 5.9. The fiber $p_{B}^{-1}\left(p_{B}(P[\alpha])\right)$ is equal $\{P[\varphi]\}$, where φ runs through the set Γ_{B} in Theorem 1.7 with λ replaced by α. The group $\operatorname{Aut}\left(X_{G B[\alpha]}, \mathcal{L}_{G B[\alpha]}\right)$ is equal to the subgroup of $\operatorname{PGL}(3, k)$ generated by the elements in (1.2).

Corollary 5.10. We have $\mathfrak{M}_{B}=\operatorname{Spec} k\left[J_{B}, 1 / J_{B}\right]$, where

$$
J_{B}=(\lambda+\omega)^{12} / \lambda^{3}(\lambda+1)^{3}(\lambda+\bar{\omega})^{3} .
$$

The morphism p_{B} is an étale Galois covering with Galois group Γ_{B}, which is isomorphic to the alternating group \mathfrak{A}_{4}.

Indeed the group Γ_{B} acts on the set $\{0,1, \bar{\omega}, \infty\}$ as \mathfrak{A}_{4}.

6. The moduli curve corresponding to the code \mathbf{C}_{C}

In this section, we prove Theorem 1.8.
The linear words of \mathbf{C}_{C} are listed in Table 6.1. The list of quadratic words in \mathbf{C}_{C} is omitted. The point P_{21} is special because every linear word contains it. The following can be checked directly by computer:
Proposition 6.1. Let $\phi: \mathcal{P} \xrightarrow{\sim} \mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$ be the bijection given in Table 6.2.
(1) The linear words of \mathbf{C}_{C} are precisely the words $\phi^{-1}\left(\Lambda\left(\mathbb{F}_{4}\right)\right)$, where Λ are \mathbb{F}_{4}-rational lines passing through

$$
O:=[0,0,1]=\phi\left(P_{21}\right) .
$$

(2) The quadratic words of \mathbf{C}_{C} are precisely the words $\phi^{-1}\left(\Lambda\left(\mathbb{F}_{4}\right)+\Lambda^{\prime}\left(\mathbb{F}_{4}\right)\right)$, where Λ and Λ^{\prime} are distinct \mathbb{F}_{4}-rational lines that do not pass through O.

Note that ϕ embeds \mathbf{C}_{C} into the Dolgachev-Kondo code \mathbf{C}_{DK}.
Corollary 6.2. For each quadratic word q in \mathbf{C}_{C}, there exists a unique linear word l in \mathbf{C}_{C} such that $q \cap l=\emptyset$.

From Remark 3.11, we obtain the following:

$$
\begin{array}{rlrl}
\phi\left(P_{1}\right) & =[1,1,0], & & \phi\left(P_{13}\right)=[1,0,1], \\
\phi\left(P_{2}\right) & =[1,1,1], & \phi\left(P_{14}\right)=[1,0,0], \\
\phi\left(P_{3}\right) & =[1,1, \omega], & \phi\left(P_{15}\right)=[1,0, \bar{\omega}], \\
\phi\left(P_{4}\right) & =[1,1, \bar{\omega}], & \phi\left(P_{16}\right)=[1,0, \omega], \\
\phi\left(P_{5}\right) & =[1, \bar{\omega}, \omega], & \phi\left(P_{17}\right)=[0,1,1], \\
\phi\left(P_{6}\right) & =[1, \bar{\omega}, 0], & \phi\left(P_{18}\right)=[0,1,0], \\
\phi\left(P_{7}\right) & =[1, \bar{\omega}, 1], & \phi\left(P_{19}\right)=[0,1, \bar{\omega}], \\
\phi\left(P_{8}\right) & =[1, \bar{\omega}, \bar{\omega}], & \phi\left(P_{20}\right)=[0,1, \omega], \\
\phi\left(P_{9}\right) & =[1, \omega, \bar{\omega}], & \phi\left(P_{21}\right)=[0,0,1] . \\
\phi\left(P_{10}\right) & =[1, \omega, 0], & & \\
\phi\left(P_{11}\right) & =[1, \omega, \omega], & & \\
\phi\left(P_{12}\right) & =[1, \omega, 1], & &
\end{array}
$$

Table 6.2. Bijection ϕ from \mathcal{P} to $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$

Corollary 6.3. Let l and l^{\prime} be distinct linear words of \mathbf{C}_{C}, and let $A_{1}, A_{2} \in l$ (resp. $B_{1}, B_{2} \in l^{\prime}$) be distinct points not equal to P_{21}. Then there are exactly two quadratic words q and q^{\prime} in \mathbf{C}_{C} containing the points $\left\{A_{1}, A_{2}, B_{1}, B_{2}\right\}$. Moreover, if a linear word $l^{\prime \prime} \in \mathbf{C}_{C}$ is disjoint from q, then $l^{\prime \prime}$ is also disjoint from q^{\prime}.

For $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{F}_{4}$, we denote by $\Lambda\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]$ the \mathbb{F}_{4}-rational line defined by

$$
\alpha_{1} X+\alpha_{2} Y+\alpha_{3} Z=0
$$

and by $q\left[\alpha_{1} \alpha_{2} \alpha_{3}, \beta_{1} \beta_{2} \beta_{3}\right] \in \mathbf{C}_{C}$ the quadratic word

$$
\phi^{-1}\left(\Lambda\left[\alpha_{1} \alpha_{2} \alpha_{3}\right]\left(\mathbb{F}_{4}\right)+\Lambda\left[\beta_{1} \beta_{2} \beta_{3}\right]\left(\mathbb{F}_{4}\right)\right) .
$$

We put

$$
L G^{\prime}:=\left\{g \in P G L\left(3, \mathbb{F}_{4}\right) \mid g(O)=O\right\}
$$

The automorphism group $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ of the code \mathbf{C}_{C} contains a subgroup

$$
L G:=\phi^{-1} \circ L G^{\prime} \circ \phi
$$

The order of $L G$ is 2880 . The group $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ also contains the permutation

$$
T:=\left(P_{3} P_{4}\right)\left(P_{5} P_{9}\right)\left(P_{6} P_{10}\right)\left(P_{7} P_{12}\right)\left(P_{8} P_{11}\right)\left(P_{15} P_{16}\right)\left(P_{19} P_{20}\right)
$$

of \mathcal{P} that corresponds, via the bijection ϕ, to the action of the conjugation $\omega \mapsto$ $\bar{\omega}$ over \mathbb{F}_{2} on $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$. It can be checked easily by computer that the following permutation is also contained in $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$:

$$
S:=\left(P_{1} P_{3}\right)\left(P_{2} P_{4}\right)\left(P_{5} P_{7}\right)\left(P_{6} P_{8}\right)\left(P_{9} P_{11}\right)\left(P_{10} P_{12}\right) .
$$

The automorphisms T and S of \mathbf{C}_{C} generate a subgroup isomorphic to the dihedral group of order 8 in $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$. An ordered quartet

$$
\left(R_{1}, R_{2}, R_{1}^{\prime}, R_{2}^{\prime}\right)
$$

f	$\left[q, q^{\prime}\right]$	l_{ν}
$\{13,14,17,18\}$	$q[101,011]=\{7,8,11,12,13,14,17,18\}$	l_{5}
	$q[111,001]=\{5,6,9,10,13,14,17,18\}$	
$\{13,14,17,19\}$	$q[1 \bar{\omega} 1,011]=\{2,3,10,11,13,14,17,19\}$	l_{4}
	$q[111,0 \bar{\omega} 1]=\{1,4,9,12,13,14,17,19\}$	
$\{13,14,17,20\}$	$q[1 \omega 1,011]=\{2,4,6,8,13,14,17,20\}$	l_{3}
	$q[111,0 \omega 1]=\{1,3,5,7,13,14,17,20\}$	
$\{13,14,18,19\}$	$q[101,0 \bar{\omega} 1]=\{2,4,5,7,13,14,18,19\}$	l_{3}
	$q[1 \bar{\omega} 1,001]=\{1,3,6,8,13,14,18,19\}$	
$\{13,14,18,20\}$	$q[101,0 \omega 1]=\{2,3,9,12,13,14,18,20\}$	l_{4}
	$q[1 \omega 1,001]=\{1,4,10,11,13,14,18,20\}$	
$\{13,14,19,20\}$	$q[1 \bar{\omega} 1,0 \omega 1]=\{7,8,9,10,13,14,19,20\}$	l_{5}
	$q[1 \omega 1,0 \bar{\omega} 1]=\{5,6,11,12,13,14,19,20\}$	

Table 6.3. List of the triples $\left(f,\left\{q, q^{\prime}\right\}, l_{\nu}\right)$
of points in $\mathcal{P} \backslash\left\{P_{21}\right\}$ is called a marking quartet if P_{21}, R_{1}, R_{2} are in a linear word, and $P_{21}, R_{1}^{\prime}, R_{2}^{\prime}$ are in another linear word. There are 2880 marking quartets, and the action of $L G$ on the set of marking quartets is simply transitive.

Proposition 6.4. The group $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ is generated by $L G, T$ and S, and the order of $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ is 23040.

Proof. Let σ be an arbitrary element of $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$. Because ($P_{17}, P_{18}, P_{13}, P_{14}$) and $\left(\sigma\left(P_{17}\right), \sigma\left(P_{18}\right), \sigma\left(P_{13}\right), \sigma\left(P_{14}\right)\right)$ are marking quartets, there exists an element $\tau \in L G$ such that $\tau \sigma\left(P_{i}\right)=P_{i}$ for $i=13,14,17,18,21$. Because $\tau \sigma\left(l_{1}\right)=l_{1}$ and $\tau \sigma\left(l_{2}\right)=l_{2}$, we have

$$
\left\{\tau \sigma\left(P_{19}\right), \tau \sigma\left(P_{20}\right)\right\}=\left\{P_{19}, P_{20}\right\} \quad \text { and } \quad\left\{\tau \sigma\left(P_{15}\right), \tau \sigma\left(P_{16}\right)\right\}=\left\{P_{15}, P_{16}\right\}
$$

If $\tau \sigma\left(P_{19}\right)=P_{20}$, then we replace τ by $T \tau$. Therefore, modulo the subgroup generated by $L G$ and T, we can assume that σ has the following properties:
$\left(\sigma\right.$-i) σ fixes each of the seven points $P_{13}, P_{14}, P_{17}, P_{18}, P_{19}, P_{20}, P_{21}$,
$\left(\sigma\right.$-ii) $\left\{\sigma\left(P_{15}\right), \sigma\left(P_{16}\right)\right\}=\left\{P_{15}, P_{16}\right\}$
Consider, for example, a set of four points $\left\{P_{13}, P_{14}, P_{17}, P_{18}\right\}$, each of which is fixed by σ. The two quadratic words containing them are

$$
\begin{aligned}
q[101,011] & =\{2,7,12,13,18\}+\{2,8,11,14,17\}=\{7,8,11,12,13,14,17,18\} \\
q[111,001] & =\{1,5,9,13,17\}+\{1,6,10,14,18\}=\{5,6,9,10,13,14,17,18\} .
\end{aligned}
$$

Both of $q[101,011]$ and $q[111,001]$ are disjoint from l_{5}. By Corollary 6.2 , we have $\sigma\left(l_{5}\right)=l_{5}$. Considering other sets of four points fixed by σ, we can show that $\sigma\left(l_{4}\right)=l_{4}$ and $\sigma\left(l_{3}\right)=l_{3}$. In Table 6.3, we list the triples $\left(f,\left\{q, q^{\prime}\right\}, l_{\nu}\right)$, where f is a set of four points pointwise fixed by $\sigma,\left\{q, q^{\prime}\right\}$ is the pair of quadratic words containing f, and l_{ν} is the linear word disjoint from both of q and q^{\prime}. Therefore we have the following:
(σ-iii) σ leaves each of the sets

$$
\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}, \quad\left\{P_{5}, P_{6}, P_{7}, P_{8}\right\}, \quad\left\{P_{9}, P_{10}, P_{11}, P_{12}\right\}
$$

invariant.
Let us consider the quadratic words $q_{1}:=q[101,011]$ and $q_{2}:=q[111,001]$ again. Since

$$
\left\{\sigma\left(q_{1} \cap l_{4}\right), \sigma\left(q_{2} \cap l_{4}\right)\right\}=\left\{q_{1} \cap l_{4}, q_{2} \cap l_{4}\right\}
$$

the action of σ on $\left\{P_{5}, P_{6}, P_{7}, P_{8}\right\}$ preserves the decomposition

$$
\left\{P_{5}, P_{6}, P_{7}, P_{8}\right\}=\left\{P_{5}, P_{6}\right\} \cup\left\{P_{7}, P_{8}\right\}
$$

that is, $\left\{\sigma\left(P_{5}\right), \sigma\left(P_{6}\right)\right\}$ is either $\left\{P_{5}, P_{6}\right\}$ or $\left\{P_{7}, P_{8}\right\}$. By the same argument applied to the pairs $\left\{q, q^{\prime}\right\}$ of quadratic words in Table 6.3, we see the following:
(σ-iv) σ preserves the decompositions

$$
\begin{aligned}
\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\} & =\left\{P_{1}, P_{4}\right\} \cup\left\{P_{2}, P_{3}\right\}=\left\{P_{1}, P_{3}\right\} \cup\left\{P_{2}, P_{4}\right\}, \\
\left\{P_{5}, P_{6}, P_{7}, P_{8}\right\} & =\left\{P_{5}, P_{6}\right\} \cup\left\{P_{7}, P_{8}\right\}=\left\{P_{5}, P_{7}\right\} \cup\left\{P_{6}, P_{8}\right\}, \quad \text { and } \\
\left\{P_{9}, P_{10}, P_{11}, P_{12}\right\} & =\left\{P_{9}, P_{10}\right\} \cup\left\{P_{11}, P_{12}\right\}=\left\{P_{9}, P_{12}\right\} \cup\left\{P_{10}, P_{11}\right\} .
\end{aligned}
$$

The two quadratic words containing $\left\{P_{13}, P_{16}, P_{17}, P_{18}\right\}$ are

$$
\begin{aligned}
q[\omega 11,101] & =\{2,4,10,12,13,16,17,18\} \quad \text { and } \\
q[111, \omega 01] & =\{1,3,9,11,13,16,17,18\}
\end{aligned}
$$

both of which are disjoint from l_{4}. On the other hand, the two quadratic words containing $\left\{P_{13}, P_{15}, P_{17}, P_{18}\right\}$ are

$$
\begin{aligned}
q[\bar{\omega} 11,101] & =\{2,3,6,7,13,15,17,18\} \quad \text { and } \\
q[111, \bar{\omega} 01] & =\{1,4,5,8,13,15,17,18\}
\end{aligned}
$$

both of which are disjoint from l_{3}. Since σ fixes each of l_{4} and l_{3}, we see that the property (σ-ii) of σ can be strengthened to the following:
$(\sigma \text {-ii })^{\prime} \sigma\left(P_{15}\right)=P_{15}, \sigma\left(P_{16}\right)=P_{16}$.
Using computer, we can easily list all $4^{3}=64$ permutations σ satisfying (σ-i), $(\sigma \text {-ii })^{\prime},(\sigma$-iii $)$ and $(\sigma$-iv $)$. We can check that exactly four of them id, S,

$$
\begin{aligned}
(S T)^{2} & =\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)\left(P_{5} P_{6}\right)\left(P_{7} P_{8}\right)\left(P_{9} P_{10}\right)\left(P_{11} P_{12}\right) \quad \text { and } \\
(S T)^{2} S & =\left(P_{1} P_{4}\right)\left(P_{2} P_{3}\right)\left(P_{5} P_{8}\right)\left(P_{6} P_{7}\right)\left(P_{9} P_{12}\right)\left(P_{10} P_{11}\right)
\end{aligned}
$$

preserve the set of quadratic words in \mathbf{C}_{C}. Hence, by Proposition 3.5, $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ is generated by $L G, S$ and T. It can be checked by computer that the order of $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ is 23040.
Let λ be a parameter of the affine line \mathbb{A}^{1}. We define $\gamma_{\lambda}: \mathcal{P} \rightarrow \mathbb{P}^{2}$ by Table 6.4. When $\lambda=0$, the map γ_{λ} is equal to ϕ. Let \widetilde{T} denote the subgroup of $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ generated by the involution T.
Proposition 6.5. The map $\lambda \mapsto \gamma_{\lambda}$ induces an isomorphism from $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ to $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{C} / \widetilde{T}$.
Proof. First note that γ_{λ} is injective for every λ.
Claim 6.6. Let γ^{\prime} be an arbitrary element of \mathcal{G}_{C}. Then there exists a unique triple

$$
(g, t, \lambda) \in P G L(3, k) \times \widetilde{T} \times(k \backslash\{0,1, \omega, \bar{\omega}\})
$$

such that $g \circ \gamma^{\prime} \circ t=\gamma_{\lambda}$.

$$
\begin{aligned}
\gamma_{\lambda}\left(P_{1}\right) & =[1,1, \lambda], \\
\gamma_{\lambda}\left(P_{2}\right) & =[1,1, \lambda+1], \\
\gamma_{\lambda}\left(P_{3}\right) & =[1,1, \lambda+\omega], \\
\gamma_{\lambda}\left(P_{4}\right) & =[1,1, \lambda+\bar{\omega}], \\
\gamma_{\lambda}\left(P_{5}\right) & =[1, \bar{\omega}, \omega \lambda+\omega], \\
\gamma_{\lambda}\left(P_{6}\right) & =[1, \bar{\omega}, \omega \lambda], \\
\gamma_{\lambda}\left(P_{7}\right) & =[1, \bar{\omega}, \omega \lambda+1], \\
\gamma_{\lambda}\left(P_{8}\right) & =[1, \bar{\omega}, \omega \lambda+\bar{\omega}], \\
\gamma_{\lambda}\left(P_{9}\right) & =[1, \omega, \bar{\omega} \lambda+\bar{\omega}], \\
\gamma_{\lambda}\left(P_{10}\right) & =[1, \omega, \bar{\omega} \lambda], \\
\gamma_{\lambda}\left(P_{11}\right) & =[1, \omega, \bar{\omega} \lambda+\omega], \\
\gamma_{\lambda}\left(P_{12}\right) & =[1, \omega, \bar{\omega} \lambda+1],
\end{aligned}
$$

$$
\gamma_{\lambda}\left(P_{13}\right)=[1,0,1]
$$

$$
\gamma_{\lambda}\left(P_{14}\right)=[1,0,0]
$$

$$
\gamma_{\lambda}\left(P_{15}\right)=[1,0, \bar{\omega}]
$$

$$
\gamma_{\lambda}\left(P_{16}\right)=[1,0, \omega]
$$

$$
\gamma_{\lambda}\left(P_{17}\right)=[0,1,1]
$$

$$
\gamma_{\lambda}\left(P_{18}\right)=[0,1,0]
$$

$$
\gamma_{\lambda}\left(P_{19}\right)=[0,1, \bar{\omega}]
$$

$$
\gamma_{\lambda}\left(P_{20}\right)=[0,1, \omega]
$$

$$
\gamma_{\lambda}\left(P_{21}\right)=[0,0,1]
$$

Table 6.4. Definition of γ_{λ} for \mathbf{C}_{C}

Since $\gamma^{\prime}\left(P_{21}\right), \gamma^{\prime}\left(P_{13}\right), \gamma^{\prime}\left(P_{14}\right)$ are on a line, and $\gamma^{\prime}\left(P_{21}\right), \gamma^{\prime}\left(P_{17}\right), \gamma^{\prime}\left(P_{18}\right)$ are on another line, there exists a unique $g \in P G L(3, k)$ such that $\gamma:=g \circ \gamma^{\prime}$ satisfies

$$
\begin{aligned}
& \gamma\left(P_{21}\right)=[0,0,1]=O \\
& \gamma\left(P_{17}\right)=[0,1,1], \quad \gamma\left(P_{18}\right)=[0,1,0] \\
& \gamma\left(P_{13}\right)=[1,0,1], \quad \gamma\left(P_{14}\right)=[1,0,0] .
\end{aligned}
$$

The X-coordinate of $\gamma\left(P_{i}\right)$ is not 0 for $i=1, \ldots, 16$, because otherwise $\gamma\left(P_{i}\right)$, $\gamma\left(P_{17}\right)$ and $\gamma\left(P_{21}\right)$ would be collinear, and hence there would exist a linear word of \mathbf{C}_{C} containing $\left\{P_{i}, P_{17}, P_{21}\right\}$ by Proposition 2.9. Therefore there exist parameters $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, t_{i}, s_{i j}(i=3,4,5, j=1, \ldots, 4)$ such that γ is given by Table 6.5. The lines L_{ν} containing the points $\gamma\left(l_{\nu}\right)$ are defined by

$$
\begin{aligned}
L_{1}=\{X=0\}, \quad & L_{2}=\{Y=0\} \\
& L_{3}=\left\{Y=t_{3} X\right\}, \quad L_{4}=\left\{Y=t_{4} X\right\}, \quad L_{5}=\left\{Y=t_{5} X\right\}
\end{aligned}
$$

Claim 6.7. $t_{5}=1$.
Consider the quadratic word

$$
q_{1}:=\{7,8,11,12,13,14,17,18\}=\{2,7,12,13,18\}+\{2,8,11,14,17\}
$$

which passes through the four points $P_{13}, P_{14}, P_{17}, P_{18}$, and is disjoint from the linear word l_{5}. The conic curves containing the points $\gamma\left(P_{13}\right)=[1,0,1], \gamma\left(P_{14}\right)=$ $[1,0,0], \gamma\left(P_{17}\right)=[0,1,1]$ and $\gamma\left(P_{18}\right)=[0,1,0]$ form a pencil

$$
\sigma Z(X+Y+Z)+X Y=0 \quad\left(\sigma \in \mathbb{P}^{1}\right)
$$

The conic curve $Q_{1} \subset \mathbb{P}^{2}$ containing $\gamma\left(q_{1}\right)$ is a member of this pencil. Since Q_{1} is nonsingular, the value of the parameter σ corresponding to Q_{1} is not 0 nor ∞. Since Q_{1} is tangent to the line $L_{5}=\left\{Y=t_{5} X\right\}$, we have $\sigma\left(1+t_{5}\right)=0$. Hence $t_{5}=1$.

From the quadratic words that

$$
\begin{array}{rlrl}
\gamma\left(P_{1}\right) & =\left[1, t_{5}, s_{5,1}\right], & \gamma\left(P_{13}\right)=[1,0,1], \\
\gamma\left(P_{2}\right) & =\left[1, t_{5}, s_{5,2}\right], & \gamma\left(P_{14}\right)=[1,0,0], \\
\gamma\left(P_{3}\right) & =\left[1, t_{5}, s_{5,3}\right], & \gamma\left(P_{15}\right)=\left[\alpha_{2}, 0,1\right], \\
\gamma\left(P_{4}\right) & =\left[1, t_{5}, s_{5,4}\right], & \gamma\left(P_{16}\right)=\left[\beta_{2}, 0,1\right], \\
\gamma\left(P_{5}\right) & =\left[1, t_{4}, s_{4,1}\right], & \gamma\left(P_{17}\right)=[0,1,1], \\
\gamma\left(P_{6}\right) & =\left[1, t_{4}, s_{4,2}\right], & \gamma\left(P_{18}\right)=[0,1,0], \\
\gamma\left(P_{7}\right) & =\left[1, t_{4}, s_{4,3}\right], & \gamma\left(P_{19}\right)=\left[0, \alpha_{1}, 1\right], \\
\gamma\left(P_{8}\right) & =\left[1, t_{4}, s_{4,4}\right], & \gamma\left(P_{20}\right)=\left[0, \beta_{1}, 1\right], \\
\gamma\left(P_{9}\right) & =\left[1, t_{3}, s_{3,1}\right], & \gamma\left(P_{21}\right)=[0,0,1] . \\
\gamma\left(P_{10}\right) & =\left[1, t_{3}, s_{3,2}\right], & & \\
\gamma\left(P_{11}\right) & =\left[1, t_{3}, s_{3,3}\right], & & \\
\gamma\left(P_{12}\right) & =\left[1, t_{3}, s_{3,4}\right], & &
\end{array}
$$

Table 6.5. Parametric presentation of γ

- contain exactly one of $\left\{P_{17}, P_{18}\right\}$,
- contain exactly one of $\left\{P_{13}, P_{14}\right\}$, and
- are disjoint from l_{5},
we obtain the following relations:
Claim 6.8. $\alpha_{1}=\alpha_{2}(=: \alpha), \beta_{1}=\beta_{2}(=: \beta), \alpha+\beta=\alpha \beta$.
Consider, for example, the quadratic word

$$
q_{2}:=\{6,8,9,11,14,16,17,19\}=\{2,6,9,16,19\}+\{2,8,11,14,17\}
$$

Since the conic curve Q_{2} containing $\gamma\left(q_{2}\right)$ passes through the points $\gamma\left(P_{14}\right)=[1,0,0]$ and $\gamma\left(P_{17}\right)=[0,1,1]$ and is tangent to $L_{5}=\{X=Y\}$, it is a member of the web

$$
\sigma_{1}\left(Y^{2}+Z^{2}\right)+\sigma_{2} X Y+\sigma_{3}\left(Y^{2}+Y Z+Z X\right)=0 \quad\left(\left[\sigma_{1}, \sigma_{2}, \sigma_{3}\right] \in \mathbb{P}^{2}\right)
$$

of conic curves. Since $\gamma\left(P_{16}\right)=\left[\beta_{2}, 0,1\right] \in Q_{2}$, we have $\beta_{2}=\sigma_{1} / \sigma_{3}$. Since $\gamma\left(P_{19}\right)=$ $\left[0, \alpha_{1}, 1\right] \in Q_{2}$ and $\alpha_{1} \neq 1$, we have $\alpha_{1}=\sigma_{1} /\left(\sigma_{1}+\sigma_{3}\right)$. Therefore we obtain a relation $\alpha_{1}+\beta_{2}+\alpha_{1} \beta_{2}=0$.

From the quadratic words that contain exactly three of $P_{17}, P_{18}, P_{13}, P_{14}$, we obtain the following relations:

Claim 6.9. $\alpha_{1}+t_{3}=0, \quad \beta_{1}+t_{4}=0$.

$$
\begin{aligned}
& 1+\alpha_{2} t_{4}=0, \quad 1+\beta_{2} t_{3}=0 . \\
& 1+\alpha_{2}+\alpha_{2} t_{3}=0, \quad 1+\beta_{2}+\beta_{2} t_{4}=0 . \\
& \alpha_{1}+t_{4}+\alpha_{1} t_{4}=0, \quad \beta_{1}+t_{3}+\beta_{1} t_{3}=0 .
\end{aligned}
$$

Consider, for example, the quadratic word

$$
q_{3}:=\{2,4,10,12,13,16,17,18\}=\{4,7,10,16,17\}+\{2,7,12,13,18\} .
$$

Since the conic curve Q_{3} containing $\gamma\left(q_{3}\right)$ passes through the points $\gamma\left(P_{13}\right)=$ $[1,0,1], \gamma\left(P_{17}\right)=[0,1,1]$ and $\gamma\left(P_{18}\right)=[0,1,0]$, it is a member of the web

$$
\sigma_{1}\left(X^{2}+Z^{2}+Y Z\right)+\sigma_{2}\left(X^{2}+Z X\right)+\sigma_{3} X Y=0 \quad\left(\left[\sigma_{1}, \sigma_{2}, \sigma_{3}\right] \in \mathbb{P}^{2}\right)
$$

of conic curves. Since $\gamma\left(P_{16}\right)=\left[\beta_{2}, 0,1\right]$ is contained in Q_{3}, we obtain $\beta_{2}{ }^{2}\left(\sigma_{1}+\right.$ $\left.\sigma_{2}\right)+\beta_{2} \sigma_{2}+\sigma_{1}=0$. Since Q_{3} is tangent to the line $L_{4}=\left\{Y=t_{4} X\right\}$, we have $t_{4} \sigma_{1}+\sigma_{2}=0$. Combining these two relations and $\beta_{2} \neq 1$, we obtain a relation $1+\beta_{2}+\beta_{2} t_{4}=0$.

Combining Claims 6.7-6.9, we obtain the following two possibilities for the parameters;

$$
\begin{array}{lll}
\alpha_{1}=\alpha_{2}=\omega, & \beta_{1}=\beta_{2}=\bar{\omega}, & t_{3}=\omega, \\
\alpha_{1}=t_{4}=\bar{\omega}, & t_{5}=1, & \text { or } \\
=\bar{\omega}, & \beta_{1}=\beta_{2}=\omega, & t_{3}=\bar{\omega},
\end{array} t_{4}=\omega, \quad t_{5}=1 . ~ l i l l
$$

If the latter holds, then we replace γ by $\gamma \circ T$ so that we assume that the former always holds.

Next we put

$$
P_{1}=[1,1, \lambda],
$$

where $\lambda=s_{5,1}$ is a parameter. Using quadratic words that

- contain exactly four points among $l_{1} \cup l_{2}$, and
- are not disjoint from l_{5},
we obtain the following:

Claim 6.10.

$$
\begin{aligned}
& s_{5,1}=\lambda, \quad s_{5,2}=\lambda+1, \quad s_{5,3}=\lambda+\omega, \quad s_{5,4}=\lambda+\bar{\omega}, \\
& s_{4,1}=\omega \lambda+\omega, \quad s_{4,2}=\omega \lambda, \quad s_{4,3}=\omega \lambda+1, \quad s_{4,4}=\omega \lambda+\bar{\omega}, \\
& s_{3,1}=\bar{\omega} \lambda+\bar{\omega}, \quad s_{3,2}=\bar{\omega} \lambda, \quad s_{3,3}=\bar{\omega} \lambda+\omega, \quad s_{3,4}=\bar{\omega} \lambda+1 .
\end{aligned}
$$

Consider, for example, the quadratic word

$$
q_{4}:=\{1,2,11,12,14,16,17,20\}=\{1,8,12,16,20\}+\{2,8,11,14,17\}
$$

which is disjoint from l_{4}. Because there exists a conic curve Q_{4} that contains $\gamma\left(q_{4}\right)$ and is tangent to the line $L_{4}=\{Y=\bar{\omega} X\}$, the following matrix \widetilde{M} is of rank <6.

$$
\widetilde{M}:=\left[\begin{array}{cccccc}
1 & 1 & \lambda^{2} & 1 & \lambda & \lambda \\
1 & 1 & s_{5,2^{2}} & 1 & s_{5,2} & s_{5,2} \\
1 & \bar{\omega} & s_{3,3}{ }^{2} & \omega & \omega s_{3,3} & s_{3,3} \\
1 & \bar{\omega} & s_{3,4}{ }^{2} & \omega & \omega s_{3,4} & s_{3,4} \\
1 & 0 & 0 & 0 & 0 & 0 \\
\omega & 0 & 1 & 0 & 0 & \bar{\omega} \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & \omega & 1 & 0 & \bar{\omega} & 0 \\
0 & 0 & 0 & 0 & \bar{\omega} & 1
\end{array}\right] .
$$

Indeed, if the equation

$$
a_{1} X^{2}+a_{2} Y^{2}+a_{3} Z^{2}+a_{4} X Y+a_{5} Y Z+a_{6} Z X=0
$$

defines a conic curve containing $\gamma\left(q_{4}\right)$ and tangent to L_{4}, then $\mathbf{a}={ }^{t}\left[a_{1}, a_{2}, \ldots, a_{6}\right]$ is a non-zero solution of $\widetilde{M} \mathbf{x}=\mathbf{0}$. (The condition $\bar{\omega} a_{5}+a_{6}=0$ is equivalent to
the condition that the conic curve is tangent to L_{4}.) Let $\widetilde{M}\left[i_{1}, \ldots, i_{6}\right]$ denote the submatrix of \widetilde{M} consisting of i_{j}-th rows of \widetilde{M}. Because

$$
\operatorname{det} \widetilde{M}[1,2,5,7,8,9]=\left(s_{5,2}+\lambda\right)\left(s_{5,2}+\lambda+1\right)
$$

and $s_{5,2} \neq s_{5,1}=\lambda$, we obtain $s_{5,2}=\lambda+1$. Because

$$
\operatorname{det} \widetilde{M}[1,3,5,7,8,9]=\left(s_{3,3}+\bar{\omega} \lambda+1\right)\left(s_{3,3}+\bar{\omega} \lambda+\omega\right)
$$

we obtain

$$
s_{3,3}=\bar{\omega} \lambda+1 \quad \text { or } \quad \bar{\omega} \lambda+\omega .
$$

Continuing the same calculations, we get the relations in Claim 6.10.
Thus we have proved Claim 6.6.
Conversely, suppose that $\lambda \in k \backslash\{0,1, \omega, \bar{\omega}\}$ is given. Then $\gamma_{\lambda}(\mathcal{P})$ is equal to $Z(d G C[\lambda])$, where $G C[\lambda]$ is given in Theorem 1.8. Moreover, for every linear word l of \mathbf{C}_{C}, there exists a line containing $\gamma_{\lambda}(l)$, and for every quadratic word q of \mathbf{C}_{C}, there exists a unique conic curve containing $\gamma_{\lambda}(q)$. The defining equations of the 120 conic curves are omitted. These conic curves are nonsingular because $\lambda \notin\{0,1, \omega, \bar{\omega}\}$. Hence γ_{λ} is in \mathcal{G}_{B} by Proposition 3.6.

Remark 6.11. When $\lambda \in\{0,1, \omega, \bar{\omega}\}$, the set $\gamma_{\lambda}(\mathcal{P})$ coincides with $\mathbb{P}^{2}\left(\mathbb{F}_{4}\right)$, and the point $[G C[\lambda]] \in \mathfrak{M}$ is equal to the Dolgachev-Kondo point.

For each $\sigma \in \operatorname{Aut}\left(\mathbf{C}_{C}\right)$, we calculate the unique triple

$$
\left(g_{\sigma}, t_{\sigma}, \lambda^{\sigma}\right) \in P G L(3, k(\lambda)) \times \widetilde{T} \times k(\lambda)
$$

such that $g_{\sigma} \circ\left(\gamma_{\lambda} \circ \sigma\right) \circ t_{\sigma}=\gamma_{\lambda^{\sigma}}$ holds. The map $\sigma \mapsto t_{\sigma}$ is a homomorphism from $\operatorname{Aut}\left(\mathbf{C}_{C}\right)$ to \widetilde{T}. We put $N_{C}:=\operatorname{Ker}\left(\operatorname{Aut}\left(\mathbf{C}_{C}\right) \rightarrow \widetilde{T}\right)$.

Corollary 6.12. The space $P G L(3, k) \backslash \mathcal{G}_{C}$ has exactly two connected components

$$
\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+}:=\left\{\left[\gamma_{\alpha}\right] \mid \alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}\right\}
$$

and $\left(\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+}\right) \cdot T$, each of which is isomorphic to $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. The group N_{C} acts on $\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+}$, and the moduli curve \mathfrak{M}_{C} is equal to the quotient space $\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+} / N_{C}$.

Consider the natural projection

$$
p_{C}: \mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\} \cong\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+} \rightarrow \mathfrak{M}_{C}=\left(P G L(3, k) \backslash \mathcal{G}_{C}\right)^{+} / N_{C}
$$

For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}$, let $P[\alpha]$ denote the point of $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ given by $\lambda=\alpha$. Then $p_{C}(P[\alpha]) \in \mathfrak{M}_{C}$ corresponds to the isomorphism class of the polarized supersingular $K 3$ surface $\left(X_{G C[\alpha]}, \mathcal{L}_{G C[\alpha]}\right)$.

Proposition 6.13. We have

$$
p_{C}^{-1}\left(p_{C}(P[\alpha])\right)=\left\{P[u \alpha+v] \mid u \in \mathbb{F}_{4}^{\times}, v \in \mathbb{F}_{4}\right\} .
$$

The group $\operatorname{Aut}\left(X_{G C[\alpha]}, \mathcal{L}_{G C[\alpha]}\right)$ is equal to the subgroup (1.3) of PGL(3,k).
Corollary 6.14. We have $\mathfrak{M}_{C}=\operatorname{Spec} k\left[J_{C}, 1 / J_{C}\right]$, where $J_{C}:=\left(\lambda^{4}+\lambda\right)^{3}$. The morphism p_{C} is an étale Galois covering with Galois group Γ_{C}.

7. Cremona transformations by quintic curves

7.1. Preliminaries. Let Σ_{1} and Σ_{2} be disjoint sets of reduced points of \mathbb{P}^{2} with $\left|\Sigma_{1}\right|=n_{1}$ and $\left|\Sigma_{2}\right|=n_{2}$, and let $\mathcal{I}_{\Sigma_{1}} \subset \mathcal{O}_{\mathbb{P}^{2}}$ and $\mathcal{I}_{\Sigma_{2}} \subset \mathcal{O}_{\mathbb{P}^{2}}$ be the ideal sheaves defining Σ_{1} and Σ_{2}. We define $\widetilde{\Sigma}$ to be the 0 -dimensional subscheme of \mathbb{P}^{2} defined by the ideal sheaf

$$
\mathcal{I}_{\widetilde{\Sigma}}:=\mathcal{I}_{\Sigma_{1}} \mathcal{I}_{\Sigma_{2}}^{2}
$$

The length of $\mathcal{O}_{\widetilde{\Sigma}}$ is $n_{1}+3 n_{2}$. Let d be a positive integer. The linear system $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ consists of plane curves of degree d that pass through the points of $\Sigma_{1} \cup \Sigma_{2}$ and are singular at each point of Σ_{2}.
Proposition 7.1. Suppose that the linear system $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ is of dimension ≥ 1 and has no fixed components. If

$$
\begin{equation*}
\operatorname{dim}\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|>\frac{(d+2)(d+1)}{2}-\left(n_{1}+3 n_{2}\right)-1 \tag{7.1}
\end{equation*}
$$

then there exists a projective plane curve of degree $d-3$ that passes through all the points of Σ_{2}.

Corollary 7.2. Suppose that the linear system $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ is of dimension ≥ 1 and has no fixed components. If $d \leq 3$ and $n_{2}>0$, then the dimension of the linear system $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ is equal to $(d+2)(d+1) / 2-\left(n_{1}+3 n_{2}\right)-1$.
Proof. We follow the argument in [6, pp.712-714]. From the exact sequence

$$
0 \rightarrow \mathcal{I}_{\widetilde{\Sigma}}(d) \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(d) \rightarrow \mathcal{O}_{\widetilde{\Sigma}}(d) \rightarrow 0
$$

we obtain

$$
\begin{equation*}
h^{0}\left(\mathbb{P}^{2}, \mathcal{I}_{\widetilde{\Sigma}}(d)\right)=(d+2)(d+1) / 2-\left(n_{1}+3 n_{2}\right)+h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{\widetilde{\Sigma}}(d)\right) \tag{7.2}
\end{equation*}
$$

Let $\beta: S \rightarrow \mathbb{P}^{2}$ denote the blowing up of \mathbb{P}^{2} at the points of $\Sigma_{1} \cup \Sigma_{2}$. We put

$$
\Delta_{1}:=\beta^{-1}\left(\Sigma_{1}\right), \quad \Delta_{2}:=\beta^{-1}\left(\Sigma_{2}\right),
$$

both of which are considered to be reduced divisors. Let $H \subset S$ be the pull-back of a general line on \mathbb{P}^{2}. We put

$$
L:=\beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(d) \otimes \mathcal{O}_{S}\left(-\Delta_{1}-2 \Delta_{2}\right)=\mathcal{O}_{S}\left(d H-\Delta_{1}-2 \Delta_{2}\right)
$$

Because $K_{S}=-3 H+\Delta_{1}+\Delta_{2}$, we have

$$
L^{2}=d^{2}-n_{1}-4 n_{2}, \quad L K_{S}=-3 d+n_{1}+2 n_{2} .
$$

The complete linear system $|H|=\left|\beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right|$ on S is fixed component free. Since $H\left(K_{S}-L\right)=-d-3<0$, we have

$$
h^{2}(S, L)=h^{0}\left(S, K_{S}-L\right)=0
$$

By the Riemann-Roch theorem, we obtain

$$
\begin{equation*}
h^{0}(S, L)=(d+2)(d+1) / 2-\left(n_{1}+3 n_{2}\right)+h^{1}(S, L) . \tag{7.3}
\end{equation*}
$$

There exists a canonical isomorphism

$$
\begin{equation*}
\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right| \cong|L| \tag{7.4}
\end{equation*}
$$

that maps a member C of $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ to the member $\beta^{*} C-\Delta_{1}-2 \Delta_{2}$ of $|L|$. From (7.2), (7.3) and (7.4), we obtain

$$
\begin{equation*}
h^{1}\left(\mathbb{P}^{2}, \mathcal{I}_{\widetilde{\Sigma}}(d)\right)=h^{1}(S, L) . \tag{7.5}
\end{equation*}
$$

Using the assumption (7.1) and the equalities (7.2) and (7.5), we obtain

$$
\begin{equation*}
h^{1}(S, L)>0 . \tag{7.6}
\end{equation*}
$$

Since $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$ is of dimension ≥ 1 and has no fixed components, we obtain by the isomorphism (7.4) global sections s and s^{\prime} of L such that the subscheme $R=\{s=$ $\left.s^{\prime}=0\right\}$ of S is of dimension 0 . Let $\mathcal{I}_{R} \subset \mathcal{O}_{S}$ be the ideal sheaf defining R. From the Koszul complex

$$
0 \longrightarrow \mathcal{O}_{S}\left(K_{S}-L\right) \xrightarrow{\left(s, s^{\prime}\right)} \mathcal{O}_{S}\left(K_{S}\right) \oplus \mathcal{O}_{S}\left(K_{S}\right) \xrightarrow{T\left(-s^{\prime}, s\right)} \mathcal{I}_{R}\left(K_{S}+L\right) \longrightarrow 0
$$

and $h^{0}\left(S, \mathcal{O}_{S}\left(K_{S}\right)\right)=h^{1}\left(S, \mathcal{O}_{S}\left(K_{S}\right)\right)=0$, we obtain

$$
h^{1}(S, L)=h^{1}\left(S, \mathcal{O}_{S}\left(K_{S}-L\right)\right)=h^{0}\left(\mathcal{I}_{R}\left(K_{S}+L\right)\right)
$$

From (7.6), we see that the linear system $\left|\mathcal{I}_{R}\left(K_{S}+L\right)\right|$ is non-empty. Since $K_{S}+L=$ $\beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(d-3) \otimes \mathcal{O}_{S}\left(-\Delta_{2}\right)$, a member of $\left|\mathcal{I}_{R}\left(K_{S}+L\right)\right|$ is mapped by β to a projective plane curve of degree $d-3$ that passes through the points of Σ_{2}.

Definition 7.3. Let F be an effective divisor of \mathbb{P}^{2}. We put

$$
\Sigma_{1}^{\prime}:=\left(\Sigma_{1} \backslash\left(\Sigma_{1} \cap F\right)\right) \cup\left(\Sigma_{2} \cap F^{0}\right), \quad \Sigma_{2}^{\prime}:=\Sigma_{2} \backslash\left(\Sigma_{2} \cap F\right)
$$

where F^{0} is the locus of all $p \in \operatorname{Supp}(F)$ at which F is reduced and nonsingular. We then define $\widetilde{\Sigma} \backslash F$ to be the 0-dimensional subscheme of \mathbb{P}^{2} defined by the ideal sheaf

$$
\mathcal{I}_{\widetilde{\Sigma} \backslash F}:=\mathcal{I}_{\Sigma_{1}^{\prime}} \mathcal{I}_{\Sigma_{2}^{\prime}}^{2}
$$

If F is a fixed component of $\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right|$, then $C \mapsto C-F$ gives an isomorphism

$$
\left|\mathcal{I}_{\widetilde{\Sigma}}(d)\right| \cong\left|\mathcal{I}_{\widetilde{\Sigma} \backslash F}(d-\operatorname{deg} F)\right|
$$

of linear systems. By the definition, we have

$$
\begin{equation*}
\widetilde{\Sigma} \backslash\left(F_{1}+F_{2}\right)=\left(\widetilde{\Sigma} \backslash F_{1}\right) \backslash F_{2} \tag{7.7}
\end{equation*}
$$

for any effective (not necessarily distinct) divisors F_{1} and F_{2} of \mathbb{P}^{2}.
7.2. A homaloidal system of quintic curves. Let $\Sigma=\left\{p_{1}, \ldots, p_{6}\right\}$ be a set of distinct six points of \mathbb{P}^{2} satisfying the following:
($\Sigma 1$) no three points of Σ are collinear, and
$(\Sigma 2)$ there are no conic curves containing Σ.
These conditions are equivalent to the following:
($\Sigma 3$) for each $p_{i} \in \Sigma$, there exists a nonsingular conic curve $N_{i}^{\prime} \subset \mathbb{P}^{2}$ that contains $\Sigma \backslash\left\{p_{i}\right\}$ and does not contain p_{i}.
Proposition 7.4. The linear system $\left|\mathcal{I}_{\Sigma}^{2}(5)\right|$ of quintic curves that pass through the points of Σ and are singular at each point of Σ is of dimension 2, and has no fixed components.

Proof. Because each point of Σ imposes three linear conditions on $\left|\mathcal{O}_{\mathbb{P}^{2}}(5)\right|$, we have $\operatorname{dim}\left|\mathcal{I}_{\widetilde{\Sigma}}(5)\right| \geq 2$.

Suppose that $\left|\mathcal{I}_{\Sigma}^{2}(5)\right|$ has a fixed component. Let F be the fixed component, and let

$$
F=F_{1}+\cdots+F_{N}
$$

be the decomposition into the reduced irreducible components of F, where nonreduced components are expressed by repetition of summation. We have

$$
\operatorname{deg} F=\operatorname{deg} F_{1}+\cdots+\operatorname{deg} F_{N}>0
$$

As in the previous subsection, we denote by $\widetilde{\Sigma}$ the 0 -dimensional subscheme of \mathbb{P}^{2} defined by the ideal sheaf \mathcal{I}_{Σ}^{2}. We will consider the linear system $\left|\mathcal{I}_{\widetilde{\Sigma} \backslash F}(5-\operatorname{deg} F)\right|$, which has no fixed components and is of dimension equal to $\operatorname{dim}\left|\mathcal{I}_{\widetilde{\Sigma}}(5)\right| \geq 2$. For $\nu=0, \ldots, N$, we define reduced 0-dimensional subschemes $\Sigma_{1}^{(\nu)}$ and $\Sigma_{2}^{(\nu)}$ of \mathbb{P}^{2} by

$$
\mathcal{I}_{\widetilde{\Sigma} \backslash\left(F_{1}+\cdots+F_{\nu}\right)}=\mathcal{I}_{\Sigma_{1}^{(\nu)}} \mathcal{I}_{\Sigma_{2}^{(\nu)}}^{2}
$$

Then

$$
\left|\Sigma_{1}^{(\nu+1)}\right|=\left|\Sigma_{1}^{(\nu)}\right|-i+j-k, \quad\left|\Sigma_{2}^{(\nu+1)}\right|=\left|\Sigma_{2}^{(\nu)}\right|-j,
$$

where

$$
i:=\left|\Sigma_{1}^{(\nu)} \cap F_{\nu+1}\right|, \quad j:=\left|\Sigma_{2}^{(\nu)} \cap F_{\nu+1}\right|, \quad k:=\left|\Sigma_{2}^{(\nu)} \cap \operatorname{Sing} F_{\nu+1}\right|
$$

The integers i, j and k are subject to the following conditions:

- $i+j \leq 2$ and $k=0$ if $\operatorname{deg} F_{\nu+1}=1$, because of $(\Sigma 1)$,
- $i+j \leq 5$ and $k=0$ if $\operatorname{deg} F_{\nu+1}=2$, because of $(\Sigma 2)$,
- $k \leq 1$ if $\operatorname{deg} F_{\nu+1}=3$, because an irreducible cubic curve has at most one singular point, and
- $k \leq 4$ if $\operatorname{deg} F_{\nu+1}=4$, because if $k \geq 5$, there would exist a conic curve C with $C F_{\nu+1} \geq 10$.
Since $\left|\mathcal{I}_{\Sigma}^{2}(5)\right| \cong\left|\mathcal{I}_{\Sigma_{1}^{(N)}} \mathcal{I}_{\Sigma_{2}^{(N)}}^{2}(5-\operatorname{deg} F)\right|$ is of dimension ≥ 2 and fixed component free, we have

$$
\begin{aligned}
& \operatorname{deg} F=4 \Longrightarrow \quad\left|\Sigma_{1}^{(N)}\right| \leq 1 \quad \text { and } \quad\left|\Sigma_{2}^{(N)}\right|=0 \\
& \operatorname{deg} F=3 \quad \Longrightarrow \quad\left|\Sigma_{1}^{(N)}\right| \leq 4 \quad \text { and } \quad\left|\Sigma_{2}^{(N)}\right|=0
\end{aligned}
$$

We put

$$
\delta:=(6-\operatorname{deg} F)(7-\operatorname{deg} F) / 2-\left(\left|\Sigma_{1}^{(N)}\right|+3\left|\Sigma_{2}^{(N)}\right|\right)-1
$$

From Corollary 7.2, we also have

$$
\operatorname{deg} F \geq 2 \quad \text { and } \quad 2>\delta \Longrightarrow\left|\Sigma_{2}^{(N)}\right|=0
$$

Using these considerations, we see that the triple $\left(\left|\Sigma_{1}^{(N)}\right|,\left|\Sigma_{2}^{(N)}\right|, \operatorname{deg} F\right)$ is one of the following:

$$
(0,6,1), \quad(1,5,1), \quad(2,4,1)
$$

For these triples, however, we have $\left|\mathcal{I}_{\widetilde{\Sigma} \backslash F}(5-\operatorname{deg} F)\right|=\emptyset$, because otherwise, there would exist an irreducible quartic curve C_{4} and a conic curve C_{2} such that $C_{4} C_{2}>8$. Thus we have proved that $\left|\mathcal{I}_{\widetilde{\Sigma}}(5)\right|$ is fixed component free.

If $\operatorname{dim}\left|\mathcal{I}_{\widetilde{\Sigma}}(5)\right|>2$, then, by Proposition 7.1 , there would exists a conic curve that contains Σ, which contradicts ($\Sigma 2$).

Remark 7.5. Recall from ($\Sigma 3$) that $N_{i}^{\prime} \subset \mathbb{P}^{2}$ is the conic curve such that $N_{i}^{\prime} \cap \Sigma=$ $\Sigma \backslash\left\{p_{i}\right\}$. Let Q be a general member of $\left|\mathcal{I}_{\Sigma}^{2}(5)\right|$. Since $N_{i}^{\prime} Q=10$ for each i, the multiplicity of Q at each point of Σ is 2 .

Let $\beta: S \rightarrow \mathbb{P}^{2}$ be the blowing up of \mathbb{P}^{2} at the points of Σ, and let M_{i} be the exceptional (reduced) divisor $\beta^{-1}\left(p_{i}\right)$. We put

$$
L:=\beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(5) \otimes \mathcal{O}_{S}\left(-2 M_{1}-\cdots-2 M_{6}\right)
$$

Let N_{i} be the strict transform of N_{i}^{\prime} by β. We have $L^{2}=1, N_{i} L=0$ and $N_{i}^{2}=-1$.
Proposition 7.6. The complete linear system $|L|$ on S has no base points, and the morphism $\Phi_{|L|}: S \rightarrow \mathbb{P}^{2}$ defined by $|L|$ is the contraction of the curves N_{1}, \ldots, N_{6}. Let p_{i}^{\prime} be the image of N_{i} by $\Phi_{|L|}$. Then $\Sigma^{\prime}=\left\{p_{1}^{\prime}, \ldots, p_{6}^{\prime}\right\}$ satisfies the condition ($\Sigma 3$).

Proof. By Proposition 7.4, the complete linear system $|L|$ on S is of dimension 2 and has no fixed components. Suppose that $|L|$ has a base point $p \in S$. Let $\tilde{\beta}: \widetilde{S} \rightarrow S$ be the blowing up of S at p, and let M^{\prime} be the exceptional divisor $\tilde{\beta}^{-1}(p)$ of $\tilde{\beta}$. Since $L^{2}=1$, the complete linear system $|\widetilde{L}|$ of the line bundle $\widetilde{L}:=\tilde{\beta}^{*} L \otimes \mathcal{O}_{\widetilde{S}}\left(-M^{\prime}\right)$ is of dimension 2 and has no fixed components. We have $K_{\widetilde{S}} \widetilde{L}=-2$, and hence $h^{2}(\widetilde{S}, \widetilde{L})=h^{0}\left(\widetilde{S}, \mathcal{O}_{\widetilde{S}}\left(K_{\widetilde{S}}-\widetilde{L}\right)\right)=0$ follows. By Riemann-Roch theorem, we have $h^{1}(\widetilde{S}, \widetilde{L})=h^{1}\left(\widetilde{S}, K_{\widetilde{S}}-\widetilde{L}\right)=1$. Using the argument of Koszul complex as in the proof of Proposition 7.1, we see that $h^{0}\left(\widetilde{S}, \mathcal{O}_{\widetilde{S}}\left(K_{\widetilde{S}}+\widetilde{L}\right)\right)>0$. Hence there exists a conic curve in \mathbb{P}^{2} that passes through the points of Σ, which contradicts $(\Sigma 2)$. Thus $|L|$ has no base points.

Since $L^{2}=1$, the morphism $\Phi_{|L|}$ is of degree 1. Because $N_{i} L=0$, the curves N_{i} are contracted by $\Phi_{|L|}$. Let C be a reduced irreducible curve on S that is contracted by $\Phi_{|L|}$. Because $M_{i} L=2$, we have $C \neq M_{i}$ and hence $C^{\prime}:=\beta(C) \subset \mathbb{P}^{2}$ is a reduced irreducible curve. We will show that C^{\prime} is equal to one of the conic curves N_{i}^{\prime}. Let d be the degree of C^{\prime}. We have

$$
\beta^{*}\left(C^{\prime}\right)=C+m_{1} M_{1}+\cdots+m_{6} M_{6}
$$

where m_{j} is the multiplicity of C^{\prime} at p_{j}. The condition $C L=0$ implies

$$
5 d=2\left(m_{1}+\cdots+m_{6}\right)
$$

If C^{\prime} is not equal to N_{i}^{\prime} for any i, then

$$
C^{\prime} N_{i}^{\prime}=2 d \geq\left(m_{1}+\cdots+m_{6}\right)-m_{i}=5 d / 2-m_{i}
$$

holds for each i. Hence $2 m_{i} \geq d$ for $i=1, \ldots, 6$. Therefore $5 d=2 \sum m_{j} \geq 6 d$, which is absurd. Thus we have proved that $\Phi_{|L|}$ is the contraction of the (-1)-curves N_{1}, \ldots, N_{6}.

Since $M_{i} L=2$, the image of M_{i} by $\Phi_{|L|}$ is a nonsingular conic curve. Because $M_{i} N_{j}=0$ if and only if $i=j$, the conic curve $\Phi_{|L|}\left(M_{i}\right)$ satisfies

$$
\Phi_{|L|}\left(M_{i}\right) \cap \Sigma^{\prime}=\Sigma^{\prime} \backslash\left\{p_{i}^{\prime}\right\}
$$

Hence Σ^{\prime} satisfies ($\Sigma 3$).
Corollary 7.7. The rational map

$$
\mathrm{CT}_{\Sigma}: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{2}
$$

defined by the linear system $\left|\mathcal{I}_{\Sigma}^{2}(5)\right|$ is birational, and the inverse map is given by $\mathrm{CT}_{\Sigma^{\prime}}$.

We will write

$$
\beta^{\prime}: S \rightarrow \mathbb{P}^{2}
$$

instead of $\Phi_{|L|}$. Let H and H^{\prime} be the pull-backs of a general line of \mathbb{P}^{2} by β and β^{\prime}, respectively. We put

$$
M_{i}^{\prime}:=\beta^{\prime}\left(M_{i}\right),
$$

which is a nonsingular conic curve containing $\Sigma^{\prime} \backslash\left\{p_{i}^{\prime}\right\}$ and not passing through p_{i}^{\prime}. We also put

$$
U:=S \backslash\left(\bigcup_{i=1}^{6} N_{i} \cup \bigcup_{i=1}^{6} M_{i}\right)
$$

The morphisms β and β^{\prime} induce isomorphisms

$$
\begin{equation*}
\mathbb{P}^{2} \backslash \cup N_{i}^{\prime} \cong U \cong \mathbb{P}^{2} \backslash \cup M_{i}^{\prime} \tag{7.8}
\end{equation*}
$$

The Picard group Pic S of S is a free \mathbb{Z}-module of rank 7, and is generated by the linear equivalence classes $[H],\left[M_{1}\right], \ldots,\left[M_{6}\right]$, or by the linear equivalence classes $\left[H^{\prime}\right],\left[N_{1}\right], \ldots,\left[N_{6}\right]$. They are related by

$$
\left[H^{\prime}\right]=5[H]-2 \sum_{j=1}^{6}\left[M_{j}\right], \quad\left[N_{i}\right]=2[H]-\sum_{j=1}^{6}\left[M_{j}\right]+\left[M_{i}\right] \quad(i=1, \ldots, 6) .
$$

In particular, we have

$$
\begin{equation*}
3[H]-\sum_{j=1}^{6}\left[M_{j}\right]=3\left[H^{\prime}\right]-\sum_{j=1}^{6}\left[N_{j}\right] \tag{7.9}
\end{equation*}
$$

in Pic S.
7.3. Cremona transformations of supersingular $K 3$ surfaces. Let G be a homogeneous polynomial in \mathcal{U}, and let $\Sigma=\left\{p_{1}, \ldots, p_{6}\right\}$ be a subset of $Z(d G)$ with $|\Sigma|=6$. We assume that Σ satisfies the condition $(\Sigma 1)$ and
$(\Sigma 2)^{\prime}$ for each $p_{i} \in \Sigma$, the nonsingular conic curve N_{i}^{\prime} containing $\Sigma \backslash\left\{p_{i}\right\}$ satisfies $N_{i}^{\prime} \cap Z(d G)=\Sigma \backslash\left\{p_{i}\right\}$.
Then the subset

$$
Z^{\prime}:=\mathrm{CT}_{\Sigma}(Z(d G) \backslash \Sigma) \cup \Sigma^{\prime}
$$

of \mathbb{P}^{2} is well-defined and consists of 21 points.
Proposition 7.8. There exists $G^{\prime} \in \mathcal{U}$ such that $Z^{\prime}=Z\left(d G^{\prime}\right)$.
For the proof of Proposition 7.8, we first show the following:
Lemma 7.9. There exists $G_{1} \in \mathcal{U}$ that satisfies $Z(d G)=Z\left(d G_{1}\right)$ and $G_{1}\left(p_{i}\right)=0$ for each $p_{i} \in \Sigma$.
Proof. By $(\Sigma 1)$ and $(\Sigma 2)^{\prime}$, the points of Σ impose independent linear conditions on the linear system $\left|\mathcal{O}_{\mathbb{P}^{2}}(3)\right|$. (See [6, p. 715].) Hence there exists a homogeneous cubic polynomial H such that $\left(G+H^{2}\right)\left(p_{i}\right)=0$ holds for each $p_{i} \in \Sigma$. Then $G_{1}:=G+H^{2}$ satisfies $Z(d G)=Z\left(d G_{1}\right)$.

We replace G by G_{1} in Lemma 7.9. Then the sextic curve D defined by $G=0$ is reduced and has an ordinary node at each point of Σ. Hence

$$
\widetilde{D}:=\beta^{*} D-2 \sum_{j=1}^{6} M_{j}
$$

is a reduced effective divisor of S, and it does not contain any of M_{j}.
Proof of Proposition 7.8. Let D^{\prime} be the image of \widetilde{D} by β^{\prime}. Since $\widetilde{D} H^{\prime}=6, D^{\prime}$ is a reduced curve of degree 6 . Let $G^{\prime}=0$ be the defining equation of D^{\prime}. We will show that $Z^{\prime}=Z\left(d G^{\prime}\right)$. It is enough to show that $Z\left(d G^{\prime}\right)$ is of dimension 0 and that $Z^{\prime} \subseteq Z\left(d G^{\prime}\right)$.

Since $\widetilde{D} N_{j}=2$ for each N_{j}, we have

$$
\widetilde{D}:=\beta^{\prime *} D^{\prime}-2 \sum_{j=1}^{6} N_{j} .
$$

Because \widetilde{D} is effective, we have Sing $D^{\prime} \supset \Sigma^{\prime}$. Hence $\Sigma^{\prime} \subseteq Z\left(d G^{\prime}\right)$. We put

$$
\sqrt{L(H)}:=\mathcal{O}_{S}\left(3 H-\sum_{j=1}^{6} M_{j}\right)=\mathcal{O}_{S}\left(3 H^{\prime}-\sum_{j=1}^{6} N_{j}\right)
$$

Let \widetilde{G} be a global section of

$$
\sqrt{L(H)}^{\otimes 2}=L(H)=\mathcal{O}_{S}\left(6 H-2 \sum M_{j}\right)=\mathcal{O}_{S}\left(6 H^{\prime}-2 \sum N_{j}\right)
$$

such that $\widetilde{G}=0$ defines \widetilde{D}. Let m and n be global sections of $\mathcal{O}_{S}\left(\sum M_{j}\right)$ and $\mathcal{O}_{S}\left(\sum N_{j}\right)$ such that $\sum M_{j}=\{m=0\}$ and $\sum N_{j}=\{n=0\}$. We can choose them so that

$$
\begin{equation*}
\beta^{*} G=\widetilde{G} \cdot m^{2} \quad \text { and } \quad \beta^{\prime *} G^{\prime}=\widetilde{G} \cdot n^{2} \tag{7.10}
\end{equation*}
$$

hold. We define isomorphisms

$$
\begin{equation*}
\beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(3)|U \cong \sqrt{L(H)}| U \cong \beta^{\prime *} \mathcal{O}_{\mathbb{P}^{2}}(3) \mid U \tag{7.11}
\end{equation*}
$$

of line bundles on U by multiplications by m and n. We can define $d \widetilde{G}, d\left(\beta^{*} G\right)$ and $d\left(\beta^{\prime *} G^{\prime}\right)$ as global sections of the vector bundles $\Omega_{S}^{1} \otimes \sqrt{L(H)}{ }^{\otimes 2}, \Omega_{S}^{1} \otimes \beta^{*} \mathcal{O}_{\mathbb{P}^{2}}(3)^{\otimes 2}$ and $\Omega_{S}^{1} \otimes \beta^{\prime *} \mathcal{O}_{\mathbb{P}^{2}}(3)^{\otimes 2}$, respectively. By (7.10) and (7.11), we get

$$
\begin{aligned}
& \beta^{-1}(Z(d G) \backslash \Sigma)=\beta^{-1}\left(Z(d G) \cap\left(\mathbb{P}^{2} \backslash \cup N_{j}^{\prime}\right)\right)=\beta^{-1}(Z(d G)) \cap U \\
= & Z\left(d\left(\beta^{*} G \mid U\right)\right)=Z(d(\widetilde{G} \mid U))=Z\left(d\left(\beta^{\prime *} G^{\prime} \mid U\right)\right) \\
= & \beta^{\prime-1}\left(Z\left(d G^{\prime}\right)\right) \cap U=\beta^{\prime-1}\left(Z\left(d G^{\prime}\right) \cap\left(\mathbb{P}^{2} \backslash \cup M_{j}^{\prime}\right)\right) .
\end{aligned}
$$

Hence we get $Z\left(d G^{\prime}\right) \cap\left(\mathbb{P}^{2} \backslash \cup M_{j}^{\prime}\right)=\mathrm{CT}_{\Sigma}(Z(d G) \backslash \Sigma)$. In particular, we have $\mathrm{CT}_{\Sigma}(Z(d G) \backslash \Sigma) \subset Z\left(d G^{\prime}\right)$.

If $\operatorname{dim} Z\left(d G^{\prime}\right)>0$, then one of the conic curves M_{j}^{\prime} is contained in $Z\left(d G^{\prime}\right)$. Suppose that $M_{k}^{\prime} \subset Z\left(d G^{\prime}\right)$. Then $M_{k} \subset Z(d \widetilde{G})$ holds. We choose affine coordinates (x, y) of \mathbb{P}^{2} such that $p_{k}=\beta\left(M_{k}\right)$ is the origin. Let

$$
g(x, y)=\sum_{i+j \leq 6} a_{i j} x^{i} y^{j}
$$

be the inhomogeneous polynomial corresponding to G. Since $p_{k}=(0,0) \in \Sigma$ is contained in $\operatorname{Sing} D$, we have

$$
a_{i j}=0 \quad \text { for } \quad i+j \leq 1
$$

Let the blowing up β be given by

$$
(u, v) \mapsto(x, y)=(u v, v)
$$

around a point of M_{k}. Then \widetilde{G} is written in terms of the coordinates (u, v) as

$$
\tilde{g}(u, v)=\beta^{*} g / v^{2}=\sum_{2 \leq i+j \leq 6} a_{i j} u^{i} v^{i+j-2} .
$$

Since $d \widetilde{G}$ is zero along the curve $M_{k}=\{v=0\}$ by the assumption, we have

$$
\frac{\partial \tilde{g}}{\partial u}(u, 0)=a_{11}=0
$$

This contradicts the fact that p_{k} is a reduced point of $Z(d G)$.
Proposition 7.10. Let G and G^{\prime} be as above. Then the Cremona transformation CT_{Σ} of \mathbb{P}^{2} lifts to an isomorphism

$$
\widetilde{\mathrm{CT}}_{\Sigma}: X_{G} \xrightarrow{\sim} X_{G^{\prime}}
$$

of supersingular K3 surfaces.
Proof. Let \tilde{Y} be the subvariety of the total space of the line bundle $\sqrt{L(H)}$ defined by $W^{2}=\widetilde{G}$, where \widetilde{G} is the global section of $\sqrt{L(H)}^{\otimes 2}=L(H)$ introduced in the proof of Proposition 7.8, and W is the fiber coordinate of $\sqrt{L(H)}$. From (7.10) and (7.11), we obtain isomorphisms

$$
X_{G}\left|\left(\mathbb{P}^{2} \backslash \cup N_{j}^{\prime}\right) \cong \tilde{Y}\right| U \cong X_{G^{\prime}} \mid\left(\mathbb{P}^{2} \backslash \cup M_{j}^{\prime}\right)
$$

that are compatible with the isomorphisms (7.8). Since $K 3$ surfaces are minimal, the isomorphism between Zariski open subsets of X_{G} and $X_{G^{\prime}}$ extends to an isomorphism between X_{G} and $X_{G^{\prime}}$.

Remark 7.11. We describe the action of $\widetilde{\mathrm{CT}}_{\Sigma}$ on the numerical Néron-Severi lattices of the supersingular $K 3$ surfaces. We number the points of $Z(d G)$ and $Z\left(d G^{\prime}\right)$ in such a way that

$$
\begin{aligned}
\Sigma & =\left\{p_{1}, \ldots, p_{6}\right\}, & & Z(d G)=\Sigma \cup\left\{p_{7}, \ldots, p_{21}\right\} \\
\Sigma^{\prime} & =\left\{p_{1}^{\prime}, \ldots, p_{6}^{\prime}\right\}, & & Z\left(d G^{\prime}\right)=\Sigma^{\prime} \cup\left\{p_{7}^{\prime}, \ldots, p_{21}^{\prime}\right\}
\end{aligned}
$$

where $p_{i}^{\prime}=\mathrm{CT}_{\Sigma}\left(p_{i}\right)$ for $i=7, \ldots, 21$. Let $E_{i} \subset X_{G}$ be the (-2)-curve that is contracted to $p_{i} \in \mathbb{P}^{2}$, and $E_{i}^{\prime} \subset X_{G^{\prime}}$ the (-2)-curve that is contracted to $p_{i}^{\prime} \in \mathbb{P}^{2}$. Then $N S\left(X_{G}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by $\left[E_{1}\right], \ldots,\left[E_{21}\right],\left[\mathcal{L}_{G}\right]$, and $N S\left(X_{G^{\prime}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by $\left[E_{1}^{\prime}\right], \ldots,\left[E_{21}^{\prime}\right],\left[\mathcal{L}_{G^{\prime}}\right]$. Since $\mathrm{CT}_{\Sigma}\left(p_{i}\right)=p_{i}^{\prime}$ for $i>6$, we have

$$
\widetilde{\mathrm{CT}}_{\Sigma}^{*}\left(\left[E_{i}^{\prime}\right]\right)=\left[E_{i}\right] \quad \text { for } \quad i>6
$$

The exceptional curve N_{i} on S contracted to p_{i}^{\prime} by $\beta^{\prime}: S \rightarrow \mathbb{P}^{2}$ is mapped by $\beta: S \rightarrow \mathbb{P}^{2}$ to the nonsingular conic curve N_{i}^{\prime} such that $N_{i}^{\prime} \cap Z(d G)=\Sigma \backslash\left\{p_{i}\right\}$. Hence

$$
\widetilde{\mathrm{CT}}_{\Sigma}^{*}\left(\left[E_{i}^{\prime}\right]\right)=2\left[\mathcal{L}_{G}\right]-\sum_{j=1}^{6}\left[E_{j}\right]+\left[E_{i}\right] \quad \text { for } \quad i=1, \ldots, 6
$$

The pull-back of a general line of \mathbb{P}^{2} by $\mathrm{CT}_{\Sigma}: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{2}$ is a quintic curve Q such that $Q \cap Z(d G)=\Sigma$ and that the multiplicity of Q at each point of Σ is 2 (Remark 7.5). Thus

$$
\widetilde{\mathrm{CT}}_{\Sigma}^{*}\left(\left[\mathcal{L}_{G^{\prime}}\right]\right)=5\left[\mathcal{L}_{G}\right]-2 \sum_{j=1}^{6}\left[E_{j}\right]
$$

These formula describe the homomorphism $\widetilde{\mathrm{CT}}_{\Sigma}^{*} \otimes_{\mathbb{Z}} \mathbb{Q}$ from $N S\left(X_{G^{\prime}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ to $N S\left(X_{G}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Remark 7.12. Suppose that the point $\left[G^{\prime}\right] \in \mathfrak{M}$ corresponding to $G^{\prime} \in \mathcal{U}$ in Proposition 7.8 coincides with the point $[G] \in \mathfrak{M}$. Then the Cremona transformation $\widetilde{\mathrm{CT}}_{\Sigma}$ defines a right coset in $\operatorname{Aut}\left(X_{G}\right)$ with respect to the subgroup $\operatorname{Aut}\left(X_{G}, \mathcal{L}_{G}\right) \subset$ $\operatorname{Aut}\left(X_{G}\right)$. Indeed, the assumption $[G]=\left[G^{\prime}\right]$ implies the existence of a linear isomorphism $g: \mathbb{P}^{2} \xrightarrow{\sim} \mathbb{P}^{2}$ such that $g\left(Z\left(d G^{\prime}\right)\right)=Z(d G)$. Let $\hat{g} \in G L(3, k)$ be a lift of $g \in P G L(3, k)$. Then there exists $c \in k^{\times}$and $H \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)$ such that $\hat{g}^{*} G=c G^{\prime}+H^{2}$. Let X_{G} and $X_{G^{\prime}}$ be defined by $W^{2}=G(X, Y, Z)$ and $W^{\prime 2}=G^{\prime}(X, Y, Z)$, respectively. We have a lift $\tilde{g}: X_{G^{\prime}} \xrightarrow{\sim} X_{G}$ of g given by

$$
\tilde{g}^{*} W=\sqrt{c} W^{\prime}+H .
$$

The composite $\tilde{g} \circ \widetilde{\mathrm{CT}}_{\Sigma}$ is an automorphism of X_{G}. Since the linear isomorphism g is unique up to the group

$$
\{h \in P G L(3, k) \mid h(Z(d G))=Z(d G)\}=\operatorname{Aut}\left(X_{G}, \mathcal{L}_{G}\right)
$$

the automorphism $\tilde{g} \circ \widetilde{\mathrm{CT}}_{\Sigma} \in \operatorname{Aut}\left(X_{G}\right)$ is also unique up to $\operatorname{Aut}\left(X_{G}, \mathcal{L}_{G}\right)$.

8. The isomorphism correspondences by Cremona transformations

8.1. The action of Cremona transformations on the moduli space. Let \mathbf{C} be a code satisfying the conditions in (ii) of Theorem 2.4. For $\gamma \in \mathcal{G}_{\mathbf{C}}$, we denote by $G_{\gamma} \in \mathcal{U}$ a homogeneous polynomial such that $\gamma(\mathcal{P})=Z\left(d G_{\gamma}\right)$. Let $c \in \operatorname{Pow}(\mathcal{P})$ be a word of weight 6 . Recall from Definition 1.11 that $\gamma(c)$ is a center of Cremona transformation for G_{γ} if no three points of $\gamma(c)$ are collinear and there are no nonsingular conic curves $C \subset \mathbb{P}^{2}$ such that $|C \cap \gamma(c)| \geq 5$ and $|C \cap \gamma(\mathcal{P})| \geq 6$. By Propositions 2.9, 2.10 and 2.17, we see that the following conditions on a word $c \in \operatorname{Pow}(\mathcal{P})$ of weight 6 is equivalent to each other:

- the word c satisfies the following:
(i) $|c \cap l| \leq 2$ for any linear word l of \mathbf{C}, and
(ii) $|c \cap q| \leq 4$ for any quadratic word q of \mathbf{C},
- there exists $\gamma \in \mathcal{G}_{\mathbf{C}}$ such that $\gamma(c)$ is a center of Cremona transformation for G_{γ}, and
- for arbitrary $\gamma \in \mathcal{G}_{\mathbf{C}}, \gamma(c)$ is a center of Cremona transformation for G_{γ}.

Definition 8.1. A word $c \in \operatorname{Pow}(\mathcal{P})$ of weight 6 is called a center of Cremona transformation with respect to \mathbf{C} if the above conditions are satisfied.

Let c be a center of Cremona transformation with respect to \mathbf{C}. For $\gamma \in \mathcal{G}_{\mathbf{C}}$, we put

$$
\Sigma:=\gamma(c),
$$

and consider the Cremona transformation CT_{Σ}. We put

$$
Z_{\gamma, c}^{\prime}:=\left\{\operatorname{CT}_{\Sigma}(\gamma(P)) \mid P \in \mathcal{P} \backslash c\right\} \cup\left\{p_{1}^{\prime}, \ldots, p_{6}^{\prime}\right\}
$$

where p_{i}^{\prime} is the image of the strict transform $N_{i} \subset S$ of the conic curve N_{i}^{\prime} that contains $\gamma(c) \backslash\left\{p_{i}\right\}$. By Proposition 7.8, there exists a polynomial $G_{\gamma, c}^{\prime} \in \mathcal{U}$ such that $Z_{\gamma, c}^{\prime}=Z\left(d G_{\gamma, c}^{\prime}\right)$. Even though the polynomial $G_{\gamma, c}^{\prime}$ is not uniquely determined, the corresponding point $\left[G_{\gamma, c}^{\prime}\right] \in \mathfrak{M}$ is uniquely determined by c and γ. The map
$\gamma \mapsto\left[G_{\gamma, c}^{\prime}\right]$ gives a morphism from $\mathcal{G}_{\mathbf{C}}$ to \mathfrak{M}. It is obvious that this morphism descends to the morphism

$$
\mathrm{ct}_{c}: P G L(3, k) \backslash \mathcal{G}_{\mathbf{C}} \rightarrow \mathfrak{M}
$$

8.2. The case where Artin invariant is 2 . Let T be A, B or C, and let $c \in$ $\operatorname{Pow}(\mathcal{P})$ be a center of Cremona transformation with respect to \mathbf{C}_{T}. The image by ct_{c} of the connected component

$$
\left(P G L(3, k) \backslash \mathcal{G}_{T}\right)^{+}=\left\{\left[\gamma_{\lambda}\right] \mid \lambda \in \mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right\}
$$

of $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{T}$ is a connected component of $\mathfrak{M}_{2}=\mathfrak{M}_{A} \sqcup \mathfrak{M}_{B} \sqcup \mathfrak{M}_{C}$, and hence there exists $T^{\prime} \in\{A, B, C\}$ such that ct_{c} yields a morphism

$$
\operatorname{ct}_{T, c}^{+}:\left(P G L(3, k) \backslash \mathcal{G}_{T}\right)^{+} \rightarrow \mathfrak{M}_{T^{\prime}} .
$$

Using $\mathrm{ct}_{T, c}^{+}$and the quotient morphism

$$
p_{T}:\left(P G L(3, k) \backslash \mathcal{G}_{T}\right)^{+} \rightarrow \mathfrak{M}_{T}
$$

by $N_{T}=\operatorname{Ker}\left(\operatorname{Aut}\left(\mathbf{C}_{T}\right) \rightarrow \widetilde{T}\right)$, we obtain an irreducible isomorphism correspondence

$$
D_{T, T^{\prime}}[c]:=\left\{\left(p_{T}([\gamma]), \mathrm{ct}_{T, c}^{+}([\gamma])\right) \mid[\gamma] \in\left(P G L(3, k) \backslash \mathcal{G}_{T}\right)^{+}\right\} \quad \subset \quad \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}}
$$

For $\sigma \in N_{T}$, we have

$$
\operatorname{ct}_{c}([\gamma \circ \sigma])=\operatorname{ct}_{\sigma(c)}([\gamma]) .
$$

Hence the type T^{\prime} and the correspondence $D_{T, T^{\prime}}[c]$ depends only on the orbit of c under the action of N_{T}. We present in Table 8.1 the decomposition of the set of centers of Cremona transformation with respect to \mathbf{C}_{T} into the orbits under the action of N_{T}. For each orbit, the type T^{\prime} and the defining equation of the isomorphism correspondence $D_{T, T^{\prime}}[c]$ are also given.

We will explain the algorithm for obtaining the defining equation of $D_{T, T^{\prime}}[c]$. For example, consider the case where $T=A$ and $c=\left\{P_{1}, P_{4}, P_{6}, P_{9}, P_{12}, P_{20}\right\}$. The six points $\Sigma=\gamma_{\lambda}(c)=\left\{p_{1}, \ldots, p_{6}\right\}$ are as follows:

$$
\begin{array}{ll}
p_{1}:=\gamma_{\lambda}\left(P_{1}\right)=[1, \omega, 0], & p_{4}:=\gamma_{\lambda}\left(P_{9}\right)=[1,1,1], \\
p_{2}:=\gamma_{\lambda}\left(P_{4}\right)=[1+\lambda, \lambda, 1], & p_{5}:=\gamma_{\lambda}\left(P_{12}\right)=[0,1,0], \\
p_{3}:=\gamma_{\lambda}\left(P_{6}\right)=[\lambda, 1+\lambda, 1], & p_{6}:=\gamma_{\lambda}\left(P_{20}\right)=[0,0,1] .
\end{array}
$$

Solving linear equations, we see that the 3 -dimensional linear space $H^{0}\left(\mathbb{P}^{2}, \mathcal{I}_{\Sigma}^{2}(5)\right)$ is generated by the homogeneous quintic polynomials in Table 8.2. The Cremona transformation $\mathrm{CT}_{\Sigma}: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{2}$ is given by

$$
[X, Y, Z] \mapsto\left[F_{1}, F_{2}, F_{3}\right] .
$$

The points $\gamma_{\lambda}\left(P_{i}\right)\left(P_{i} \notin c\right)$ is mapped by CT_{Σ} to the points in Table 8.3. The conic curve $N_{1}^{\prime} \subset \mathbb{P}^{2}$ containing $\Sigma \backslash\left\{p_{1}\right\}$ is defined by

$$
E_{1}:=X^{2}+\left(\lambda^{2}+\lambda\right) Y Z+\left(\lambda^{2}+\lambda+1\right) Z X=0
$$

Let V_{1} be the vector space of cubic homogeneous polynomials C such that $E_{1} C$ is a member of $H^{0}\left(\mathbb{P}^{2}, \mathcal{I}_{\Sigma}^{2}(5)\right)$. Then we have $\operatorname{dim} V_{1}=2$, and the image of the linear map $V_{1} \rightarrow H^{0}\left(\mathbb{P}^{2}, \mathcal{I}_{\Sigma}^{2}(5)\right)$ given by $C \mapsto E_{1} C$ is spanned by F_{1} and F_{3}. Hence the image $\beta^{\prime}\left(N_{1}\right)$ of the strict transform $N_{1} \subset S$ of N_{1}^{\prime} is $[0,1,0]$. In the same way, we calculate $\beta^{\prime}\left(N_{i}\right)$ as in Table 8.3. The set $L W$ of collinear 5 -tuples of the points in $Z^{\prime}=\left\{q_{1}, \ldots, q_{21}\right\}$ and the set $Q W$ of 8 -tuples of the points in Z^{\prime} that are on a nonsingular conic curve are given in Table 8.4 , where $\{1,3,5,11,17\}$ means

T	c	$\left\|N_{T} \cdot c\right\|$	T^{\prime}	$D_{T, T^{\prime}}[c]$
A	$\{1,2,8,10,15,16\}$	12	A	$\Delta=0$
A	$\{1,7,8,15,18,21\}$	144	A	$D 1=0$
A	$\{2,4,8,11,14,16\}$	576	B	$D 2=0$
A	$\{1,4,6,9,12,20\}$	72	A	$D 3=0$
A	$\{2,8,10,12,14,21\}$	72	A	$D 3=0$
A	$\{5,8,9,10,14,16\}$	48	A	$\Delta=0$
A	$\{4,9,12,16,17,18\}$	24	A	$\Delta=0$
A	$\{1,2,9,10,16,19\}$	36	A	$\Delta=0$
A	$\{7,12,13,14,19,20\}$	36	A	$\Delta=0$
A	$\{2,6,9,10,13,21\}$	48	C	$D 4=0$
A	$\{2,5,11,13,17,21\}$	576	A	$D 1=0$
B	$\{2,7,8,9,10,17\}$	216	B	$\Delta=0$
B	$\{1,2,11,12,13,18\}$	72	B	$D 5=0$
B	$\{4,5,6,10,13,19\}$	54	B	$\Delta=0$
B	$\{4,7,12,15,20,21\}$	6	B	$\Delta=0$
B	$\{1,2,6,10,14,16\}$	54	B	$\Delta=0$
B	$\{3,5,14,16,19,20\}$	108	B	$\Delta=0$
B	$\{1,3,8,12,13,17\}$	108	B	$\Delta=0$
B	$\{1,5,6,16,20,21\}$	216	A	$D 6=0$
B	$\{2,6,9,13,16,18\}$	36	B	$\Delta=0$
B	$\{3,7,8,10,19,21\}$	216	B	$D 5=0$
B	$\{2,5,9,16,18,19\}$	108	B	$\Delta=0$
B	$\{1,3,5,15,19,21\}$	72	B	$D 5=0$
B	$\{2,6,7,16,20,21\}$	108	B	$\Delta=0$
C	$\{3,5,9,13,17,21\}$	960	A	$D 7=0$
C	$\{3,5,10,14,17,21\}$	64	C	$D 8=0$
C	$\{1,5,8,10,14,18\}$	960	C	$\Delta=0$
C	$\{1,2,5,8,18,19\}$	240	C	$\Delta=0$

$$
\begin{aligned}
\Delta:= & J_{T}+J_{T^{\prime}}, \\
D 1: & :=J_{T^{\prime}}^{6} J_{T}^{2}+J_{T^{\prime}}^{4} J_{T}^{4}+J_{T^{\prime}}^{2}, J_{T}^{6}+J_{T^{\prime}}^{4} J_{T}^{3}+J_{T^{\prime}}^{3} J_{T}^{4}+J_{T^{\prime}}^{4} J_{T}^{2}+J_{T^{\prime}}^{3} J_{T}^{3}+J_{T^{\prime}}^{2} J_{T}^{4}+ \\
& +J_{T^{\prime}}^{4} J_{T}+J_{T^{\prime}} J_{T}^{4}+J_{T^{\prime}}^{3} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}}^{3} J_{T}^{3}+J_{T^{\prime}}^{3}+J_{T^{\prime}}^{2} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T}^{3}, \\
D 2:= & J_{T}^{4}+J_{T^{\prime}}^{2} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}} J_{T}+J_{T^{\prime}}, \\
D 3:= & J_{T^{\prime}}^{3} J_{T}^{2}+J_{T^{\prime}}^{2} J_{T}^{3}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}} J_{T}+1, \\
D 4:= & J_{T^{\prime}}^{2} J_{T}^{4}+J_{T^{\prime}} J_{T}^{2}+J_{T^{\prime}} J_{T}+J_{T^{\prime}}+J_{T}, \\
D 5:= & J_{T^{\prime}}^{4} J_{T}+J_{T^{\prime}}^{3} J_{T}^{2}+J_{T^{\prime}}^{2} J_{T}^{3}+J_{T^{\prime}}^{4} J_{T}^{4}+J_{T^{\prime}}^{3} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}} J_{T}^{3}+1, \\
D 6:= & J_{T^{\prime}}^{4}+J_{T^{\prime}}^{2} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}} J_{T}+J_{T}, \\
D 7:= & J_{T^{\prime}}^{4} J_{T}^{2}+J_{T^{\prime}}^{2} J_{T}+J_{T^{\prime}}+J_{T}+J_{T^{\prime}}+J_{T}, \\
D 8:= & J_{T^{\prime}}^{4} J_{T}^{4}+J_{T^{\prime}}^{3} J_{T}+J_{T^{\prime}}^{2} J_{T}^{2}+J_{T^{\prime}} J_{T}^{3}+J_{T^{\prime}}^{3}+J_{T^{\prime}}^{2} J_{T}+J_{T^{\prime}} J_{T}^{2}+J_{T}^{3} .
\end{aligned}
$$

Table 8.1. Isomorphism correspondences by Cremona transformations

$$
\begin{aligned}
F_{1}:= & X^{4} Z+X^{3} Z^{2} \lambda^{2} \omega+X^{3} Z^{2} \lambda \omega+X^{2} Y^{2} Z \omega+X^{2} Y Z^{2} \lambda^{2} \omega+X^{2} Y Z^{2} \lambda \omega+ \\
& +X^{2} Y Z^{2} \omega+X^{2} Z^{3} \lambda^{4} \omega+X^{2} Z^{3} \lambda^{4}+X^{2} Z^{3} \lambda^{2}+X^{2} Z^{3} \lambda \omega+X^{2} Z^{3}+ \\
& +X Y^{2} Z^{2} \lambda^{2} \omega+X Y^{2} Z^{2} \lambda \omega+X Y^{2} Z^{2} \omega+X Y Z^{3} \omega+Y^{3} Z^{2} \lambda^{2} \omega+ \\
& +Y^{3} Z^{2} \lambda \omega+Y^{2} Z^{3} \lambda^{4} \omega+Y^{2} Z^{3} \lambda^{4}+Y^{2} Z^{3} \lambda^{2}+Y^{2} Z^{3} \lambda \omega, \\
F_{2}:= & X Y^{3} Z \lambda^{2} \omega+X^{3} Z^{2} \lambda^{2}+X^{2} Y Z^{2} \lambda+X^{2} Z^{3} \lambda+X Y^{2} Z^{2} \lambda^{2}+X Y Z^{3}+ \\
& +X^{2} Y^{2} Z+X^{2} Z^{3} \lambda^{4}+Y^{3} Z^{2} \lambda^{4}+Y^{2} Z^{3} \lambda^{4}+Y^{2} Z^{3} \lambda+X^{2} Y Z^{2} \lambda^{4}+ \\
& +X^{3} Z^{2} \lambda+X Y^{2} Z^{2} \lambda+X^{4} Y+X Y^{2} Z^{2}+Y^{3} Z^{2} \lambda+Y^{2} Z^{3} \lambda^{3} \omega+ \\
& +X^{2} Z^{3} \lambda^{5} \omega+X^{2} Z^{3} \lambda^{3} \omega+Y^{2} Z^{3} \lambda^{5} \omega+Y^{2} Z^{3} \lambda^{2} \omega+Y^{2} Z^{3} \lambda \omega+Y^{2} Z^{3} \lambda^{6} \omega+ \\
& +X^{2} Y^{3} \omega+X^{3} Y Z \lambda^{2} \omega+X^{2} Z^{3} \lambda^{4} \omega+X^{2} Y Z^{2} \lambda \omega+Y^{3} Z^{2} \lambda \omega+X Y^{2} Z^{2} \omega+ \\
& +X^{2} Z^{3} \lambda^{6} \omega+X Y^{3} Z \omega+Y^{3} Z^{2} \lambda^{4} \omega+X Y^{3} Z \lambda \omega+Y^{2} Z^{3} \lambda^{4} \omega+X^{3} Y Z \lambda \omega+ \\
& +X^{2} Y^{2} Z \lambda \omega+X^{2} Y^{2} Z \omega+X^{2} Y^{2} Z \lambda^{2} \omega+X^{2} Y Z^{2} \lambda^{4} \omega, \\
& \\
& X Y^{3} Z \lambda^{2} \omega+X^{2} Y Z^{2} \lambda^{2} \omega+X^{3} Y^{2} \omega+X^{3} Z^{2}+X^{2} Y Z^{2} \lambda+X^{2} Z^{3} \lambda+ \\
F_{3}:= & X Y Z^{3}+X^{2} Y Z^{2}+X^{2} Y^{2} Z+X^{2} Z^{3} \lambda^{4}+Y^{3} Z^{2} \lambda^{2}+Y^{2} Z^{3} \lambda^{4}+Y^{2} Z^{3} \lambda+ \\
& +X Y^{2} Z^{2} \lambda^{4}+X^{3} Z^{2} \lambda^{4}+X^{3} Z^{2} \lambda+X Y^{2} Z^{2} \lambda+X^{2} Y Z^{2} \lambda^{2}+X Y^{2} Z^{2}+ \\
& +Y^{3} Z^{2} \lambda+Y^{2} Z^{3} \lambda^{3} \omega+X^{5}+X^{2} Z^{3} \lambda^{5} \omega+X^{2} Z^{3} \lambda^{3} \omega+Y^{2} Z^{3} \lambda^{5} \omega+ \\
& +X^{2} Z^{3} \lambda^{2} \omega+Y^{2} Z^{3} \lambda \omega+X^{3} Z^{2} \lambda^{4} \omega+Y^{2} Z^{3} \lambda^{6} \omega+X^{3} Y Z \omega+X^{3} Y Z \lambda^{2} \omega+ \\
& +X^{2} Y Z^{2} \lambda \omega+Y^{3} Z^{2} \lambda \omega+Y^{3} Z^{2} \lambda^{2} \omega+X Y^{2} Z^{2} \omega+X Y Z^{3} \omega+X^{2} Z^{6} \lambda^{6} \omega+ \\
& + \\
& X Y^{3} Z \lambda \omega+X Y^{2} Z^{2} \lambda^{4} \omega+X^{3} Y Z \lambda \omega+X^{3} Z^{2} \lambda^{2} \omega+X^{2} Y^{2} Z \lambda \omega+ \\
& X Y^{2} Z^{2} \lambda^{2} \omega+X^{2} Y^{2} Z \lambda^{2} \omega .
\end{aligned}
$$

Table 8.2. Generators of $H^{0}\left(\mathbb{P}^{2}, \mathcal{I}_{\Sigma}^{2}(5)\right)$
$\left\{q_{1}, q_{3}, q_{5}, q_{11}, q_{17}\right\}$, for example. Since $|L W|=13$ and $|Q W|=28$, we see that the type T^{\prime} of the target moduli curve is A. Let σ be the following permutation:

$$
\left(\begin{array}{cccccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & & & & & & \\
13 & 16 & 2 & 6 & 21 & 4 & 18 & 17 & 3 & 7 & 12 & & & & & & \\
& & & & & & & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
& & & & & & & 1 & 8 & 9 & 11 & 15 & 14 & 20 & 5 & 19 & 10
\end{array}\right) .
$$

Then the map

$$
\gamma^{\prime}: \mathcal{P} \rightarrow \mathbb{P}^{2}
$$

defined by $\gamma^{\prime}\left(P_{i}\right)=q_{\sigma(i)}$ yields bijections from the set of linear words in \mathbf{C}_{A} (see Table 4.1) to $L W$ and from the set of quadratic words in \mathbf{C}_{A} (see Tables 4.4 and 4.5) to $Q W$. Hence the map γ^{\prime} is an element of \mathcal{G}_{A}. We make the linear change of homogeneous coordinates of \mathbb{P}^{2} so that

$$
\begin{aligned}
& \gamma^{\prime}\left(P_{18}\right)=q_{20}=[1,0,0], \\
& \gamma^{\prime}\left(P_{12}\right)=q_{1}=[0,1,0], \quad \gamma^{\prime}\left(P_{13}\right)=q_{8}=[1,1,0], \\
& \gamma^{\prime}\left(P_{20}\right)=q_{19}=[0,0,1], \quad \gamma^{\prime}\left(P_{19}\right)=q_{5}=[1,0,1],
\end{aligned}
$$

$$
\begin{aligned}
q_{1} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{2}\right)\right)=[0,1, \omega], \\
q_{2} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{3}\right)\right)=\left[\omega, \lambda^{2}+\bar{\omega} \lambda+1, \lambda(\lambda+\bar{\omega})\right], \\
q_{3} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{5}\right)\right)=\left[\omega, \lambda^{2}+\bar{\omega} \lambda+\bar{\omega},(\lambda+1)(\lambda+\omega)\right], \\
q_{4} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{7}\right)\right)=\left[\omega, \lambda^{2}+\omega \lambda+\omega,(\lambda+\bar{\omega})^{2}\right], \\
q_{5} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{8}\right)\right)=\left[\omega,(\lambda+1)^{2}, \lambda^{2}+\omega \lambda+1\right], \\
q_{6} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{10}\right)\right)=\left[\omega,(\lambda+\omega)^{2},(\lambda+1)(\lambda+\bar{\omega})\right], \\
q_{7} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{11}\right)\right)=\left[\omega,(\lambda+\omega)(\lambda+\bar{\omega}), \lambda^{2}+\lambda+\omega\right], \\
q_{8} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{13}\right)\right)=[0,1,1], \\
q_{9} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{14}\right)\right)=\left[\omega, \lambda^{2}+\omega \lambda+1,(\lambda+\omega)^{2}\right], \\
q_{10} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{15}\right)\right)=\left[\omega, \lambda^{2}, \lambda^{2}+\omega \lambda+\omega\right], \\
q_{11} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{16}\right)\right)=\left[\omega,(\lambda+\bar{\omega})^{2}, \lambda(\lambda+\omega)\right], \\
q_{12} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{17}\right)\right)=\left[\omega, \lambda(\lambda+\omega), \lambda^{2}\right], \\
q_{13} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{18}\right)\right)=[0,0,1], \\
q_{14} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{19}\right)\right)=\left[\omega, \lambda^{2}+\lambda+\bar{\omega}, \lambda(\lambda+1)\right], \\
q_{15} & :=\mathrm{CT}_{\Sigma}\left(\gamma_{\lambda}\left(P_{21}\right)\right)=\left[\omega,(\lambda+1)(\lambda+\bar{\omega}),(\lambda+1)^{2}\right] . \\
q_{16} & :=\beta^{\prime}\left(N_{1}\right)=[0,1,0], \\
q_{17} & :=\beta^{\prime}\left(N_{2}\right)=\left[\omega,(\lambda+\bar{\omega}) \lambda, \lambda^{2}+\bar{\omega} \lambda+\bar{\omega}\right], \\
q_{18} & :=\beta^{\prime}\left(N_{3}\right)=\left[\omega,(\lambda+1)(\lambda+\omega), \lambda^{2}+\bar{\omega} \lambda+1\right], \\
q_{19} & :=\beta^{\prime}\left(N_{4}\right)=\left[\omega, \lambda^{2}+\lambda+\omega, \lambda^{2}+\lambda+\bar{\omega}\right], \\
q_{20} & :=\beta^{\prime}\left(N_{5}\right)=[0,1, \bar{\omega}], \\
q_{21} & :=\beta^{\prime}\left(N_{6}\right)=[\omega, \lambda(\lambda+1),(\lambda+\omega)(\lambda+\bar{\omega})] .
\end{aligned}
$$

Table 8.3. Points q_{i}

hold (see (4.6)); that is, we multiply the matrix

$$
\left[\begin{array}{ccc}
\lambda^{2}+\lambda & 1 & \bar{\omega} \\
\lambda^{2}+\lambda+1 & \bar{\omega} & 1 \\
\omega \lambda+1 & 0 & 0
\end{array}\right]
$$

from the left to the vectors $\gamma^{\prime}\left(P_{i}\right)=q_{\sigma(i)}$. Then we have

$$
\gamma^{\prime}\left(P_{1}\right)=q_{13}=[1, \omega, 0] .
$$

Therefore the projective equivalence class $\left[\gamma^{\prime}\right] \in P G L(3, k) \backslash \mathcal{G}_{A}$ of γ^{\prime} is contained in the connected component $\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+}$, because otherwise we would have $\gamma^{\prime}\left(P_{1}\right)=[1, \bar{\omega}, 0]$. Since

$$
\gamma^{\prime}\left(P_{10}\right)=q_{7}=[0,1, \lambda+\bar{\omega}],
$$

the point $\left[\gamma^{\prime}\right]$ corresponds to $1 /(\lambda+\bar{\omega})$ under the isomorphism $\left(P G L(3, k) \backslash \mathcal{G}_{A}\right)^{+} \cong$ $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$. Substituting $1 /(\lambda+\bar{\omega})$ for λ in

$$
J_{A}=\frac{\left(\lambda^{2}+\lambda+1\right)^{3}}{\lambda^{2}(\lambda+1)^{2}},
$$

$$
\begin{aligned}
L W= & \{\{1,3,5,11,17\},\{4,5,6,8,12\},\{1,2,6,10,18\},\{2,3,8,19,21\}, \\
& \{1,4,9,14,21\},\{8,9,10,11,15\},\{6,7,11,20,21\},\{1,7,12,15,19\}, \\
& \{3,9,12,18,20\},\{1,8,13,16,20\},\{7,8,14,17,18\},\{5,10,14,19,20\}, \\
& \{2,4,15,17,20\}\} . \\
Q W= & \{\{2,3,4,5,9,10,13,16\},\{2,3,4,7,10,11,12,14\},\{2,3,5,6,7,9,14,15\}, \\
& \{2,4,5,7,9,11,18,19\},\{3,4,5,7,10,15,18,21\},\{3,4,6,7,9,10,17,19\}, \\
& \{2,5,6,7,13,16,17,19\},\{2,3,6,11,12,13,15,16\},\{3,4,6,11,14,15,18,19\}, \\
& \{3,5,6,13,14,16,18,21\},\{2,5,7,9,10,12,17,21\},\{4,6,7,10,13,14,15,16\}, \\
& \{3,4,7,12,13,16,17,21\},\{5,7,9,11,12,13,14,16\},\{2,6,9,11,12,14,17,19\}, \\
& \{4,6,9,11,13,16,17,18\},\{2,7,9,13,15,16,18,21\},\{5,6,9,15,17,18,19,21\}, \\
& \{3,7,10,11,13,16,18,19\},\{6,9,10,12,13,16,19,21\},\{3,6,10,12,14,15,17,21\}, \\
& \{2,5,11,12,14,15,18,21\},\{4,10,11,12,17,18,19,21\},\{2,10,11,13,14,16,17,21\}, \\
& \{4,5,11,13,15,16,19,21\},\{2,4,12,13,14,16,18,19\},\{5,10,12,13,15,16,17,18\}, \\
& \{3,9,13,14,15,16,17,19\}\} .
\end{aligned}
$$

Table 8.4. Sets $L W$ and $Q W$

we see that the J_{A}-invariant of $\left[\gamma^{\prime}\right]$ is equal to

$$
J_{A}^{\prime}=\frac{\lambda^{3}(\lambda+1)^{3}}{\left(\lambda^{2}+\lambda+1\right)^{2}}
$$

Eliminating λ from J_{A} and J_{A}^{\prime}, we obtain the defining equation

$$
1+J_{A} J_{A}^{\prime}+J_{A}^{2} J_{A}^{\prime 2}+J_{A}^{3} J_{A}^{\prime 2}+J_{A}^{2} J_{A}^{\prime 3}=0
$$

of the isomorphism correspondence given by the Cremona transformation with the center $c=\left\{P_{1}, P_{4}, P_{6}, P_{9}, P_{12}, P_{20}\right\}$.

Putting

$$
\begin{aligned}
& D_{A, A, 1}:=\{D 3=0\}, \quad D_{A, A, 2}:=\{D 1=0\}, \\
& D_{B, B, 1}:=\{D 5=0\}, \quad D_{C, C, 1}:=\{D 8=0\}, \\
& D_{A, B, 1}:=\{D 2=0\}={ }^{t} D_{B, A, 1}={ }^{t}\{D 6=0\}, \\
& D_{A, C, 1}:=\{D 4=0\}={ }^{t} D_{C, A, 1}={ }^{t}\{D 7=0\},
\end{aligned}
$$

we obtain Theorem 1.13. The composite $D_{1} * D_{2}$ of correspondences

$$
\begin{aligned}
& D_{1}=\left\{f_{1}\left(J_{T}, J_{T^{\prime}}\right)=0\right\} \subset \mathfrak{M}_{T} \times \mathfrak{M}_{T^{\prime}} \quad \text { and } \\
& D_{2}=\left\{f_{2}\left(J_{T^{\prime}}, J_{T^{\prime \prime}}\right)=0\right\} \subset \mathfrak{M}_{T^{\prime}} \times \mathfrak{M}_{T^{\prime \prime}}
\end{aligned}
$$

is obtained by eliminating the variable $J_{T^{\prime}}$ from $f_{1}\left(J_{T}, J_{T^{\prime}}\right)=f_{2}\left(J_{T^{\prime}}, J_{T^{\prime \prime}}\right)=0$. Starting from the eight isomorphism correspondences above and making composites, we obtain irreducible isomorphism correspondences listed in Table 1.1, which have the relations in Table 8.5. This table also shows that the isomorphism correspondences $\Delta_{A}, \Delta_{B}, \Delta_{C}$ and the ones in Table 1.1 are closed under compositions of correspondences.

$D_{B, A, 2} * D_{A, C, 2}=D_{B, C, 1}+D_{B, C, 2}$,
$D_{B, C, 1} * D_{C, C, 1}=D_{B, C, 2}$,
$=D_{B, C, 1}+D_{B, C, 2}$,
$D_{B, C, 1} * D_{C B, 2}=D_{B, B}$
$D_{B, C, 2} * D_{C, B, 1}=D_{B, B, 1}$,
$D_{B, C, 2} * D_{C, B, 2}=\Delta_{B}+D_{B, B, 1}$,
$D_{B, C, 1} * D_{C, A, 1}=D_{B, A, 1}$,
$D_{B, C, 1} * D_{C, A, 2}=D_{B, A, 2}$,
$D_{B, C, 2} * D_{C, A, 1}=D_{B, A, 1}+D_{B, A, 2}$,
$D_{B, C, 2} * D_{C, A, 2}=D_{B, A, 1}+D_{B, A, 2}$,
$D_{C, B, 1} * D_{B, B, 1}=D_{C, B, 2}$,
$D_{C, B, 2} * D_{B, B, 1}=D_{C, B, 1}+D_{C, B, 2}$,
${ }_{C, B, 1} * D_{B, A, 1}=D_{C, A, 1}$
$D_{C, B, 1} * D_{B, A, 2}=D_{C, A, 2}$,
$D_{C, B, 2} * D_{B, A, 1}=D_{C, A, 1}+D_{C, A, 2}$,
$D_{C, B, 2} * D_{B, A, 2}=D_{C, A, 1}+D_{C, A, 2}$,
$D_{C, B, 1} * D_{B, C, 1}=\Delta_{C}$,
$C_{C, B, 1} * D_{B, C, 2}=D_{C, C, 1}$
$D_{C, B, 2} * D_{B, C, 1}=D_{C, C, 1}$
$D_{C, B, 2} * D_{B, C, 2}=\Delta_{C}+D_{C, C, 1}$,
$D_{C, A, 1} * D_{A, A, 1}=D_{C, A, 2}$,
$D_{C, A, 1} * D_{A, A, 2}=D_{C, A, 1}+D_{C, A, 2}$,
$D_{C, A, 2} * D_{A, A, 1}=D_{C, A, 1}+D_{C, A, 2}$,
$D_{C, A, 2} * D_{A, A, 2}=D_{C, A, 1}+D_{C, A, 2}$,
$D_{C, A, 1} * D_{A, B, 1}=D_{C, B, 1}+D_{C, B, 2}$,
$D_{C, A, 1} * D_{A, B, 2}=D_{C, B, 2}$,
$D_{C, A, 2} * D_{A, B, 1}=D_{C, B, 2}$,
$D_{C, A, 2} * D_{A, B, 2}=D_{C, B, 1}+D_{C, B, 2}$,
$D_{C, A, 1} * D_{A, C, 1}=\Delta_{C}+D_{C, C, 1}$,
$D_{C, A, 1} * D_{A, C, 2}=D_{C, C, 1}$
$D_{C, A, 2} * D_{A, C, 1}=D_{C, C, 1}$
$D_{C, A, 2} * D_{A, C, 2}=\Delta_{C}+D_{C, C, 1}$,
$D_{A, C, 1} * D_{C, C, 1}=D_{A, C, 1}+D_{A, C, 2}$,
$D_{A, C, 2} * D_{C, C, 1}=D_{A, C, 1}+D_{A, C, 2}$,
$D_{A, C, 1} * D_{C, B, 1}=D_{A, B, 1}$,
$D_{A, C, 1} * D_{C, B, 2}=D_{A, B, 1}+D_{A, B, 2}$,
$D_{A, C, 2} * D_{C, B, 1}=D_{A, B, 2}$,
$D_{A, C, 2} * D_{C, B, 2}=D_{A, B, 1}+D_{A, B, 2}$,
$D_{A, C, 1} * D_{C, A, 1}=\Delta_{A}+D_{A, A, 2}$,
$D_{A, C, 1} * D_{C, A, 2}=D_{A, A, 1}+D_{A, A, 2}$,
$D_{A, C, 2} * D_{C, A, 1}=D_{A, A, 1}+D_{A, A, 2}$,
$D_{A, C, 2} * D_{C, A, 2}=\Delta_{A}+D_{A, A, 1}+D_{A, A, 2}$.

TABLE 8.5. Relations between non-trivial isomorphism correspondences

References

1. M. Artin, Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4) 7 (1974), 543-567 (1975).
2. P. Blass and J. Lang, Zariski surfaces and differential equations in characteristic $p>0$, Marcel Dekker Inc., New York, 1987.
3. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed., Grundlehren der Mathematischen Wissenschaften, vol. 290, Springer-Verlag, New York, 1999.
4. I. Dolgachev, Abstract configurations in algebraic geometry, The Fano Conference, 423-462, Univ. Torino, Turin, 2004.
5. I. Dolgachev and S. Kondo, A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. 2003, no. 1, 1-23.
6. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley \& Sons], New York, 1978.
7. A. N. Rudakov and I. R. Safarevič, Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 4, 848-869: Igor R. Shafarevich, Collected mathematical papers, Springer-Verlag, Berlin, 1989, pp. 614-632.
8. \qquad , Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981, pp. 115-207: Igor R. Shafarevich, Collected mathematical papers, Springer-Verlag, Berlin, 1989, pp. 657-714.
9. I. Shimada, Lattices of algebraic cycles on Fermat varieties in positive characteristics, Proc. London Math. Soc. (3) 82 (2001), no. 1, 131-172.
10. \qquad , Rational double points on supersingular K3 surfaces, Math. Comp. 73 (2004), no. 248, 1989-2017 (electronic).
11. \qquad , Supersingular K3 surfaces in characteristic 2 as double covers of a projective plane, Asian J. Math. 8 (2004), no. 3, 531-586.

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 0600810, JAPAN

E-mail address: shimada@math.sci.hokudai.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 14J28; Secondary 14J10, 14Q10.

