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Abstract. Let X be a supersingular K3 surface in characteristic 5 with Artin

invariant 1. Then X has a polarization that realizes X as the Fermat sextic

double plane. We present a list of polarizations of X with degree 2 whose

intersection number with this Fermat sextic polarization is less than or equal

to 5, and give the defining equations of the corresponding projective models.

We also present a method to describe birational morphisms between these

projective models explicitly. As a by-product, a non-projective automorphism

of the Fermat sextic double plane is obtained.

1. Introduction

Let Y be a supersingular K3 surface (in the sense of Shioda) in characteristic
p > 0. Artin [3] showed that the discriminant of the Néron-Severi lattice NS(Y ) is
written as −p2σ, where σ is a positive integer ≤ 10. This integer σ in called the Artin
invariant of Y . It is proved in [14, 15, 17] that, for each prime p, a supersingular
K3 surface with Artin invariant 1 in characteristic p exists and is unique up to
isomorphisms. Recently, many detailed study of supersingular K3 surfaces with
Artin invariant 1 in small characteristics have appeared (see [6, 7, 9, 11, 12, 21]).

The purpose of this paper is to investigate projective models of degree 2 of the
supersingular K3 surface X with Artin invariant 1 in characteristic 5. It is well-
known that the Fermat sextic double plane in characteristic 5 is isomorphic to X.
Starting from this projective model, we obtain many other projective models of
degree 2, and describe birational morphisms between them.

Our method is computational, and can be easily adapted to any K3 surface. In
particular, combining the algorithms developed in this paper with the Borcherds-
Kondo method [4, 10], we have succeeded in obtaining a set of generators of the
automorphism group of the supersingular K3 surface in characteristic 3 with Artin
invariant 1 in [12].

We fix terminologies and explain our motivation. Let Y be a K3 surface defined
over an algebraically closed field of arbitrary characteristic. Let ( , )NS denote the
intersection form of the Néron-Severi lattice NS(Y ) of Y . For v ∈ NS(Y ), we denote
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by Lv → Y the corresponding line bundle. Let d be an even positive integer. We
say that a vector h ∈ NS(Y ) is a polarization of degree d if (h, h)NS is equal to d

and the complete linear system |Lh| is non-empty and has no fixed-components.
Let h be a polarization of degree d. Then |Lh| is base-point free by Corollary 3.2
of [18], and hence defines a morphism Φh from Y to a projective space of dimension
1 + d/2. We denote by

Y
φh−→ Yh

ψh−→ P1+d/2

the Stein factorization of Φh. By [1, 2], the normal surface Yh has only rational
double points as its singularities, and φh is a contraction of an ADE-configuration
of smooth rational curves. We say that ψh : Yh → P1+d/2 is the projective model of
Y corresponding to h. We put

Pd(Y ) := {h ∈ NS(Y ) | h is a polarization of degree d }.

The automorphism group Aut(Y ) of Y acts on Pd(Y ). For h, h′ ∈ Pd(Y ), we
say that h and h′ are projectively equivalent and write h ∼ h′ if there exist an
isomorphism Yh →∼ Yh′ and a linear automorphism P1+d/2 →∼ P1+d/2 that make the
following diagram commutative:

(1.1)

Yh
ψh−→ P1+d/2

↓≀ ↓≀

Yh′
ψh′−→ P1+d/2.

It is obvious that the equivalence classes of ∼ in Pd(Y ) are just the Aut(Y )-orbits.
For h ∈ Pd(Y ), the stabilizer subgroup Aut(Y, h) of h in Aut(Y ) is the projective
automorphism group of the projective model ψh. It is usually easy to determine
Aut(Y, h). Hence it is important to study the equivalence classes of ∼ for the study
of Aut(Y ). Moreover, to obtain an element of Aut(Y ) not contained in Aut(Y, h),
we need to write the isomorphism Yh →∼ Yh′ in (1.1) explicitly.

We concentrate upon the supersingular K3 surface X with Artin invariant 1 in
characteristic 5. It is known that X has a projective model ψF : XF → P2 of degree
2, where XF is defined by

(1.2) XF := {w2 = x6 + y6 + z6} ⊂ P(3, 1, 1, 1)

in the weighted projective space P(3, 1, 1, 1), and the double covering ψF is given
by [w : x : y : z] 7→ [x : y : z], which is branching along the Fermat sextic curve

BF : x6 + y6 + z6 = 0.

We denote by hF ∈ NS(X) a polarization of the projective model ψF : XF → P2,
and by

ΦF : X
φF−→ XF

ψF−→ P2
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the Stein factorization of the morphism given by |LhF
|. Note that φF : X → XF is

an isomorphism. The group Aut(X,hF ) is an extension of the projective automor-
phism group PGU3(F25) of BF ⊂ P2 by Gal(XF /P2) ∼= Z/2Z. In particular, the
order of Aut(X,hF ) is 756, 000. Using this projective model ψF , we obtain a set
of generators of NS(X) (see Section 2). It turns out that NS(X) is generated by
the numerical equivalence classes of curves on XF defined over F25. In particular,
every projective model of X is projectively equivalent to a projective model defined
over F25 (see [19]). Moreover, the Frobenius action of Gal(F25/F5) on XF induces
an action of Gal(F25/F5) on NS(X), which we denote by v 7→ v̄. It is easy to see
that Gal(F25/F5) acts on the set of Aut(X)-orbits in Pd(X).

We will study the polarizations of degree 2 on X. Consider neighborhoods

Br := { v ∈ NS(X) | (v, hF )NS ≤ r }

of hF in NS(X). Since hF = hF , Aut(X,hF ) and Gal(F25/F5) act on P2(X) ∩ Br.
By computer-aided calculation, we have obtained the following:

Theorem 1.1. The set P2(X) ∩ B5 consists of 146, 945, 851 vectors, and they are
decomposed into the equivalence classes E0, . . . , E64 under the relation ∼. The details
of these equivalence classes are described in Section 7.

We explain the items of the table in Section 7. For h ∈ P2(X), let Bh denote
the branch curve of the double covering ψh : Xh → P2.

• Ei = Ej means that Ei is equal to the image of Ej under the action of
Gal(F25/F5) defined above. In particular, Ei = E i means that Ei is self-
conjugate, while Ei = E i+1 means that Ei is not self-conjugate, that the
items RT, |aut| and N explained below are the same for Ei and Ei+1, and
that the defining equation of Bh for Ei+1 is obtained from that for Ei by
changing the sign of

√
2.

• RT denotes the ADE-type of the singular points of Bh.
• |aut| denotes the order of the projective automorphism group of the plane

curve Bh ⊂ P2. Hence the order of Aut(X,h) is equal to 2 |aut|.
• N is the total number of the vectors in Ei ⊂ P2(X) ∩ B5.
• h is a sample element of Ei written in a row vector with respect to the basis

of NS(X) given in Section 2.
• An affine defining equation of Bh with coefficients in F25 is given in the

framed box.

Each of the 65 projective models in Theorem 1.1 exhibits interesting properties that
are peculiar to characteristic 5. One of these properties is the existence of splitting
lines. A (−2)-curve on X is a smooth rational curve on X. Let h be a polarization
of degree 2 on X. We say that a (−2)-curve C on X is h-exceptional if C is mapped
to a point by Φh : X → P2, while C is said to be an h-line if Φh maps C to a line
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on P2 isomorphically. A line l on P2 is said to be h-splitting if l is the image of an
h-line by Φh. In other words, a line l ⊂ P2 is h-splitting if and only if either l is an
irreducible component of Bh, or l ̸⊂ Bh and the intersection multiplicity at each
point of l ∩ Bh is even. We observe the following:

Proposition 1.2. For each h ∈ P2(X)∩B5, the lattice NS(X) is generated by the
classes of h-exceptional curves and h-lines.

In fact, we establish a method to write the birational morphism φh : X → Xh

explicitly as a list of rational functions on X ∼= XF for any h ∈ P2(X). Applying
this method to a polarization h ∈ E0 with (hF , h)NS = 4, we obtain the following:

Theorem 1.3. Let (w, x, y) be the affine coordinates of P(3, 1, 1, 1) with z = 1
in (1.2). Then the rational map g : XF → P(3, 1, 1, 1) given by

(w, x, y) 7→ [ω(w, x, y) : ξ0(w, x, y) : ξ1(w, x, y) : ξ2(w, x, y)],

where ω, ξ0, ξ1, ξ2 are the polynomials presented in Table 1.1, induces an automor-
phism of XF with order 2 such that (hF , g∗hF )NS = 4. In particular, this automor-
phism g is not contained in Aut(X,hF ).

The study of singularities of sextic double plane models of complex K3 surfaces
using lattice theory and computer-aided calculation was initiated by Urabe [26]
and Yang [27]. The idea of h-splitting lines was used in [24] for the classification
of Zariski pairs of simple sextic curves. On the other hand, in [16, 22, 23], sextic
double plane models of supersingular K3 surfaces were studied by lattice theory.
A shortcoming of the method in these works is that it gives only combinatorial
data of the singularities of the projective models, and does not yield their defining
equations explicitly.

The new devices in this article are the following: (i) Using the ample class
hF ∈ NS(X), we can determine whether a given vector v ∈ NS(X) is a polarization
or not. (ii) The fact that the classes of hF -lines span NS(X) enables us to calculate
the equation of Xh explicitly and algorithmically. (iii) To deal with the large
number of polarizations, we decompose them into Aut(X,hF )-orbits and calculate
the projective model only for a representative polarization of each orbit.

This paper is organized as follows. In Section 2, we give a set of hF -lines whose
classes form a basis of NS(X). In Section 3, we present algorithms that can be
applied to lattices in general. In Section 4, we apply them to NS(X) and describe
algorithms to calculate geometric data of X. In Section 5, we explain how to
calculate the morphisms φh : X → Xh and ψh : Xh → P2 for a given polariza-
tion h ∈ P2(X). In Sections 6 and 8, the computation we carried out to prove
Theorems 1.1 and 1.3 are explained. Section 7 is for the list of projective models.
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In this table, a + b
√

2 ∈ F25 with 0 ≤ a, b < 5 is denoted by āb.

ω := wfω + hω, where

fω := 1̄0x12 +2̄3x11y +2̄1x10y2 +0̄2x9y3 +1̄1x8y4 +3̄3x7y5 +2̄2x6y6 +4̄0x5y7 +1̄4x4y8 +

1̄3x2y10 +1̄2xy11 +2̄4y12 +2̄2x11 +1̄1x10y+4̄4x9y2 +4̄2x8y3 +4̄4x7y4 +3̄1x6y5 +4̄0x5y6 +

2̄4x4y7 +4̄1x3y8 +2̄4x2y9 +2̄4xy10 +3̄3y11 +0̄3x10 +1̄0x9y +4̄3x8y2 +4̄3x7y3 +3̄4x6y4 +

2̄0x5y5 + 2̄1x3y7 + 3̄0x2y8 + 1̄0xy9 + 2̄4y10 + 3̄4x9 + 2̄3x8y + 0̄2x7y2 + 1̄0x6y3 + 1̄4x5y4 +

3̄1x4y5+2̄3x3y6+0̄3x2y7+2̄3xy8+2̄2y9+2̄0x8+2̄3x7y+3̄2x6y2+4̄4x5y3+4̄2x3y5+1̄2x2y6+

2̄2xy7 +4̄2y8 +3̄3x7 +1̄2x6y +2̄0x5y2 +0̄1x4y3 +4̄4x3y4 +1̄3x2y5 +3̄1xy6 +0̄2y7 +3̄0x6 +

3̄1x5y+3̄3x4y2+2̄3x3y3+3̄1x2y4+4̄1xy5+3̄1y6+4̄0x5+3̄2x4y+2̄4x3y2+1̄2x2y3+4̄4xy4+

1̄3y5+1̄4x3y+3̄4x2y2+3̄0y4+3̄1x3+3̄0x2y+4̄1xy2+4̄3y3+4̄2x2+4̄0xy+2̄3y2+0̄3x+0̄2y,

and
hω := 1̄0x15+2̄3x14y+2̄1x13y2+0̄2x12y3+1̄1x11y4+3̄3x10y5+0̄2x9y6+0̄4x8y7+2̄2x7y8+

1̄1x6y9+2̄4x5y10+2̄0x4y11+1̄2x3y12+4̄3x2y13+1̄3xy14+3̄4y15+2̄2x14+1̄1x13y+4̄4x12y2+

4̄2x11y3 + 4̄4x10y4 + 3̄1x9y5 + 0̄1x8y6 + 0̄2x7y7 + 2̄2x6y8 + 2̄0x5y9 + 0̄3x4y10 + 0̄3x3y11 +

1̄0x2y12+2̄1xy13+4̄1y14+0̄3x13+1̄0x12y+4̄3x11y2+4̄3x10y3+3̄4x9y4+2̄0x8y5+0̄4x7y6+

4̄0x6y7+2̄2x5y8+2̄0x4y9+2̄4x3y10+0̄2x2y11+4̄1xy12+3̄1y13+3̄4x12+2̄3x11y+0̄2x10y2+

1̄0x9y3 +1̄4x8y4 +3̄1x7y5 +1̄0x6y6 +0̄1x5y7 +4̄4x4y8 +2̄0x2y10 +4̄3xy11 +4̄1y12 +2̄0x11 +

2̄3x10y+3̄2x9y2 +4̄4x8y3 +0̄1x6y5 +4̄2x5y6 +2̄2x4y7 +3̄3x3y8 +4̄3x2y9 +0̄2xy10 +2̄1y11 +

3̄3x10 +1̄2x9y +2̄0x8y2 +0̄1x7y3 +2̄2x6y4 +4̄0x5y5 +4̄1x4y6 +2̄3x3y7 +3̄0x2y8 +2̄0xy9 +

0̄4y10 + 1̄0x9 + 4̄0x8y + 4̄1x7y2 + 2̄4x6y3 + 4̄2x5y4 + 3̄3x4y5 + 4̄2x3y6 + 0̄2x2y7 + 2̄2xy8 +

1̄3y9 +0̄1x8 +1̄0x7y+1̄4x6y2 +2̄3x5y3 +4̄3x4y4 +4̄3x3y5 +0̄1x2y6 +2̄0xy7 +4̄4y8 +0̄4x7 +

1̄1x6y + 0̄3x5y2 + 1̄2x4y3 + 4̄4x3y4 + 3̄0x2y5 + 2̄2xy6 + 2̄0y7 + 0̄3x6 + 2̄2x4y2 + 4̄1x3y3 +

2̄2x2y4 +1̄4xy5 +1̄2y6 +3̄2x5 +1̄1x4y +3̄0x3y2 +0̄2x2y3 +2̄2xy4 +2̄1y5 +0̄4x4 +2̄2x3y +

1̄0x2y2 + 0̄4xy3 + 1̄3y4 + 1̄3x3 + 3̄2x2y + 3̄1xy2 + 3̄2y3 + 0̄3x2 + 4̄2xy + 4̄4y2 + 4̄3x + 4̄3y.

ξ0 := wf0 + h0, where

f0 := 4̄0x2 + 1̄4xy + 4̄1y2 + 1̄1x + 1̄3y + 3̄1, and
h0 := 4̄0x5 +1̄4x4y+4̄1x3y2 +1̄2xy4 +3̄0y5 +1̄1x4 +1̄3x3y+3̄4xy3 +0̄3y4 +3̄1x3 +
0̄4xy2 + 2̄2y3 + 1̄2y2 + 3̄4x + 3̄4y + 4̄3.

ξ1 := wf1 + h1, where

f1 := 1̄0xy + 4̄4y2 + 2̄0y + 2̄1, and
h1 := 1̄0x4y + 4̄4x3y2 + 1̄2x2y3 + 1̄2xy4 + 1̄2y5 + 2̄0x3y + 4̄2x2y2 + 3̄2y4 + 2̄1x3 +
0̄3x2y + 0̄2xy2 + 3̄3y3 + 2̄4x2 + 4̄3xy + 4̄4y2 + 2̄1x + 4̄3y + 0̄1.

ξ2 := wf2 + h2, where

f2 := 4̄2y2 + 1̄0x + 4̄0y + 0̄1, and
h2 := 4̄2x3y2 + 0̄4x2y3 + 1̄4xy4 + 1̄4y5 + 1̄0x4 + 4̄0x3y + 4̄3x2y2 + 0̄4y4 + 0̄1x3 +
3̄4x2y + 1̄0xy2 + 0̄4y3 + 0̄3x2 + 4̄1xy + 3̄2y2 + 3̄3x + 0̄2y + 0̄2.

Table 1.1. Non-projective automorphism g of XF

Notation. (1) A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form ( , )L : L × L → Z.

(2) The numerical equivalence class of a divisor D on X is denoted by [D] ∈
NS(X). The intersection number of divisors D and D′ is written as (D,D′)NS.
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ℓ1 := ℓ+([0 : 1 : 1 +
√

2]) ℓ2 := ℓ−([0 : 1 : 1 +
√

2])
ℓ3 := ℓ+([0 : 1 : 1 + 4

√
2]) ℓ4 := ℓ+([0 : 1 : 2])

ℓ5 := ℓ+([0 : 1 : 3]) ℓ6 := ℓ+([0 : 1 : 4 +
√

2])
ℓ7 := ℓ+([1 : 0 : 1 +

√
2]) ℓ8 := ℓ+([1 : 0 : 1 + 4

√
2])

ℓ9 := ℓ+([1 : 0 : 2]) ℓ10 := ℓ+([1 : 0 : 4 +
√

2])
ℓ11 := ℓ+([1 :

√
2 : 1]) ℓ12 := ℓ−([1 :

√
2 : 2 + 2

√
2])

ℓ13 := ℓ−([1 :
√

2 : 2 + 3
√

2]) ℓ14 := ℓ+([1 :
√

2 : 3 + 2
√

2])
ℓ15 := ℓ−([1 :

√
2 : 3 + 3

√
2]) ℓ16 := ℓ+([1 : 2

√
2 : 2

√
2])

ℓ17 := ℓ+([1 : 2
√

2 : 3
√

2]) ℓ18 := ℓ−([1 : 2
√

2 : 2 +
√

2])
ℓ19 := ℓ+([1 : 2

√
2 : 2 + 4

√
2]) ℓ20 := ℓ+([1 : 2

√
2 : 3 +

√
2])

ℓ21 := ℓ+([1 : 1 +
√

2 : 0]) ℓ22 := ℓ+([1 : 1 + 3
√

2 : 1])
Table 2.1. Basis of NS(X)

2. The Néron-Severi lattice of X

Recall that BF ⊂ P2 is the Fermat curve of degree 6 in characteristic 5, which
is the branch curve of the projective model ψF : XF → P2 corresponding to the
polarization hF ∈ NS(X) of degree 2. We denote by BF (F25) the set of F25-rational
points of BF . It is known that |BF (F25)| = 126.

Let l be a line on P2 tangent to BF . Since BF is the Hermitian curve over F25,
either one of the following holds (see [20] or Chapter 23 of [8]):

(1) l is tangent to BF at a point [a : b : c] /∈ BF (F25) with intersection multi-
plicity 5, and intersects BF at the point [a25 : b25 : c25] transversely.

(2) l is tangent to BF at P ∈ BF (F25) with intersection multiplicity 6.

In the case (2), the inverse image of l by the double covering ΦF : X → P2

decomposes into two hF -lines ℓ+(P ) and ℓ−(P ) such that

(ℓ+(P ), ℓ−(P ))NS = 3.

All hF -lines on X are obtained as ℓ±(P ) with P ∈ BF (F25). In particular, the
number of hF -lines on X is 252. We put

P0 := [0 : 1 : 1+
√

2] ∈ BF (F25) and ℓ+(P0) := {x3 −w = 0, y +(1−
√

2)z = 0}.

For P ∈ BF (F25) \ {P0}, we choose the sign of ℓ±(P ) in such a way that

(ℓ+(P ), ℓ+(P0))NS = 1 (and hence (ℓ−(P ), ℓ+(P0))NS = 0).

From among these hF -lines, we choose the 22 curves ℓ1, . . . , ℓ22 in Table 2.1. Then
their intersection matrix MNS is calculated as in Table 2.2. Since det MNS = −25,
the classes of ℓ1, . . . , ℓ22 form a Z-basis of NS(X). We fix this basis throughout the
paper. Each element of NS(X) is written as a row vector with respect to this basis.
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−2 3 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1

3 −2 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0

1 0 −2 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 0

1 0 1 −2 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 −2 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0

1 0 1 1 1 −2 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1

1 0 1 0 1 0 −2 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1

1 0 1 0 1 0 1 −2 0 0 1 1 0 0 1 1 0 1 0 0 0 1

1 0 1 0 1 0 0 0 −2 1 0 1 1 1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 0 0 1 −2 1 1 0 0 1 0 1 0 0 0 0 1
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Table 2.2. Matrix MNS

In particular, the orthogonal group O(NS(X)) of the lattice NS(X) acts on NS(X)
from the right. Since hF = [ℓ+(P )] + [ℓ−(P )] for any P ∈ BF (F25), we have

(2.1) hF = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

We calculate the vector representations of the classes of all hF -lines.

Example 2.1. The class of the hF -line ℓ−([1 : 4 + 4
√

2 : 0]) is

[−4,−6, 3, 1, 1, 2, 1,−1, 2, 1, 1, 4, 1, 0,−3, 0, 2,−1, 3,−1,−2,−3].

From the action of PGU3(F25) on the set BF (F25), we can calculate the action
of Aut(X,hF ) on the set of hF -lines. Using this permutation representation, we
can write explicitly the linear representation

(2.2) Aut(X,hF ) → {T ∈ GL22(Z) | TMNS
tT = MNS } ∼= O(NS(X)).

This representation is faithful (see Proposition 3 in Section 8 of [17]).
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4

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 −1 0 −1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

4 5 −2 −1 −1 −1 −1 −1 0 0 0 −1 −1 1 1 −1 0 0 −1 1 0 0

−1 −1 1 1 1 0 0 1 0 0 0 0 1 −1 0 1 −1 0 0 −1 0 0

0 −1 1 0 0 1 1 0 0 0 0 1 0 0 −1 0 0 −1 1 −1 0 0

2 2 −1 1 0 0 0 0 −1 −1 0 −1 0 0 1 1 −1 −1 0 0 0 0

2 2 0 −1 −1 −1 0 0 0 1 0 0 −1 1 0 −1 1 0 −1 0 0 0

2 3 −1 0 0 0 −1 0 0 −1 −1 −1 0 0 1 1 −1 0 0 0 0 0

1 1 0 −1 0 0 0 −1 1 1 −1 0 −1 1 0 −1 1 0 0 0 0 0

3 4 −1 0 −1 −1 −1 0 −1 0 0 −1 −1 0 1 0 0 0 −1 1 0 0

3 3 −1 0 −1 0 0 −1 −1 0 0 −1 −1 1 0 −1 1 0 −1 1 0 0

−1 −2 1 1 1 1 1 1 0 −1 0 0 1 −1 −1 1 −1 0 1 −1 0 0

−2 −3 2 1 0 2 1 −1 2 1 1 4 1 0 −3 0 1 −2 3 −2 −2 −3

3 4 −2 0 0 −1 −1 0 −1 −1 −1 −3 0 0 2 0 −1 1 −2 1 1 2
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7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 2.3. Matrix ΓNS

Remark 2.2. The representation (2.2) is encoded as follows. We number the hF -
lines as ℓ1, . . . , ℓ22, ℓ23, . . . , ℓ252 once and for all. Then each γ ∈ Aut(X,hF ) is
labelled by a list of 22 integers [nγ(1), . . . , nγ(22)] in such a way that the image ℓγ

i

of ℓi by γ is equal to ℓnγ(i) for i = 1, . . . , 22. Then the action of γ on NS(X) is
given by v 7→ vTγ , where Tγ is the 22 × 22 matrix whose ith row vector is [ℓnγ(i)].

The Galois group Gal(F25/F5) also acts on the set of hF -lines by the Frobenius
action on XF . The matrix ΓNS in Table 2.3 represents this Frobenius conjugate
action v 7→ v̄ = vΓNS on NS(X).

3. Algorithms for lattices

3.1. An algorithm for a positive quadratic triple. By a quadratic triple of
n-variables, we mean a triple [Q,L, c], where Q is an n × n symmetric matrix
with entries in Q, L is a column vector of length n with entries in Q, and c is a
rational number. An element of Rn is written as a row vector x = [x1, . . . , xn].
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The inhomogeneous quadratic function qQT : Qn → Q associated with a quadratic
triple QT = [Q,L, c] is defined by

qQT (x) := x Q tx + 2 xL + c.

We say that QT = [Q,L, c] and qQT are positive or negative according to whether
the symmetric matrix Q is positive-definite or negative-definite.

Let QT = [Q,L, c] be a positive quadratic triple of n-variables. In this section,
we describe an algorithm to calculate the finite set

E(QT ) := {x ∈ Zn | qQT (x) ≤ 0 }.

Suppose that QT = [Q,L, c] is written as follows:

Q =

 Q′ p′

tp′ r′

 =


r′′ tp′′

p′′ Q′′

 , L =

 L′

m′

 =


m′′

L′′

 ,

where Q′ and Q′′ are square matrices of size n − 1, p′, p′′, L′ and L′′ are column
vectors of length n−1, and r′, r′′, m′ and m′′ are rational numbers. Note that, since
Q is positive-definite, we have r′ > 0 and r′′ > 0. We define a positive quadratic
triple pr(QT ) of (n − 1)-variables by

pr(QT ) :=
[

Q′ − 1
r′

(p′ tp′), L′ − m′

r′
p′, c − m′2

r′

]
.

Then, for each t ∈ R, the compact subset {x ∈ Rn | qQT (x) ≤ t} of Rn is mapped
by the projection [x1, . . . , xn] 7→ [x1, . . . , xn−1] to the compact subset

{y ∈ Rn−1 | qpr(QT )(y) ≤ t }

of Rn−1. For a ∈ Q, we define a positive quadratic triple ι∗(a,QT ) of (n − 1)-
variables by

ι∗(a,QT ) := [ Q′′, ap′′ + L′′, a2 r′′ + 2 am′′ + c ],

and, for a = [a1, . . . , am] ∈ Qm with m < n, we define a positive quadratic triple
ι∗(a, QT ) of (n − m)-variables by

QT 0 := QT, QT ν+1 := ι∗(aν+1, QT ν) (ν = 0, . . . ,m − 1), ι∗(a, QT ) := QTm.

Then the positive inhomogeneous quadratic function qι∗(a,QT ) : Qn−m → Q is equal
to the composite qQT ◦ ιa, where ιa is the inclusion Qn−m ↪→ Qn given by

[y1, . . . , yn−m] 7→ [a1, . . . , am, y1, . . . , yn−m].
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Suppose that a = [a1, . . . , an−1] ∈ E(pr(QT )) is given. Then the positive qua-
dratic triple ι∗(a, QT ) is of one variable, and the fiber of the projection E(QT ) →
E(pr(QT )) over a is equal to

{ [a1, . . . , an−1, b] | b ∈ E(ι∗(a, QT )) }.

Since E(ι∗(a, QT )) is easily calculated, we can obtain E(QT ) if we know E(pr(QT )).
Using this idea iteratively, we carry out the following computation.

Starting from the given positive quadratic triple QT 0
n := QT of n-variables, we

compute positive quadratic triples QT 0
µ of µ-variables by

QT 0
µ := pr(QT 0

µ+1) (µ = n − 1, . . . , 1).

We prepare an empty set E := { }. We then write a program Q(ν,a) that takes
an integer ν ≤ n + 1 and a vector a = [a1, . . . , aν−1] ∈ Zν−1 as input, and carries
out the task below. Note that, when Q(ν,a) starts with ν > 1, a is an element of
E(QT 0

ν−1), and for µ > ν − 1, QT ν−1
µ is the positive quadratic triple ι∗(a, QT 0

µ) of
(µ − ν + 1)-variables. In particular, QT ν−1

ν is of one variable.

The task of Q(ν, a):

(1) If ν = n + 1, then Q(ν, a) appends a to the set E.
(2) If ν ≤ n, then the program Q(ν, a)

(2-i) calculates the set E(QT ν−1
ν ) = {b1, . . . , bN}, and

(2-ii) for each bi ∈ E(QT ν−1
ν ),

(2-ii-a) computes QT ν
µ := ι∗(bi, QT ν−1

µ ) for µ = ν + 1, . . . , n, and
(2-ii-b) proceeds to execute Q(ν + 1, [a1, . . . , aν−1, bi]).

We execute Q(1, [ ]). Since each E(QT ν−1
ν ) is finite, this program certainly termi-

nates. When the whole computation halts, the set E is equal to E(QT ).

3.2. An application to hyperbolic lattices I. Changing the sign, we can apply
the algorithm above to negative inhomogeneous quadratic functions.

Suppose that N is a hyperbolic lattice of rank n, that is, the signature of ( , )N

is (1, n− 1). Let {[vi, ai] | i = 1, . . . , k} be a finite set of pairs of vi ∈ N and ai ∈ Z
such that (vi, vi)N > 0 for at least one i, and let d be an integer. We can calculate
the set

(3.1) {x ∈ N | (x, vi)N = ai for i = 1, . . . , k, and (x, x)N = d }

by the following method. We put

M := {x ∈ N | (x, vi)N = ai for i = 1, . . . , k }.

It is easy to determine whether M is empty or not. Suppose that M ̸= ∅. By
choosing a point c ∈ M as an origin, we can regard M as a free Z-module of
finite rank. By the assumption on vi, the restriction of ( , )N to M ⊂ N defines a
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negative inhomogeneous quadratic function on M . Therefore we can calculate the
set (3.1) by the algorithm in Section 3.1.

3.3. An application to hyperbolic lattices II. Let N be as in the previous
subsection. Suppose that we are given vectors h, v ∈ N satisfying

(3.2) (h, h)N > 0, (v, v)N > 0, (h, v)N > 0.

We describe an algorithm that calculates, for a given integer d, the set

(3.3) S := { r ∈ N | (r, h)N > 0, (r, v)N < 0, (r, r)N = d }.

Consider the orthogonal direct-sum decomposition N ⊗R = 〈h〉⊕〈h〉⊥. We denote
the second projection by pr2 : N ⊗ R → 〈h〉⊥, and put

W := pr2(N),

which is a free Z-module of rank n − 1 such that W ⊗ R = 〈h〉⊥. Note that
W ⊂ N ⊗ Q. We denote by

( , )W : W × W → Q

the restriction of ( , )N to W . Suppose that x ∈ N ⊗ R satisfies (h, x)N ̸= 0 and
(x, x)N > 0. Then the composite

(3.4) 〈x〉⊥ ↪→ N ⊗ R pr2−→ 〈h〉⊥

is an isomorphism of R-vector spaces. Let ϕx : 〈h〉⊥ →∼ 〈x〉⊥ denote the inverse of
the isomorphism (3.4), that is,

ϕx(y) = y − (y, x)N

(h, x)N
h for y ∈ 〈h〉⊥.

We then define fx : 〈h〉⊥ → R by

fx(y) := (ϕx(y), ϕx(y))N = (y, y)W +
(y, x)2N
(h, x)2N

(h, h)N for y ∈ 〈h〉⊥ = W ⊗ R.

Since (x, x)N > 0, the real quadratic form ( , )N restricted to 〈x〉⊥ is negative-
definite, and hence so is fx. By the condition (3.2), we see that fh+tv is negative-
definite on W ⊗R for any t ∈ R≥0 ∪ {∞}. (Here we understand that fh+∞v = fv.)

For simplicity, we put

ch := (h, h)N , cv := (h, v)N , vW := pr2(v) ∈ W.

Let x′ be a vector in 〈h〉⊥ = W ⊗ R. Since v − vW ∈ 〈h〉, we have

(3.5) fh+tv(x′) = (x′, x′)W +
t2(x′, vW )2W
(ch + tcv)2

ch.

By (3.2), we have ch/cv > 0, and hence, for a fixed x′ ∈ 〈h〉⊥, fh+tv(x′) is a
non-decreasing function with respect to t ∈ R≥0 bounded from above by

fh+∞v(x′) = (x′, x′)W +
(x′, vW )2W

c2
v

ch.
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Note that fh+∞v restricted to W ⊂ W ⊗ R is Q-valued, and hence fh+∞v is a
negative inhomogeneous quadratic function on W ⊗ Q. Applying the algorithm in
Section 3.1 to fh+∞v, we can calculate the finite set

SW := { r′ ∈ W | fh+∞v(r′) ≥ d },

where d is the integer given as input.

Suppose that r is an element of the set S in (3.3). We put

tr := − (r, h)N

(r, v)N
∈ R>0.

Then we have r ∈ 〈h + trv〉⊥. We put r′ := pr2(r) ∈ W . Since ϕh+trv(r′) = r, we
have

d = (r, r)N = fh+trv(r′) ≤ fh+∞v(r′).

Therefore r′ ∈ SW holds. Let ρ ∈ Q be the rational number such that r = ρh + r′.
Since (r, r)N = d, (r′, h)N = 0 and (r, h)N > 0, we have

(3.6) ρ =
(r, h)N

ch
=

√
d − (r′, r′)W

ch
.

The right-hand side of (3.6) can be calculated if we know r′ ∈ W .

Therefore we obtain S from SW by the following method. First we set S = { }.
For each r′ ∈ SW , we put

ρ′ :=

√
d − (r′, r′)W

ch
and r := ρ′h + r′ ∈ N ⊗ R.

We then determine whether r is contained in N or not. (If ρ′ /∈ Q, then we obviously
have r /∈ N .) If r ∈ N , (r, h)N > 0 and (r, v)N < 0, we append r to S. When this
calculation is done for all r′ ∈ SW , the set S is equal to the set (3.3).

4. Geometric applications

We apply the algorithms in the previous section to the hyperbolic lattice NS(X).

4.1. Polarizations. If v ∈ NS(X) is a polarization, then we necessarily have
(v, v)NS > 0 and (v, hF )NS > 0. It is well-known that the nef cone of X is bounded
by the hyperplanes perpendicular to classes of (−2)-curves (see Section 3 of [17], for
example). If v with (v, v)NS > 0 is nef, then Proposition 0.1 of [13] gives a criterion
for v to be a polarization. Thus we obtain the following:

Proposition 4.1. Suppose that a vector v ∈ NS(X) satisfies (v, v)NS > 0 and
(v, hF )NS > 0. Consider the sets

S1 := { r ∈ NS(X) | (r, r)NS = −2, (r, hF )NS > 0, (r, v)NS < 0 } and

S2 := { e ∈ NS(X) | (e, e)NS = 0, (e, v)NS = 1 }.
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Then v is nef if and only if S1 = ∅. If v is nef, then v is a polarization if and only
if S2 = ∅.

The sets S1 and S2 can be calculated by the algorithms in Sections 3.3 and 3.2,
respectively. Hence we Proposition 4.1 enables us to determine whether a given
vector v ∈ NS(X) is a polarization or not.

4.2. h-Exceptional curves. Let h ∈ NS(X) be a polarization of arbitrary degree.
A (−2)-curve C on X is called h-exceptional if Φh contracts C. The set Exc(h) ⊂
NS(X) of the classes of h-exceptional curves is calculated by the following algorithm.
We calculate the finite set

R := { r ∈ NS(X) | (r, r)NS = −2, (r, h)NS = 0 }

by the algorithm in Section 3.2, and classify the elements of R by the degree with
respect to the ample class hF as follows:

R[m] := { r ∈ R | (r, hF )NS = m } and R+ :=
∪

m>0

R[m].

We say that r ∈ R+ is indecomposable if there are no vectors r1, . . . , rk ∈ R+ with
k > 1 such that r = r1 + · · · + rk. Since each R[m] is finite, we can determine
whether a given vector r ∈ R+ is indecomposable or not. It is obvious that r ∈ R+

is contained in Exc(h) if and only if r is an indecomposable element of R+.

4.3. h-Lines. Let h ∈ NS(X) be a polarization of arbitrary degree. A (−2)-curve
C on X is called an h-line if Φh maps C to a line isomorphically. The set Lin(h) ⊂
NS(X) of the classes of h-lines is calculated by the following algorithm. We calculate
the finite sets

L := { r ∈ NS(X) | (r, r)NS = −2, (r, h)NS = 1 },

L[m] := { r ∈ L | (r, hF )NS = m }, L+ :=
∪

m>0

L[m].

It is obvious that Lin(h) ⊂ L+. If r ∈ L+, then we see that r is the class of
an effective divisor D, that exactly one irreducible component D0 of D is an h-
line, and that D − D0 is a finite sum of h-exceptional curves. Hence r ∈ L+ is
contained in Lin(h) if and only if there are no r′ ∈ L[m′] with m′ < (r, hF )NS and
r1, . . . , rk ∈ Exc(h) with k ≥ 1 such that r = r′ + r1 + · · ·+ rk. Since each of L[m′]
and Exc(h) are finite, we can determine the subset Lin(h) ⊂ L+.

5. Explicit defining equations

We identify X with XF by the isomorphism φF : X →∼ XF , so that, for a
polarization h ∈ P2(X), we consider Φh : X → P2 and φh : X → Xh as morphisms
from XF . In this section, we describe a method to write the morphisms Φh and φh

as lists of rational functions on XF over F25.
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5.1. The global sections of a line bundle. Let H∞ ⊂ XF denote the hyper-
plane section defined by z = 0 in (1.2). We use the affine coordinates (w, x, y) of
P(3, 1, 1, 1) with z = 1, and put

F := w2 − x6 − y6 − 1 ∈ F25[w, x, y].

For any g ∈ F25[w, x, y], there exists a unique polynomial ḡF of the form wf + h

with f, h ∈ F25[x, y] such that

g ≡ ḡF mod (F ) in F25[w, x, y].

We call ḡF the normal form of g. Let m be an integer. By identifying the line bundle
LmhF

→ X with the invertible sheaf OXF
(mH∞), the vector space Γ(X,LmhF

) of
the global sections of LmhF defined over F25 is naturally identified with the vector
subspace

Vm := {wf + h | f, h ∈ F25[x, y], deg f ≤ m − 3, deg h ≤ m }

of F25[w, x, y]. Recall that all hF -lines are defined over F25, and that no hF -lines
are contained in H∞. We have indexed the hF -lines as ℓ1, . . . , ℓ252 in Remark 2.2.
For j = 1, . . . , 252, we denote by

Ij ⊂ F25[w, x, y]

the inhomogeneous ideal defining ℓj in P(3, 1, 1, 1), and put

I
(ν)
j := Iν

j + (F ) ⊂ F25[w, x, y] for ν ∈ Z>0.

We describe an algorithm that takes a vector v ∈ NS(X) as input, and calculates
the vector space Γ(X,Lv) of the global sections of the corresponding line bundle
Lv → X defined over F25. Using the Z-basis [ℓ1], . . . , [ℓ22] of NS(X), v is uniquely
written as

v =
∑
i∈J+

ai[ℓi] −
∑

j∈J−

bj [ℓj ],

where J+ and J− are disjoint subsets of {1, . . . , 22}, and ai, bj are positive inte-
gers. Let i′ be the index of the hF -line ℓi′ that is the image of ℓi by the deck-
transformation of XF over P2. Since [ℓi] + [ℓi′ ] = hF for any i, we have

v = d′(v)hF −
∑
i∈J+

ai[ℓi′ ] −
∑

j∈J−

bj [ℓj ], where d′(v) :=
∑
i∈J+

ai.

Thus we have an expression

(5.1) v = d(v)hF −
∑
j∈J

cj [ℓj ],

where d(v) is a non-negative integer, J is a subset of {1, . . . , 252}, and cj are positive
integers. (Since there are linear relations among [ℓj ], this expression is not unique.)
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Then the vector space Γ(X,Lv) is identified with the space of global sections of
OXF (d(v)H∞) that vanish along ℓj with order cj for each j ∈ J , that is,

(5.2) Γ(X,Lv) ∼= Vd(v) ∩
∩
j∈J

I
(cj)
j ,

where the intersections are taken in F25[w, x, y]. From now on, we regard Γ(X,Lv)
as a subspace of Vd(v) by (5.2). The vector space Vd(v) has a basis

mα := wM or N (α = 1, . . . , 2 + d(v)2),

where M and N are the monomials of x and y with deg M ≤ d(v)− 3 and deg N ≤
d(v). We calculate the Gröbner basis Gj of the ideal I

(cj)
j ⊂ F25[w, x, y] for each

j ∈ J . (In the actual calculation, we used the graded reverse lexicographic order
grevlex(w, x, y). See p. 56 of [5].) We then calculate the remainders mα

Gj of the
monomials mα by these Gröbner bases Gj . An element

∑
α uαmα of Vd(v) with

uα ∈ F25 is contained in Γ(X,Lv) if and only if∑
α

uαmα
Gj = 0 for each j ∈ J.

These equalities constitute a system of linear equations with unknowns uα. Solving
these equations, we obtain a basis of Γ(X,Lv) as a list of polynomials in Vd(v).

Let k be a positive integer. Then we can write the vector kv ∈ NS(X) as

kv := kd(v)hF −
∑
j∈J

kcj [ℓj ]

using the same d(v) and J that appeared in (5.1). Under this choice, the natural
homomorphism

Γ(X,Lv)⊗k → Γ(X,Lkv)

is given by restricting the linear homomorphism

g1 ⊗ · · · ⊗ gk 7→ g1 · · · gk
F

from V ⊗k
d(v) to Vkd(v).

5.2. The morphisms Φh and φh. We describe an algorithm that takes a vector
h ∈ P2(X) as input, and calculates the morphisms Φh, φh and a defining equation

w2 = sh(x, y, z)

of Xh in P(3, 1, 1, 1). We have

dimΓ(X,Lh) = 3, dimΓ(X,L3h) = 11, dimΓ(X,L6h) = 38.

We find an expression h = d(h)hF −
∑

j∈J cj [ℓj ] of h in the form (5.1). By the
method described above, we obtain three polynomials

ξi(w, x, y) ∈ Vd(h) (i = 0, 1, 2)
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that form a basis of Γ(X,Lh). The rational map (w, x, y) 7→ [ξ0 : ξ1 : ξ2] gives the
morphism Φh : XF → P2.

Next we calculate eleven polynomials that form a basis of Γ(X,L3h) ⊂ V3d(h)

using the expression 3h = 3d(h)hF −
∑

j∈J 3cj [ℓj ]. We compute the normal forms

ξiξi′ξi′′
F

(i, i′, i′′ ∈ {0, 1, 2})

of the ten polynomials ξiξi′ξi′′ . These normal forms are contained in Γ(X,L3h).
Then we find a polynomial ω ∈ V3d(h) that is contained in Γ(X,L3h), but is not

contained in the 10-dimensional subspace spanned by ξiξi′ξi′′
F
. The rational map

(w, x, y) 7→ [ω : ξ0 : ξ1 : ξ2] ∈ P(3, 1, 1, 1)

gives the morphism φh : XF → Xh.

We then compute the 39 normal forms

ω2
F
, ωξiξi′ξi′′

F
, ξi1ξi2 · · · ξi6

F
(i, i′, i′′, i1, . . . , i6 ∈ {0, 1, 2}),

which are contained in Γ(X,L6h) ⊂ V6d(h). Since dimΓ(X,L6h) = 38, there exists a
non-trivial linear relation over F25 among these 39 polynomials. Using homogeneous
polynomials b(x, y, z) of degree 3 and c(x, y, z) of degree 6 with coefficients in F25,
we write this linear relation as

(5.3) aω2 + b(ξ0, ξ1, ξ2)ω + c(ξ0, ξ1, ξ2)
F

= 0,

where a ∈ F25. Since ω is not invariant under the deck-transformation of XF over
P2, we may assume that a = 1. We replace ω by

ω − 2 b(ξ0, ξ1, ξ2)
F
∈ V3d(h).

Then the linear relation (5.3) is written as

ω2
F

= sh(ξ0, ξ1, ξ2)
F
, where sh(x, y, z) := − b(x, y, z)2 − c(x, y, z).

The projective model ψh : Xh → P2 is defined by w2 = sh(x, y, z).

Remark 5.1. The computational difficulty of this method grows rapidly as d(h)
increases.

5.3. The projective equivalence. Let F denote the algebraic closure of F25.
For T ∈ GL3(F), we denote by [T ] ∈ PGL3(F) the image of T by the natural
homomorphism GL3(F) → PGL3(F), and by P 7→ P [T ] the linear transformation
of P2 given by [a : b : c] 7→ [a : b : c]T . Let H6 denote the set of homogeneous
polynomials of degree 6 in variables x, y, z with coefficients in F25. For f ∈ H6 ⊗F,
we put

fT (x, y, z) := f(x′, y′, z′), where (x′, y′, z′) = (x, y, z) T−1.

If f = 0 defines a curve C ⊂ P2, then fT = 0 defines the image C [T ] of the curve
C by the projective linear transformation P 7→ P [T ].
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Let h and h′ be elements of P2(X). By definition, we have the following:

(5.4) h ∼ h′ ⇐⇒ there exist T ∈ GL3(F) and c ∈ F×
such that sh′ = c sT

h .

The polynomials ω, ξ0, ξ1, ξ2 giving φh : XF → Xh that are obtained in the previous
subsection are unique up to the following transformations:

ω 7→ λω, where λ ∈ F×
25,

(ξ0, ξ1, ξ2) 7→ (ξ0, ξ1, ξ2)T, where T ∈ GL3(F25).

Under this transformation, the sextic polynomial sh ∈ H6 is changed to λ2sT
h .

Therefore we can define the following relation ∼F on P2(X):

(5.5) h ∼F h′ ⇐⇒ there exist T ∈ GL3(F25) and λ ∈ F×
25 such that sh′ = λ2sT

h .

We investigate the relation between ∼ and ∼F.

Lemma 5.2. Suppose that there exist T ∈ GL3(F25) and c ∈ F×
that satisfy

sh′ = c sT
h . Then h ∼F h′ holds.

Proof. Let K denote the quotient field of the integral domain F25[w, x, y]/(F ). Then
we have F ∩ K = F25. By the assumption sh′ = c sT

h , we see that c ∈ F×
25 and that

there exist non-zero elements ω and ω′ of K such that ω′2 = c ω2. Hence c is a
non-zero square in F25. ¤

Let B1 = {f1 = 0} and B2 = {f2 = 0} be reduced plane curves defined by
f1 ∈ H6 and f2 ∈ H6, respectively. We consider the set

isom(B1, B2) := { τ ∈ PGL3(F) | Bτ
1 = B2 }

of projective isomorphisms from B1 to B2 defined over F. By definitions and
Lemma 5.2, we have

h ∼ h′ ⇐⇒ isom(Bh, Bh′) ̸= ∅,(5.6)

h ∼F h′ ⇐⇒ isom(Bh, Bh′) ∩ PGL3(F25) ̸= ∅.(5.7)

Definition 5.3. Let Q = [Q0, Q1, Q2, Q3] and Q′ = [Q′
0, Q

′
1, Q

′
2, Q

′
3] be two ordered

4-tuples of points of P2 such that no three points of Q are colinear and no three
points of Q′ are colinear. Then there exists a unique projective transformation
τQQ′ ∈ PGL3(F) such that

QτQQ′ := [Q
τQQ′

0 , Q
τQQ′

1 , Q
τQQ′

2 , Q
τQQ′

3 ]

is equal to Q′. Let TQQ′ ∈ GL3(F) denote a matrix such that [TQQ′ ] = τQQ′ .

Let B be a reduced plane curve defined over F. We define Q(B) to be the set

(5.8)
{

[Q0, Q1, Q2, Q3]
∣∣∣∣ Qi ∈ Sing(B) for i = 0, . . . , 3, and no three of

Q0, . . . , Q3 are colinear

}
.
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Let R be an element of Q(B1). Then the map τ 7→ Rτ induces a bijection

(5.9) isom(B1, B2) ∼= {Q′ ∈ Q(B2) | f2 = c f
TRQ′

1 for some c ∈ F× }.

If all points of Q and Q′ are F25-rational, then we have τQQ′ ∈ PGL3(F25). Hence
we obtain the following:

Lemma 5.4. Suppose that every singular point of Bh and Bh′ is F25-rational,
and that Q(Bh) and Q(Bh′) are non-empty. Then isom(Bh, Bh′) is contained in
PGL3(F25). ¤

The bijection (5.9) also provides us with a practical method to calculate the
group aut(B) = isom(B,B) for a plane curve B defined over F25 satisfying Sing(B) ⊂
P2(F25) and Q(B) ̸= ∅.

6. Proof of Theorem 1.1

6.1. Step 1. First note that P2(X) ∩ B3 = {hF }.

6.2. Step 2. We calculate the sets

Vδ := { v ∈ NS(X) | (v, v)NS = 2, (v, hF )NS = δ },

for δ = 4 and 5 by the algorithm in Section 3.2. The cardinalities of these sets are
|V4| = 1, 020, 600 and |V5| = 208, 059, 000. We put

V := {hF } ∪ V4 ∪ V5.

Our goal is to calculate the subset P2(X) ∩ B5 = P2(X) ∩ V of V, and decompose
it into the equivalence classes of the relation ∼ of the projective equivalence. Note
that Aut(X,hF ) acts on V4, V5 and P2(X), and that, if h and h′ are in the same
Aut(X,hF )-orbit, then we have h ∼F h′, because every element of Aut(X,hF ) is
defined over F25.

6.3. Step 3. We have embedded Aut(X,hF ) in O(NS(X)) by (2.2). Let x =
[x1, . . . , x22] and y = [y1, . . . , y22] be vectors in NS(X). We put

x <lex y ⇐⇒ there exists k such that xk < yk and xj = yj for j < k,

and define a total order < on NS(X) by

x < y ⇐⇒
22∑

i=1

|xi| <
22∑

i=1

|yi| or

(
22∑

i=1

|xi| =
22∑

i=1

|yi| and x <lex y

)
.

We then denote by R the set of vectors v ∈ NS(X) that are minimal in the
Aut(X,hF )-orbit containing v:

R := { v ∈ NS(X) | v ≤ vT for all T ∈ Aut(X,hF ) }.

We define the representative vector vo of each Aut(X,hF )-orbit o ⊂ NS(X) by

o ∩R = {vo}.



PROJECTIVE MODELS OF A SUPERSINGULAR K3 SURFACE 19

We calculate the list R ∩ V4, R ∩ V5, and the order of the stabilizer subgroup
Stab(v) ⊂ Aut(X,hF ) for each v ∈ R ∩ V. We obtain

|R ∩ V4| = |V4/Aut(X,hF )| = 8 and |R ∩ V5| = |V5/Aut(X,hF )| = 312.

Remark 6.1. We choose this total order < on NS(X) so that we can express each
v ∈ R ∩ V in the form (5.1) with d(v) small. See Remark 5.1.

6.4. Step 4. For each v ∈ R∩V, we calculate the Gal(F25/F5)-conjugate v̄ = vΓNS

of v, where ΓNS is the matrix given in Table 2.3, and find the representative vector
vΓ ∈ R ∩ V of the Aut(X,hF )-orbit containing v̄.

6.5. Step 5. For each v ∈ R∩V, we calculate the sets S1 and S2 in Proposition 4.1,
and determine whether v is a polarization or not. We obtain

|P2(X) ∩R ∩ V4| = 7 and |P2(X) ∩R ∩ V5| = 224.

6.6. Step 6. For simplicity, we put

H := P2(X) ∩R ∩ V.

By means of the algorithms in Sections 4.2 and 4.3, we calculate, for each h ∈ H,
the set Exc(h) of the classes of h-exceptional curves, and the set Lin(h) of the
classes of h-lines. From Exc(h), we determine the ADE-type RT(h) of Sing(Bh).
We then confirm that the union of Exc(h) and Lin(h) spans NS(X) for any h ∈ H.
Thus Proposition 1.2 is proved.

6.7. Step 7. For each h ∈ H, we carry out the computation in Section 5, and
calculate polynomials ω, ξ0, ξ1, ξ2 ∈ F25[w, x, y] that give the morphism φh : XF →
Xh, and sh(x, y, z) ∈ H6 such that w2 = sh(x, y, z) defines Xh. Then we compute
the coordinates of the singular points of Bh = {sh = 0}.

Remark 6.2. By this computation, we observe the following fact. For any h ∈ H
with RT(h) ̸= 0, every singular point of Bh is F25-rational, and the set Q(Bh)
defined by (5.8) is non-empty. By Lemma 5.4, it follows that isom(Bh, Bh′) is
contained in PGL3(F25) for any h, h′ ∈ H with RT(h) ̸= 0 and RT(h′) ̸= 0.

Remark 6.3. It turns out that each (−2)-curve contracted by φh is either an hF -line
or an irreducible component of the pull-back by ψF of a plane conic totally tangent
to BF (see [25]). We can calculate the coordinates of the singular points of Bh

using this fact.

6.8. Step 8. We decompose H into the equivalence classes under the relation ∼F

defined by (5.5), and confirm that the relations ∼ and ∼F are the same on H.
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6.8.1. The case where Bh is non-singular. In H, there are exactly three polariza-
tions h such that RT(h) = 0: hF and

h′
F = [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 0, 0] ∈ V4, and

h′′
F = [0,−1, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,−1, 0, 0, 0, 0] ∈ V5.

Applying the following result, which is a corollary of n. 3 of [20], to sh′
F

and sh′′
F
,

we see that h′
F ∼F hF and h′′

F ∼F hF .

Corollary 6.4. For h ∈ P2(X), we have h ∼F hF if and only if there exist a
3 × 3 non-degenerate matrix (aij) over F25 with aij = a5

ji and λ ∈ F×
25 such that

sh = sh(x0, x1, x2) is of the form λ2
∑2

i,j=0 aijxix
5
j .

6.8.2. The case where Bh is singular. We introduce a total order ≺ on the set H6.
(Any total order will do.) We fix four reference points

P0 := [1 : 0 : 0], P1 := [0 : 1 : 0], P2 := [0 : 0 : 1], P3 := [1 : 1 : 1],

and put P := [P0, P1, P2, P3]. For h ∈ H with RT(h) ̸= 0, we put

T (h) := { τ ∈ PGL3(F) | Sing(Bτ
h) ∋ Pi for i = 0, 1, 2, 3 } = {τQP |Q ∈ Q(Bh)},

S(h) := {λ2sT
h | λ ∈ F×

25, T ∈ GL3(F25) },

SP (h) := { s′h ∈ S(h) | the curve s′h = 0 is singular at P0, . . . , P3 }.

By Remark 6.2, we have T (h) ⊂ PGL3(F25) and T (h) ̸= ∅, and hence

SP (h) = {λ2sT
h | λ ∈ F×

25, T ∈ GL3(F25), [T ] ∈ T (h) } ̸= ∅

holds. Since Q(Bh) is easily calculated, so is SP (h). We put

smin
h := the minimal element of SP (h) with respect to the fixed total order ≺.

By definition, we have h ∼F h′ if and only if S(h) = S(h′). Hence we have

h ∼F h′ ⇐⇒ smin
h = smin

h′ .

By this method, we decompose H into the equivalence classes of the relation ∼F.

Remark 6.2 combined with (5.6), (5.7) imply that ∼ and ∼F define the same
relation on H. Thus the equivalence classes E0, . . . , E64 of ∼ are obtained.

For h ∈ H, we denote by [h] ⊂ H the equivalence class of ∼ containing h, by s[h]

the polynomial smin
h obtained above, and by B[h] the plane curve {s[h] = 0}.

6.9. Step 9. For each equivalence class [h] ⊂ H, we calculate the group aut(B[h]) =
isom(B[h], B[h]) and the set isom(B[h], B[h]) by the method given in Section 5.3,
where B[h] is the plane curve defined by the polynomial s[h] ∈ H6 obtained from
s[h] by

√
2 7→ −

√
2.



PROJECTIVE MODELS OF A SUPERSINGULAR K3 SURFACE 21

6.10. Step 10. We search for (T, λ) ∈ GL3(F25) × F×
25 such that λ2sT

[h] has coeffi-
cients in F5. If such (T, λ) exists, then we necessarily have h ∼ hΓ.

Proposition 6.5. For f ∈ H6, the following conditions are equivalent. (i) There
exist T ∈ GL3(F25) and λ ∈ F×

25 such that λ2fT has coefficients in F5. (ii) There
exist M ∈ GL3(F25) and c ∈ F×

25 such that fM = c f̄ , MM = Id3 and c3 = 1.

Since we have already calculated the set isom(B[h], B[h]) for every [h] ⊂ H, we
can make the list of (M, c) ∈ GL3(F25) × F×

25 such that sM
[h] = c s[h]. Therefore we

can determine whether the condition (ii) is satisfied or not for f = s[h]. The proof
below shows how to find (T, λ) in the condition (i) from (M, c) in the condition (ii).

Proof of Proposition 6.5. Suppose that (i) holds. Since λ̄2f̄ T = λ2fT , we have
(λ−1λ̄)2f̄ = fTT

−1

. Then M := TT
−1

and c := (λ−1λ̄)2 = λ8 satisfy the equalities
in (ii). Conversely, suppose that (ii) holds. Then there exists T ∈ GL3(F25) such
that M = TT

−1
. Indeed, let m : F3

25 → F3
25 be defined by m(x) := x + x̄M ,

where vectors of F3
25 are written as row vectors. Then there exist x1,x2, x3 such

that m(x1),m(x2),m(x3) are linearly independent. Let C denote the 3× 3 matrix
whose row vectors are x1, x2, x3. We put

S := C + CM,

which is non-degenerate. Then we have S = SM−1. Therefore, putting T := S
−1

,
we have M = TT

−1
. Since fM = c f̄ , we have fT = c fT . Since c3 = 1, there exists

λ ∈ F×
25 such that c = λ8 = (λ−1λ̄)2. Then we have λ2fT = λ̄2fT , and hence λ2fT

has coefficients in F5. ¤

Remark 6.6. Except for the equivalence class E7 = E7, we have found a defining
equation sF,[h] of Bh with coefficients in F5 for each En with En = En.

7. The list of projective models E0, . . . , E64

E0 = E0: RT = 0: |aut| = 378000: N = 13051: h = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] :

x6 + y6 + 1

E1 = E1: RT = 6A1: |aut| = 12: N = 5607000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] :

x6 + 3 x5y + x4y2 + 2 x3y3 + y6 + 3 x4 + 3 x2y2 + xy3 + 3 xy + 2 y2 + 4

E2 = E2: RT = 7A1: |aut| = 6: N = 6678000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] :

x6 + 2 x4y2 + x2y4 + x2y3 + 2 y5 + x4 + 2 y4 + 2 x2y + 2 y3 + 3 y2 + 3 y + 2

E3 = E3: RT = 3A1 + 2A2: |aut| = 6: N = 2268000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0] :

x6 + 3 x3y3 + y6 + 3 x3y + 2 y2 + 2

E4 = E4: RT = 8A1: |aut| = 8: N = 2457000: h = [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0] :

x6 + 3 x4y2 + x2y4 + 4 x2y3 + 4 y5 + x4 + 2 x2y2 + 3 y4 + 2 x2y + 4 x2 + y2 + 4 y
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E5 = E5: RT = 8A1: |aut| = 4: N = 2268000: h = [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] :

x4y2 + x2y4 + 2 x4 + 4 x2y2 + y4 + x2 + 4 y2 + 4

E6 = E6: RT = 6A1 + A2: |aut| = 6: N = 1512000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0] :

x6 + 4 x4y2 + 2 x2y4 + 2 x2y + y3 + 4

E7 = E7: RT = 6A1 + A2: |aut| = 2: N = 4914000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1] :

√
2x3y3+

“

1 + 3
√

2
”

x2y4+x4+
“

2 + 2
√

2
”

x3y+
“

1 + 4
√

2
”

x2y2+xy3+
“

2 + 2
√

2
”

y4+
√

2x2+
“

1 + 3
√

2
”

xy

E8 = E8: RT = 6A1 + A2: |aut| = 1: N = 9828000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1] :

x6 + 2 x5y + x4y2 + 3 x5 + 2 xy4 + x3y + 3 x2y2 + 4 xy2 + y3 + 3 y2 + 3 x + 3 y

E9 = E10: RT = 4A1 + 2A2: |aut| = 2: N = 4158000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1] :

x5y +
“

2 +
√

2
”

x4y2 +
“

1 + 4
√

2
”

x3y3 +
“

3 +
√

2
”

x2y4 +
“

2 + 4
√

2
”

xy5 +
“

2 +
√

2
”

y6 +
“

2 + 3
√

2
”

x4 +
“

1 + 4
√

2
”

x3y +
“

3 +
√

2
”

y4 +
“

1 + 4
√

2
”

x2 +
“

3 +
√

2
”

xy + 3 y2 + 2 + 3
√

2

E11 = E11: RT = 9A1: |aut| = 54: N = 84000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, −1, 0, 0, 0] :

x6 + 4 x3y3 + 4 y6 + x4 + 4 xy3 + 3 x2 + 4

E12 = E12: RT = 9A1: |aut| = 9: N = 1596000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] :

4 x4y2 + 3 x2y4 + 4 y6 + x5 + 3 x3y2 + 2 xy4 + x4 + 2 x2y2 + 4 xy3 + 2 xy2 + 4 y3 + 4 x2 + 2 xy + 1

E13 = E14: RT = 9A1: |aut| = 6: N = 882000: h = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] :

√
2x5y+2 x4y2+

“

3 + 2
√

2
”

x3y3+
“

4 + 2
√

2
”

x2y4+
“

4 + 4
√

2
”

xy5+
√

2y6+
“

1 +
√

2
”

x4+
“

4 + 3
√

2
”

x3y+
“

1 + 4
√

2
”

x2y2 +
“

1 + 4
√

2
”

y4 +
“

3 + 3
√

2
”

x2 +
“

1 +
√

2
”

xy +
“

3 + 4
√

2
”

y2 + 1 +
√

2

E15 = E16: RT = 9A1: |aut| = 3: N = 2268000: h = [0, −1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0] :

“

2 + 2
√

2
”

x2y4 +x4y +
“

4 + 4
√

2
”

x3y2 +
“

1 +
√

2
”

x2y3 +
“

2 + 4
√

2
”

xy4 +
“

1 +
√

2
”

x4 +
“

1 + 2
√

2
”

x3y +
“

2 + 3
√

2
”

xy3 +
“

2 + 4
√

2
”

x2y +
“

2 +
√

2
”

xy2 +
“

2 +
√

2
”

xy + 2 y2

E17 = E17: RT = 9A1: |aut| = 2: N = 3402000: h = [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1] :

x5y + 2 x4y2 + 4 x3y3 + 2 x2y4 + 4 xy5 + 3 y6 + 2 x2y2 + 2 x2 + xy

E18 = E19: RT = 7A1 + A2: |aut| = 2: N = 3024000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0] :

√
2x4y2 +

“

1 + 2
√

2
”

x3y3 +
“

3 + 4
√

2
”

x2y4 + 3
√

2xy5 +
“

2 + 2
√

2
”

x4 +
√

2x3y + 4 x2y2 + 3
√

2xy3 +
“

2 + 2
√

2
”

y4 +
“

1 +
√

2
”

x2 + 4
√

2xy +
“

1 +
√

2
”

y2 + 2 + 2
√

2

E20 = E21: RT = 7A1 + A2: |aut| = 1: N = 5292000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1] :

2
√

2x3y3 +
“

3 +
√

2
”

x2y4 + x4y +
“

4 + 2
√

2
”

x3y2 +
“

3 + 4
√

2
”

x2y3 +
“

4 + 4
√

2
”

xy4 + x4 + 3
√

2x2y2 +

3
√

2xy3 + 4 y4 +
√

2x3 + 2
√

2x2y +
√

2xy2 +
“

2 + 2
√

2
”

y3 + 3 x2 +
“

3 + 2
√

2
”

xy +
“

2 + 3
√

2
”

y2

E22 = E23: RT = 7A1 + A2: |aut| = 1: N = 5292000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1] :

x3y3 +
“

1 + 3
√

2
”

x2y4 + x4y +
“

3 + 2
√

2
”

x3y2 + 3
√

2x2y3 +
“

2 + 4
√

2
”

xy4 +
√

2x4 +
“

2 + 4
√

2
”

x3y +

4 xy3 +
“

1 + 3
√

2
”

y4 +
“

2 +
√

2
”

x3 +
“

3 + 3
√

2
”

x2y +
√

2y3 +
“

4 + 2
√

2
”

x2 + 4
√

2xy +
“

1 + 4
√

2
”

y2

E24 = E24: RT = 5A1 + 2A2: |aut| = 8: N = 378000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0] :

x3y3 + x4 + x2y2 + y4 + xy

E25 = E26: RT = 5A1 + 2A2: |aut| = 2: N = 2268000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1] :

x2y4 + x4y +
“

1 +
√

2
”

x3y2 +
“

3 + 4
√

2
”

x2y3 +
“

3 + 2
√

2
”

xy4 +
“

1 +
√

2
”

x3y +
“

1 + 2
√

2
”

x2y2 +
“

3 +
√

2
”

xy3 +
“

1 + 4
√

2
”

x2y +
“

1 + 2
√

2
”

xy2 + 3 x2 + 4
√

2xy +
“

1 + 4
√

2
”

y2
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E27 = E27: RT = 5A1 + 2A2: |aut| = 1: N = 3780000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1] :

x6 + 3 x4y2 + x2y4 + x3y2 + 3 x2y3 + xy4 + 2 x3y + 3 xy3 + 4 x3 + 3 x2y + 4 xy2 + 4 y2

E28 = E29: RT = 5A1 + 2A2: |aut| = 1: N = 4536000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1] :

x4y2+
“

2 + 2
√

2
”

x3y3+
“

3 + 2
√

2
”

x2y4+
“

1 +
√

2
”

x4y+2
√

2x3y2+
“

2 +
√

2
”

xy4+
“

2 + 3
√

2
”

x4+4 x2y2+
“

1 + 3
√

2
”

y4 +
“

3 + 4
√

2
”

x3 + 4
√

2xy2 +
“

1 +
√

2
”

y3 +
“

4 + 2
√

2
”

x2 +
“

3 + 3
√

2
”

xy +
“

1 + 2
√

2
”

y2

E30 = E31: RT = 3A1 + 3A2: |aut| = 3: N = 1260000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1] :

x4y2 +
“

1 +
√

2
”

x3y3 +
“

2 + 3
√

2
”

x2y4 +x4y+4 x3y2 +
“

3 + 3
√

2
”

x2y3 +4
√

2xy4 +4 x4 +
“

2 + 3
√

2
”

x3y+

x2y2 +
“

4 + 2
√

2
”

y4 +
“

3 + 2
√

2
”

x3 +
“

4 + 3
√

2
”

x2y +
“

4 + 4
√

2
”

xy2 +
“

2 + 4
√

2
”

y3 + x2 +
√

2xy + 3 y2

E32 = E32: RT = 10A1: |aut| = 20: N = 226800: h = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1] :

x6 + 2 x4y + y5 + 4 x2y2 + y3 + 4 x2 + 4 y

E33 = E33: RT = 10A1: |aut| = 4: N = 756000: h = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0] :

x6 + x4y2 + 3 x3y3 + 3 x2y4 + 2 y6 + x2y2 + 4 xy + 4

E34 = E35: RT = 10A1: |aut| = 2: N = 1890000: h = [0, −1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] :

x5y+x4y2+3 x3y3+
“

4 +
√

2
”

x2y4+
“

1 +
√

2
”

xy5+4
√

2y6+2 x4+4 x3y+
“

4 + 4
√

2
”

xy3+
“

2 + 2
√

2
”

y4+

x2 +
“

1 + 4
√

2
”

y2 + 2

E36 = E36: RT = 8A1 + A2: |aut| = 1: N = 3780000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1] :

x5y + 4 x2y4 + x5 + 3 x4y + 2 x2y3 + 3 x4 + 2 y4 + 2 xy2 + 2 y3 + 2 x2 + 3 xy + 4 y

E37 = E37: RT = 8A1 + A2: |aut| = 1: N = 3024000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1] :

x4y2 + 4 x3y3 + 4 x2y4 + 3 xy4 + y5 + 4 xy3 + 4 x3 + 4 x2y + 4 x2 + xy + 3 y2 + 3 x + 3 y

E38 = E39: RT = 8A1 + A2: |aut| = 1: N = 3024000: h = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1] :

“

1 + 4
√

2
”

x2y4 + x4y +
“

1 +
√

2
”

x3y2 + 3 x2y3 +
“

2 +
√

2
”

xy4 + x4 +
“

2 + 2
√

2
”

x3y + 3 x2y2 +
√

2y4 +

4
√

2x3 +
“

2 + 3
√

2
”

x2y + y3 + 3 x2 +
“

2 + 4
√

2
”

xy + 3 y2

E40 = E41: RT = 6A1 + 2A2: |aut| = 6: N = 378000: h = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0] :

√
2x6 +

“

1 +
√

2
”

x5y +
“

1 + 4
√

2
”

x3y3 +
√

2x2y4 + 2
√

2xy5 +
“

3 +
√

2
”

y6 +
“

4 + 3
√

2
”

x4 + 3 x3y +
“

2 +
√

2
”

x2y2 +
“

4 + 4
√

2
”

xy3 +
“

3 + 3
√

2
”

y4 +
“

2 +
√

2
”

x2 +
“

1 + 4
√

2
”

xy +
√

2y2 + 4

E42 = E43: RT = 6A1 + 2A2: |aut| = 2: N = 1512000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] :

x4y2 +
“

2 + 3
√

2
”

x3y3 +
“

3 + 3
√

2
”

x2y4 + x4y +
“

3 + 3
√

2
”

x2y3 + 3
√

2xy4 + 2
√

2x4 +
“

3 + 4
√

2
”

x2y2 +

2
√

2xy3 +
“

4 +
√

2
”

y4 +
“

3 + 3
√

2
”

x3 +
“

4 + 3
√

2
”

y3 +
“

4 + 2
√

2
”

x2 + 4
√

2xy +
“

3 + 2
√

2
”

y2

E44 = E45: RT = 6A1 + 2A2: |aut| = 1: N = 2268000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1] :

2 x3y3 +3
√

2x2y4 +
“

4 + 2
√

2
”

x3y2 +
“

3 +
√

2
”

x2y3 +
“

1 + 2
√

2
”

xy4 +x4 +
“

3 +
√

2
”

x3y +3 x2y2 +3 y4 +
“

1 + 4
√

2
”

x3 +
“

1 + 3
√

2
”

x2y + 4 xy2 +
“

2 + 4
√

2
”

y3 +
“

3 +
√

2
”

x2 +
“

1 +
√

2
”

xy +
“

3 + 3
√

2
”

y2

E46 = E46: RT = 4A1 + 3A2: |aut| = 3: N = 756000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1] :

x6 + 3 x3y3 + 4 x4y + xy4 + 3 x2y2 + 4 x3 + 3 xy + 4

E47 = E47: RT = 4A1 + 3A2: |aut| = 2: N = 1134000: h = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] :

x6 + 3 x4y2 + 4 x2y4 + 2 y6 + 4 x2y3 + 2 x4 + 3 x2y2 + 4 x2y + y3 + 3 x2

E48 = E48: RT = 4A1 + 3A2: |aut| = 1: N = 2268000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1] :

2 x4y2 + x5 + 2 x2y3 + 4 xy4 + 2 x3y + 3 x2y2 + 2 xy3 + 2 xy2 + 3 x2 + 2 xy + 2 y2
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E49 = E49: RT = 11A1: |aut| = 4: N = 378000: h = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0] :

x6 + x4y2 + 4 x2y4 + 3 x5 + 3 xy4 + x2y2 + 2 y4 + x3 + 4 y2 + 2 x + 2

E50 = E51: RT = 9A1 + A2: |aut| = 1: N = 1512000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1] :

“

4 +
√

2
”

x3y3 +
“

4 + 2
√

2
”

x2y4 + x4y + 4 xy4 +
√

2x4 +
“

3 + 3
√

2
”

x2y2 + 4 xy3 +
“

4 + 2
√

2
”

y4 +
“

2 + 3
√

2
”

x3 +
“

4 + 4
√

2
”

x2y +
“

4 + 3
√

2
”

y3 +
“

1 + 2
√

2
”

x2 + 3
√

2xy +
“

2 + 3
√

2
”

y2

E52 = E52: RT = 7A1 + 2A2: |aut| = 2: N = 378000: h = [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] :

x6 + x5y + 2 x4y2 + x2y4 + 3 y6 + x4 + x2y2 + xy3 + 4 xy + y2 + 3

E53 = E54: RT = 7A1 + 2A2: |aut| = 1: N = 1512000: h = [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1] :

“

2 + 2
√

2
”

x2y4 + x4y +
“

4 +
√

2
”

x3y2 +
“

2 + 2
√

2
”

x2y3 + 4 xy4 + 3 x4 +
“

3 + 2
√

2
”

x3y +
√

2x2y2 +
“

3 + 4
√

2
”

xy3 +
“

2 + 2
√

2
”

y4 +
“

3 + 4
√

2
”

x2y +
“

2 + 3
√

2
”

xy2 +
“

2 + 3
√

2
”

y3 +
√

2xy + 4 y2

E55 = E56: RT = 7A1 + 2A2: |aut| = 1: N = 1512000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0] :

“

3 + 2
√

2
”

x2y4 + x4y + x3y2 +
“

2 +
√

2
”

x2y3 +
“

2 + 4
√

2
”

xy4 +
√

2x4 +
“

3 + 4
√

2
”

x3y +
“

2 + 4
√

2
”

xy3 +

4
√

2y4 +
√

2x3 +
“

1 + 4
√

2
”

x2y +
“

4 +
√

2
”

y3 + 4 x2 + 4
√

2xy + 2 y2

E57 = E58: RT = 5A1 + 3A2: |aut| = 2: N = 756000: h = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1] :

√
2x4y2 +

“

4 + 2
√

2
”

x3y3 +4
√

2x2y4 +
“

3 +
√

2
”

xy5 +4
√

2y6 +
“

1 + 4
√

2
”

x4 +
“

3 +
√

2
”

x3y +2
√

2x2y2 +
“

1 +
√

2
”

y4 +
“

3 + 2
√

2
”

x2 +
“

2 + 4
√

2
”

xy +
“

3 +
√

2
”

y2 + 1 + 4
√

2

E59 = E60: RT = 8A1 + 2A2: |aut| = 2: N = 378000: h = [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] :

x5y +
“

1 +
√

2
”

x4y2 + 2 x2y4 +
“

2 +
√

2
”

xy5 +
“

4 + 3
√

2
”

y6 + 3 x4 +
“

4 + 4
√

2
”

x3y +
“

1 + 3
√

2
”

x2y2 +
“

3 + 3
√

2
”

xy3 + 4
√

2y4 + 4 x2 +
√

2xy +
“

3 + 3
√

2
”

y2 + 3

E61 = E62: RT = 8A1 + 2A2: |aut| = 1: N = 756000: h = [0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1] :

x3y3 +
“

3 + 4
√

2
”

x2y4 +2
√

2x3y2 +2 x2y3 +2 xy4 +x4 +
“

4 + 2
√

2
”

x3y +
“

1 +
√

2
”

x2y2 +
“

3 + 2
√

2
”

y4 +
“

3 +
√

2
”

x3 +
“

3 + 4
√

2
”

x2y + 4
√

2y3 +
“

2 + 4
√

2
”

x2 +
“

3 + 2
√

2
”

xy +
“

4 + 4
√

2
”

y2

E63 = E63: RT = 6A1 + 3A2: |aut| = 3: N = 252000: h = [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] :

x4y2 + x4y + x3y2 + 2 y5 + 2 x4 + 4 x2y2 + 3 xy3 + 4 y4 + 4 x3 + 2 xy2 + y3 + 2 x2 + y2

E64 = E64: RT = 6A1 + 3A2: |aut| = 3: N = 252000: h = [0, −1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] :

x4y2 + x3y3 + x2y4 + 3 x3y2 + x2y3 + 3 x3y + x2y2 + 2 x3 + 2 x2y + 3 y3 + 2 x2 + 3 xy + 4 y + 4

8. Proof of Theorem 1.3

The polynomials in Table 1.1 that give a non-projective involution g of XF are
calculated by the following method. Recall that h′

F in Step 8 of Section 6 is the
representative vector of the Aut(XF , hF )-orbit V4∩E0. We have already calculated
a birational morphism

φh′
F

= (ω : ξ0 : ξ1 : ξ2) : XF → Xh′
F
,

and the defining equation sh′
F

of Bh′
F
. We have observed that sh′

F
is written as

sh′
F
(x, y, z) = λ2 xH tx,
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where λ ∈ F×
25, x = (x, y, z), x = (x5, y5, z5) and H satisfies H = tH. We search

for M ∈ GL3(F25) such that H = M tM (see n. 3 of [20]), and put

ω′ := λ−1ω, (ξ′0, ξ
′
1, ξ

′
2) := (ξ0, ξ1, ξ2)M.

Then the polynomials ω′, ξ′0, ξ
′
1, ξ

′
2 satisfy

ω′2 = ξ′60 + ξ′61 + ξ′62 .

Hence the rational map from XF to P(3, 1, 1, 1) given by (ω′ : ξ′0 : ξ′1 : ξ′2) defines
an automorphism γ of XF . We choose hF -lines ℓi1 , . . . , ℓi22 such that [ℓi1 ], . . . , [ℓi22 ]
span NS(X) ⊗ Q, and that none of i1, . . . , i22 is contained in the set J of indices
in the expression (5.1) for h′

F that was used in the calculation of φh′
F
. Then we

can calculate the images ℓγ
iν

of ℓiν by γ using the parametric representations of ℓiν

and the polynomials (ω′ : ξ′0 : ξ′1 : ξ′2). Computing the intersection numbers of ℓγ
iν

with ℓ1, . . . , ℓ22, we calculate the action of γ on NS(X). Let v 7→ vΓ denote the
matrix representation of this action. We then search for τ ∈ Aut(X,hF ) such that
its action on XF is given by

w 7→ σw, (x, y, z) 7→ (x, y, z) Tτ ,

where σ ∈ F×
25, Tτ ∈ GU3(F25), and its action on NS(X) is given by v 7→ vNτ ,

where Nτ is a matrix satisfying (ΓNτ )2 = Id22. We define (ω′′, ξ′′0 , ξ′′1 , ξ′′2 ) by

ω′′ := σω′, (ξ′′0 , ξ′′1 , ξ′′2 ) := (ξ′0, ξ
′
1, ξ

′
2)Tτ ,

and replace the original polynomials (ω, ξ0, ξ1, ξ2) by (ω′′, ξ′′0 , ξ′′1 , ξ′′2 ). Then the
automorphism XF → XF given by (ω : ξ0 : ξ1 : ξ2) is of order 2, because its action
v 7→ vΓNτ on NS(X) is of order 2.
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[7] N. Elkies and M. Schütt. Genus 1 fibrations on the supersingular K3 surface in characteristic

2 with Artin invariant 1, 2012. Preprint, arXiv:1207.1239.

[8] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical Mono-

graphs. The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Pub-

lications.
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[10] S. Kondō. The automorphism group of a generic Jacobian Kummer surface. J. Algebraic

Geom., 7(3):589–609, 1998.
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