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ABSTRACT. Let X and Y be supersingular K3 surfaces defined over an algebraically closed field.
Suppose that the sum of their Artin invariants is 11. Then there exists a certain duality between their
Néron-Severi lattices. We investigate geometric consequences of this duality. As an application, we
classify genus one fibrations on supersingular K3 surfaces with Artin invariant 10 in characteristic 2
and 3, and give a set of generators of the automorphism group of the nef cone of these supersingular
K3 surfaces. The difference between the automorphism group of a supersingular K3 surface X and the
automorphism group of its nef cone is determined by the period of X . We define the notion of genericity
for supersingular K3 surfaces in terms of the period, and prove the existence of generic supersingular
K3 surfaces in odd characteristics for each Artin invariant larger than 1.

1. INTRODUCTION

A K3 surface defined over an algebraically closed field k is said to be supersingular (in the sense
of Shioda) if its Picard number is 22. Supersingular K3 surfaces exist only when k is of positive
characteristic. Let X be a supersingular K3 surface in characteristic p > 0, and let SX denote its
Néron-Severi lattice. Artin [1] showed that the discriminant group of SX is a p-elementary abelian
group of rank 2σ, where σ is an integer such that 1 ≤ σ ≤ 10. This integer σ is called the Artin
invariant of X . The isomorphism class of the lattice SX depends only on p and σ (Rudakov and Sha-
farevich [27]). Moreover supersingular K3 surfaces with Artin invariant σ form a (σ−1)-dimensional
family, and a supersingular K3 surface with Artin invariant 1 in characteristic p is unique up to iso-
morphisms (Ogus [24], [25], Rudakov and Shafarevich [27]).

Recently many studies of supersingular K3 surfaces in small characteristics with Artin invariant 1

have appeared. For example, for p = 2, Dolgachev and Kondo [8], Katsura and Kondo [12], Elkies
and Schütt [11]; for p = 3, Katsura and Kondo [13], Kondo and Shimada [18], Sengupta [28]; and
for p = 5, Shimada [33]. On the other hand, geometric properties of supersingular K3 surfaces with
big Artin invariant are not so much known (e.g. Rudakov and Shafarevich [26], [27], Shioda [35],
Shimada [31], [32]).
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In this paper, we present some methods to investigate supersingular K3 surfaces with big Artin
invariant by means of the following simple observation. Let Xp,σ be a supersingular K3 surface in
characteristic p with Artin invariant σ, and let Sp,σ denote its Néron-Severi lattice.

Lemma 1.1. Suppose that σ + σ′ = 11. Then Sp,σ′ is isomorphic to S∨
p,σ(p), where S∨

p,σ(p) is the
lattice obtained from the dual lattice S∨

p,σ of Sp,σ by multiplying the symmetric bilinear form with p.

Lemma 1.1 is proved in Section 3. We use this duality between Sp,σ and Sp,σ′ in the study of genus
one fibrations and the automorphism groups of supersingular K3 surfaces.

First, we apply Lemma 1.1 to the classification of genus one fibrations. Note that the Néron-Severi
lattice SY of a K3 surface Y is a hyperbolic lattice. The orthogonal group O(SY ) of SY contains the
stabilizer subgroup O+(SY ) of a positive cone of SY ⊗ R as a subgroup of index 2.

Definition 1.2. Let Y be a K3 surface, and let φ : Y → P1 be a genus one fibration. We denote by
fφ ∈ SY the class of a fiber of φ. Let ψ : Y → P1 be another genus one fibration on Y . We say that φ

and ψ are Aut-equivalent if there exist g ∈ Aut(Y ) and ḡ ∈ Aut(P1) such that φ ◦ g = ḡ ◦ ψ holds,
while we say that φ and ψ are lattice equivalent if there exists g ∈ O+(SY ) such that f g

φ = fψ. We
denote by E(Y ) the set of lattice equivalence classes of genus one fibrations on Y , and by [φ] ∈ E(Y )

the lattice equivalence class containing φ.

Many combinatorial properties of a genus one fibration φ : Y → P1 depend only on the lattice
equivalence class [φ]. See Proposition 4.1. Moreover, when σ = 10, the classification of genus one
fibrations by Aut-equivalence seems to be too fine, as is suggested by Proposition 9.2. Therefore, we
concentrate upon the study of lattice equivalence classes.

Using Lemma 1.1, we prove the following:

Theorem 1.3. Suppose that σ + σ′ = 11. Then there exists a canonical one-to-one correspondence

[φ] 7→ [φ′]

between E(Xp,σ) and E(Xp,σ′).

We say that a genus one fibration is Jacobian if it admits a section.

Theorem 1.4. Suppose that a genus one fibration φ : Xp,σ → P1 is a Jacobian fibration, and let
φ′ : Xp,σ′ → P1 be a genus one fibration on Xp,σ′ with σ′ = 11 − σ such that [φ′] ∈ E(Xp,σ′)

corresponds to [φ] ∈ E(Xp,σ) by Theorem 1.3. Then φ′ does not admit a section.

Elkies and Schütt [11] proved the following:

Theorem 1.5 ([11]). Any genus one fibration on Xp,1 admits a section.

Therefore we obtain the following:
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Corollary 1.6. There exist no Jacobian fibrations on Xp,10.

By an ADE-type, we mean a finite formal sum of the symbols Ai (i ≥ 1), Di (j ≥ 4) and Ek

(k = 6, 7, 8) with non-negative integer coefficients. For a genus one fibration φ : Y → P1 on a K3

surface Y , we have the ADE-type of reducible fibers of φ. This ADE-type depends only on the
lattice equivalence class [φ] ∈ E(Y ) (see Proposition 4.1). Therefore we can use R[φ] to denote the
ADE-type of the reducible fibers of φ.

From the classification of lattice equivalence classes of genus one fibrations of X2,1 by Elkies and
Schütt [11], and that of X3,1 by Sengupta [28], we obtain the classification of lattice equivalence
classes of genus one fibrations on X2,10 and X3,10. In particular, we obtain the list of ADE-types
R[φ′] of the reducible fibers of genus one fibrations φ′ on X2,10 and X3,10. See Theorems 4.8 and 4.9.

In Elkies and Schütt [11] and Sengupta [28] mentioned above, they also obtained explicit defin-
ing equations of the Jacobian fibrations. Besides [11] and [28], there have been many works on
the classification of Aut-equivalence classes and lattice equivalence classes of Jacobian fibrations on
a K3 surface (e.g. Oguiso [23], Nishiyama [22], Shimada and Zhang [34], Shimada [29], Kloost-
erman [16]). In particular, the lattice equivalence classes of all extremal (quasi-) elliptic fibrations
(i.e., Jacobian fibrations with Mordell-Weil rank zero) on supersingular K3 surfaces are classified in
Shimada [30].

As the second application of Lemma 1.1, we investigate the automorphism group of the nef cone
of a supersingular K3 surface. For a K3 surface Y , let Nef(Y ) ⊂ SY ⊗ R denote the nef cone.
We denote by Aut(Nef(Y )) ⊂ O+(SY ) the group of isometries of SY that preserve Nef(Y ). Since
Aut(Xp,σ) acts on Sp,σ faithfully (Rudakov and Shafarevich [27, Section 8, Proposition 3]), we have

(1.1) Aut(Xp,σ) ⊂ Aut(Nef(Xp,σ)) ⊂ O+(Sp,σ).

Using the description of Aut(X2,1) by Dolgachev and Kondo [8], and that of Aut(X3,1) by Kondo and
Shimada [18], we give a set of generators of Aut(Nef(X2,10)) and Aut(Nef(X3,10)) in Theorems 6.4
and 6.9, respectively.

Suppose that p is odd. We fix a lattice N isomorphic to Sp,σ. Then a quadratic space (N0, q0) of
dimension 2σ over Fp is defined by

(1.2) N0 := pN∨/pN and q0(px mod pN) := px2 mod p (x ∈ N∨).

We fix a marking η : N →∼ Sp,σ for a supersingular K3 surface X := Xp,σ defined over k. Then
Aut(Nef(X)) acts on (N0, q0), and the period K(X,η) ⊂ N0 ⊗ k of the marked supersingular K3

surface (X, η) is defined as the Frobenius pull-back of the kernel of the natural homomorphism

N ⊗ k → SX ⊗ k → H2
DR(X/k)
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(see Section 7). In virtue of Torelli theorem for supersingular K3 surfaces by Ogus [24], [25], the
subgroup Aut(X) of Aut(Nef(X)) is equal to the stabilizer subgroup of the period K(X,η). In par-
ticular, the index of Aut(Xp,σ) in Aut(Nef(Xp,σ)) is finite. On the other hand, the classification of
2-reflective lattices due to Nikulin [21] implies that Aut(Nef(Xp,σ)) is infinite. Hence, at least when
p is odd, Aut(Xp,σ) is an infinite group. See Sections 5 and 7 for details. Moreover, Lieblich and
Maulik [19] proved that, if p > 2, then Aut(Xp,σ) is finitely generated and its action on Nef(Xp,σ)

has a rational polyhedral fundamental domain.

We say that a supersingular K3 surface X is generic if there exists a marking η : N →∼ SX such
that the isometries of (N0, q0) that preserve the period K(X,η) ⊂ N0⊗k are only scalar multiplications
(see Definition 7.5). Using the surjectivity of the period mapping proved by Ogus [25], we prove the
following:

Theorem 1.7. Suppose that p is odd and σ > 1. Then there exist an algebraically closed field k and
a supersingular K3 surface X with Artin invariant σ defined over k that is generic.

Suppose that X3,10 is generic. From the generators of Aut(Nef(X3,10)) given in Theorem 6.9, we
can obtain a finite set of generators of Aut(X3,10). However, the computation would be very heavy.
See Remarks 7.7 and 7.8.

As the third application, we show by an example that a lattice equivalence class of genus one
fibrations on X3,10 can contain a very large number of Aut-equivalence classes, provided that X3,10

is generic. An analogous result for a generic complex Enriques surface was obtained by Barth and
Peters [2].

This paper is organized as follows. In Section 2, we fix notation and terminologies about lattices
and K3 surfaces. In Section 3, Lemma 1.1 is proved by means of the fundamental results of Rudakov
and Shafarevich [27] on the Néron-Severi lattices of supersingular K3 surfaces. In Section 4, we study
genus one fibrations on supersingular K3 surfaces, and prove Theorems 1.3 and 1.4. Moreover, the
bijections E(Xp,1) ∼= E(Xp,10) for p = 2 and 3 are given explicitly in Tables 4.1 and 4.2. In Section 5,
we review the classical method to investigate the orthogonal group of a hyperbolic lattice by means of
a chamber decomposition of the associated hyperbolic space, and fix some notation and terminologies.
We then apply this method to the nef cone of a supersingular K3 surface. In Section 6, we give a
set of generators of Aut(Nef(X2,10)) and Aut(Nef(X3,10)). In Section 7, we review the theory of
the period mapping and Torelli theorem for supersingular K3 surfaces in odd characteristics due to
Ogus [24], [25], and describe the relation between Aut(Xp,σ) and Aut(Nef(Xp,σ)). In Section 8, we
prove Theorem 1.7. In the last section, we illustrate that the number of Aut-equivalence classes of
genus one fibrations on X3,10 is intractably large if X3,10 is generic.

Convention. We use Aut to denote automorphism groups of lattice theoretic objects, and Aut to
denote automorphism groups of geometric objects on K3 surfaces.
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2. PRELIMINARIES

2.1. Lattices. A Q-lattice is a free Z-module L of finite rank equipped with a non-degenerate sym-
metric bilinear form 〈·, ·〉L : L × L → Q. We omit the subscript L in 〈·, ·〉L if no confusions will
occur. If 〈·, ·〉L takes values in Z, we say that L is a lattice. For x ∈ L ⊗ R, we call x2 := 〈x, x〉 the
norm of x. A vector in L ⊗ R of norm n is sometimes called an n-vector. A lattice L is said to be
even if x2 ∈ 2Z holds for any x ∈ L.

Let L be a free Z-module of finite rank. A submodule M of L is primitive if L/M is torsion free.
A non-zero vector v ∈ L is primitive if the submodule of L generated by v is primitive.

Let L be a Q-lattice of rank r. For a non-zero rational number m, we denote by L(m) the free
Z-module L with the symmetric bilinear form 〈x, y〉L(m) := m〈x, y〉L. The signature of L is the
signature of the real quadratic space L ⊗ R. We say that L is negative definite if the signature of L is
(0, r), and L is hyperbolic if the signature is (1, r − 1). A Gram matrix of L is an r × r matrix with
entries 〈ei, ej〉, where {e1, . . . , er} is a basis of L. The determinant of a Gram matrix of L is called
the discriminant of L.

For an even lattice L, the set of (−2)-vectors is denoted by R(L). A negative definite even lattice L

is called a root lattice if L is generated by R(L). Let R be an ADE-type. The root lattice of type R is
the root lattice whose Gram matrix is the Cartan matrix of type R. Suppose that L is negative definite.
By the ADE-type of R(L), we mean the ADE-type of the root sublattice 〈R(L)〉 of L generated by
R(L). (See, for example, Ebeling [10] for the classification of root lattices.)

Let L be an even lattice and let L∨ := Hom(L, Z) be identified with a submodule of L⊗Q with the
extended symmetric bilinear form. We call this Q-lattice L∨ the dual lattice of L. The discriminant
group of L is defined to be the quotient L∨/L, and is denoted by AL. We define the discriminant
quadratic form of L

qL : AL → Q/2Z

by qL(x mod L) := x2 mod 2Z. The order of AL is equal to the discriminant of L up to sign. We
say that L is unimodular if AL is trivial, while L is p-elementary if AL is p-elementary. An even
2-elementary lattice L is said to be of type I if qL(x mod L) ∈ Z/2Z holds for any x ∈ L∨. Note that
L is p-elementary if and only if pG−1

L is an integer matrix, where GL is a Gram matrix of L.
Let O(L) denote the orthogonal group of a lattice L, that is, the group of isomorphisms of L

preserving 〈·, ·〉L. We assume that O(L) acts on L from right, and the action of g ∈ O(L) on v ∈ L⊗R
is denoted by v 7→ vg. Similarly O(qL) denotes the group of isomorphisms of AL preserving qL. There
is a natural homomorphism O(L) → O(qL).

Let L be a hyperbolic lattice. A positive cone of L is one of the two connected components of

{ x ∈ L ⊗ R | x2 > 0 }.
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Let PL be a positive cone of L. We denote by O+(L) the group of isometries of L that preserve PL.
We have O(L) = O+(L) × {±1}. For a vector v ∈ L ⊗ R with v2 < 0, we put

(v)⊥ := { x ∈ PL | 〈x, v〉 = 0 },

which is a real hyperplane of PL. An isometry g ∈ O+(L) is called a reflection with respect to v or
a reflection into (v)⊥ if g is of order 2 and fixes each point of (v)⊥. An element r of R(L) defines a
reflection

sr : x 7→ x + 〈x, r〉r

with respect to r. We denote by W (L) the subgroup of O+(L) generated by the set of these reflections
{sr | r ∈ R(L)}. It is obvious that W (L) is normal in O+(L).

2.2. K3 surfaces. Let Y be a K3 surface, and let SY denote the Néron-Severi lattice of Y . A smooth
rational curve on Y is called a (−2)-curve. We denote by P(Y ) ⊂ SY ⊗R the positive cone containing
an ample class of Y . Recall that the nef cone Nef(Y ) of Y is defined by

Nef(Y ) := { x ∈ SY ⊗ R | 〈x, [C]〉 ≥ 0 for any curve C on Y },

where [C] ∈ SY is the class of a curve C ⊂ Y . Then Nef(Y ) is contained in the closure P(Y ) of
P(Y ) in SY ⊗ R. We put

Nef◦(Y ) := Nef(Y ) ∩ P(Y ) = { x ∈ Nef(Y ) | x2 > 0 }.

The following is well-known. See, for example, Rudakov and Shafarevich [27, Section 3].

Proposition 2.1. (1) We have

Nef(Y ) = { x ∈ SY ⊗ R | 〈x, [C]〉 ≥ 0 for any (−2)-curve C on Y }.

(2) If v ∈ SY is contained in P(Y ), then there exists g ∈ W (SY ) such that vg ∈ Nef(Y ).

3. NÉRON-SEVERI LATTICES OF SUPERSINGULAR K3 SURFACES

Let Xp,σ be a supersingular K3 surface with Artin invariant σ in characteristic p > 0. Then
the isomorphism class of the Néron-Severi lattice Sp,σ of Xp,σ depends only on p and σ, and is
characterized as follows (see Rudakov-Shafarevich [27, Sections 3,4 and 5] for the proof).

Theorem 3.1 ([27]). (1) The lattice Sp,σ is an even hyperbolic p-elementary lattice of rank 22 with
discriminant −p2σ. Moreover, S2,σ is of type I.

(2) Suppose that N is an even hyperbolic p-elementary lattice of rank 22 with discriminant −p2σ.
When p = 2, we further assume that N is of type I. Then N is isomorphic to Sp,σ.

Using this theorem, we can prove Lemma 1.1 easily.



SUPERSINGULAR K3 SURFACES 7

Proof of Lemma 1.1 . It is enough to show that S∨
p,σ(p) is an even p-elementary lattice of discriminant

−p2σ′ , and that S∨
2,σ(2) is of type I. Since Sp,σ is p-elementary, we have pS∨

p,σ ⊂ Sp,σ. Therefore
S∨

p,σ(p) is a lattice. Let Gp,σ be a Gram matrix of Sp,σ. Then the determinant of the Gram matrix
pG−1

p,σ of S∨
p,σ(p) is equal to p22 ·det(Gp,σ)−1 = −p2σ′ . Therefore the discriminant of S∨

p,σ(p) is −p2σ′ .
Since p(pG−1

p,σ)−1 = Gp,σ is an integer matrix, S∨
p,σ(p) is p-elementary. Suppose that p is odd. Then,

for any ξ ∈ S∨
p,σ, we have pξ ∈ Sp,σ and hence 〈pξ, pξ〉Sp,σ = p〈ξ, ξ〉S∨

p,σ(p) is even. Therefore S∨
p,σ(p)

is even. Suppose that p = 2. Then, for any ξ ∈ S∨
2,σ, we have 〈ξ, ξ〉S∨

2,σ
∈ Z, because S2,σ is of type I.

Therefore S∨
2,σ(2) is even. Moreover, for any η ∈ (S∨

2,σ(2))∨ = S2,σ(1/2), we have 〈η, η〉S2,σ(1/2) ∈ Z,
because S2,σ is even. Therefore S∨

2,σ(2) is of type I. ¤

Corollary 3.2. Suppose that σ + σ′ = 11. Then there exists an embedding of Z-modules

j : Sp,σ ↪→ Sp,σ′

that induces an isomorphism of lattices S∨
p,σ(p) ∼= Sp,σ′ . This embedding induces an isomorphism

j∗ : O(Sp,σ) →∼ O(Sp,σ′).

Moreover such an embedding j is unique up to compositions with elements of O(Sp,σ′).

Remark 3.3. Suppose that v ∈ Sp,σ satisfies v2 ≥ 0. Then, by Proposition 2.1(2), we can choose
j : Sp,σ ↪→ Sp,σ′ in Corollary 3.2 in such a way that j(v) is contained in Nef(Xp,σ′).

4. GENUS ONE FIBRATIONS

Let Y be a K3 surface defined over an algebraically closed field of arbitrary characteristic. Recall
that fφ ∈ SY is the class of a fiber of a genus one fibration φ : Y → P1, E(Y ) is the set of lattice
equivalence classes of genus one fibrations on Y , and [φ] ∈ E(Y ) is the class containing φ. We
summarize properties of a genus one fibration φ : Y → P1 that depends only on the class [φ]. See
Sections 3 and 4 of Rudakov and Shafarevich [27], and Shioda [36] for the proof.

(1) The fibration φ admits a section if and only if there exists a (−2)-vector z ∈ SY such that
〈fφ, z〉 = 1.

(2) Note that fφ ∈ SY is primitive of norm 0, and that 〈fφ〉⊥/〈fφ〉 is an even negative definite
lattice, where 〈fφ〉⊥ is the orthogonal complement in SY of the lattice 〈fφ〉 of rank 1 generated by
fφ. The ADE-type of the reducible fibers of φ is equal to the ADE-type of the set R(〈fφ〉⊥/〈fφ〉) of
(−2)-vectors in 〈fφ〉⊥/〈fφ〉.

(3) Suppose that φ admits a section Z ⊂ Y . Then fφ and [Z] ∈ SY generate an even unimodular
hyperbolic lattice Uφ of rank 2 in SY . Let Kφ denote the orthogonal complement of Uφ in SY . We
have an orthogonal direct-sum decomposition

SY = Uφ ⊕ Kφ,
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and the lattice 〈fφ〉⊥/〈fφ〉 is isomorphic to Kφ. Then the Mordell-Weil group of φ is isomorphic to
Kφ/〈R(Kφ)〉, where 〈R(Kφ)〉 is the root sublattice of Kφ generated by the (−2)-vectors in Kφ.

(4) In characteristic 2 or 3, φ is quasi-elliptic if and only if 〈R(Kφ)〉 is p-elementary of rank 20.

As a corollary, we obtain the following:

Proposition 4.1. Suppose that genus one fibrations φ : Y → P1 and ψ : Y → P1 on Y are lattice-
equivalent. Then the following hold.

(1) The fibration φ admits a section if and only if so does ψ.
(2) The ADE-type of the reducible fibers of φ is equal to that of ψ.
(3) Suppose that φ and ψ admit a section. Then the Mordell-Weil groups for φ and for ψ are

isomorphic.
(4) In characteristic 2 or 3, the fibration φ is quasi-elliptic if and only if so is ψ.

Definition 4.2. For a hyperbolic lattice S, we put

Ẽ(S) := {v ∈ S ⊗ Q | v ̸= 0, v2 = 0}/Q× and E(S) := Ẽ(S)/O(S).

Remark 4.3. Let a positive cone PS of S be fixed. Then each element of Ẽ(S) is represented by a
unique non-zero primitive vector v ∈ S of norm 0 that is contained in the closure PS of PS in S ⊗R.

In Sections 3 and 4 of Rudakov and Shafarevich [27], the following is proved:

Proposition 4.4. Let v be a non-zero vector of SY . Then there exists a genus one fibration φ : Y → P1

such that v = fφ if and only if v is primitive, v2 = 0, and v ∈ Nef(Y ).

Combining Propositions 2.1, 4.4 and Remark 4.3, we obtain the following:

Corollary 4.5. The map φ 7→ fφ induces a bijection from E(Y ) to E(SY ).

From now on, we work over an algebraically closed field of characteristic p > 0.

Proof of Theorem 1.3. Consider the embedding j : Sp,σ ↪→ Sp,σ′ in Corollary 3.2. Then j is unique
up to O(Sp,σ′), induces a bijection from Ẽ(Sp,σ) to Ẽ(Sp,σ′), and induces an isomorphism O(Sp,σ) ∼=
O(Sp,σ′). Hence it induces a canonical bijection from E(Sp,σ) to E(Sp,σ′). ¤

We denote this canonical one-to-one correspondence from E(Xp,σ) to E(Xp,σ′) by [φ] 7→ [φ′].

Remark 4.6. Let a genus one fibration φ : Xp,σ → P1 be given, and let φ′ : Xp,σ′ → P1 be a
representative of [φ′]. Then we can choose the embedding j : Sp,σ ↪→ Sp,σ′ inducing S∨

p,σ(p) ∼= Sp,σ′

in such a way that j(fφ) is a scalar multiple of fφ′ by a positive integer.

Theorem 4.7. Suppose that a genus one fibration φ : Xp,σ → P1 admits a section. Then the corre-
sponding genus one fibration φ′ : Xp,σ′ → P1 does not admit a section. Moreover the ADE-type of
the reducible fibers of φ′ is equal to the ADE-type of R(K∨

φ (p)).
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No. RN σ = 1 σ = 10

R[φ] MWtor rank(MW) R[φ′]

1 4A5 + D4 4A5 [3, 6] 0 0

2 6D4 5D4 [2, 2, 2, 2] 0 0

3 2A7 + 2D5 2A7 + D5 [8] 1 A1

4 2A9 + D6 2A1 + 2A9 [10] 0 2A1

5 4D6 2A1 + 3D6 [2, 2, 2] 0 2A1

6 A11 + D7 + E6 A11 + D7 [4] 2 A2

7 A11 + D7 + E6 A3 + A11 + E6 [6] 0 3A1

8 4E6 3E6 [3] 2 A2

9 3D8 D4 + 2D8 [2, 2] 0 4A1

10 A15 + D9 A15 + D5 [4] 0 5A1

11 A17 + E7 3A1 + A17 [6] 0 A3

12 D10 + 2E7 3A1 + D10 + E7 [2, 2] 0 A3

13 D10 + 2E7 D6 + 2E7 [2] 0 6A1

14 2D12 D8 + D12 [2] 0 8A1

15 D16 + E8 D4 + D16 [2] 0 D4

16 D16 + E8 D12 + E8 [1] 0 12A1

17 3E8 D4 + 2E8 [1] 0 D4

18 D24 D20 [1] 0 20A1

TABLE 4.1. Genus one fibrations on X2,1 and X2,10

Proof. Let z ∈ Sp,σ be the class of a section of φ. We choose j : Sp,σ ↪→ Sp,σ′ as in Remark 4.6. Since
U∨

φ = Uφ, we see that j(fφ) is primitive in Sp,σ′ and hence j(fφ) = fφ′ . We have an isomorphism
Sp,φ′ ∼= Uφ(p) ⊕ K∨

φ (p) such that fφ′ and j(z) form a basis of Uφ(p). Since there are no vectors
v ∈ Uφ(p) ⊕ K∨

φ (p) with 〈v, fφ′〉 = 1, the fibration φ′ does not admit a section. Moreover the lattice
〈fφ′〉⊥/〈fφ′〉 is isomorphic to K∨

φ (p). ¤

The list of lattice equivalence classes of genus one fibrations on X2,1 and X3,1 were obtained by
Elkies and Schütt [11] and by Sengupta [28], respectively. From their results, we obtain the following
results on supersingular K3 surfaces with Artin invariant 10:

Theorem 4.8. There exist 18 lattice equivalence classes of genus one fibrations on X2,10. The ADE-
type R[φ′] of the reducible fibers of each [φ′] ∈ E(X2,10) is given at the last column of Table 4.1.

Theorem 4.9. There exist 52 lattice equivalence classes of genus one fibrations on X3,10. The ADE-
type R[φ′] of the reducible fibers of each [φ′] ∈ E(X3,10) is given at the last column of Table 4.2.
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No. RN σ = 1 σ = 10
R[φ] MWtor rank(MW) R[φ′]

1 12A2 10A2 [3, 3, 3, 3] 0 0
2 8A3 6A3 [4, 4] 2 0
3 6A4 2A1 + 4A4 [5] 2 0
4 6D4 4D4 [2, 2] 4 0
5 4A5 + D4 A2 + 3A5 [3] 3 0
6 4A5 + D4 3A5 + D4 [2, 6] 1 A1

7 4A5 + D4 2A2 + 2A5 + D4 [2] 2 0
8 4A6 3A6 [7] 2 A1

9 4A6 2A3 + 2A6 [1] 2 0
10 2A7 + 2D5 4A1 + 2A7 [2, 4] 2 0
11 2A7 + 2D5 A1 + A7 + 2D5 [4] 2 A1

12 2A7 + 2D5 2A1 + A4 + A7 + D5 [2] 2 0
13 2A7 + 2D5 2A4 + 2D5 [1] 2 0
14 3A8 A2 + 2A8 [3] 2 A1

15 3A8 2A5 + A8 [1] 2 0
16 4D6 3D6 [2, 2] 2 2A1

17 4D6 2A3 + 2D6 [2, 2] 2 0
18 2A9 + D6 2A9 [5] 2 2A1

19 2A9 + D6 A3 + A9 + D6 [2] 2 A1

20 2A9 + D6 A3 + A6 + A9 [1] 2 0
21 2A9 + D6 2A6 + D6 [1] 2 0
22 4E6 A2 + 3E6 [3] 0 A2

23 4E6 4A2 + 2E6 [3, 3] 0 0
24 A11 + D7 + E6 A2 + A11 + D7 [4] 0 A2

25 A11 + D7 + E6 A11 + E6 [3] 3 2A1

26 A11 + D7 + E6 2A2 + A11 + D4 [6] 1 0
27 A11 + D7 + E6 A5 + D7 + E6 [1] 2 A1

28 A11 + D7 + E6 2A2 + A8 + D7 [1] 1 0
29 A11 + D7 + E6 A8 + D4 + E6 [1] 2 0
30 2A12 A6 + A12 [1] 2 A1

31 2A12 2A9 [1] 2 0
32 3D8 2A1 + 2D8 [2, 2] 2 2A1

33 3D8 2D5 + D8 [2] 2 0
34 A15 + D9 A3 + A15 [4] 2 2A1

35 A15 + D9 A9 + D9 [1] 2 A1

36 A15 + D9 A12 + D6 [1] 2 0

(to be continued)
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No. RN σ = 1 σ = 10
37 A17 + E7 A2 + A17 [3] 1 A1 + A2

38 A17 + E7 A11 + E7 [1] 2 A1

39 A17 + E7 A5 + A14 [1] 1 0
40 D10 + 2E7 A2 + D10 + E7 [2] 1 A1 + A2

41 D10 + 2E7 2A5 + D10 [2, 2] 0 0
42 D10 + 2E7 D4 + 2E7 [2] 2 2A1

43 D10 + 2E7 A5 + D7 + E7 [2] 1 0
44 2D12 D6 + D12 [2] 2 2A1

45 2D12 2D9 [1] 2 0
46 3E8 2A2 + 2E8 [1] 0 2A2

47 3E8 2E6 + E8 [1] 0 0
48 D16 + E8 2A2 + D16 [2] 0 2A2

49 D16 + E8 D10 + E8 [1] 2 2A1

50 D16 + E8 D13 + E6 [1] 1 0
51 A24 A18 [1] 2 A1

52 D24 D18 [1] 2 2A1

TABLE 4.2. Genus one fibrations on X3,1 and X3,10

In Table 4.1 (resp. Table 4.2), the lists E(X2,1) and E(X2,10) (resp. E(X3,1) and E(X3,10)) are
presented. Two lattice equivalence classes in the same row are the pair of [φ] ∈ E(Xp,1) and its
corresponding partner [φ′] ∈ E(Xp,10). The ADE-type R[φ] of the reducible fibers of φ, and the
torsion MWtor and the rank of the Mordell-Weil group of φ are also given. (Recall that φ is Jacobian
for any [φ] ∈ E(Xp,1) by Elkies and Schütt [11].) The meaning of the entry RN is explained in the
proof of Theorems 4.8 and 4.9.

Proof of Theorems 4.8 and 4.9. By Theorem 4.7, it is enough to calculate the ADE-type of R(K∨
φ (p))

for p = 2, 3 and [φ] ∈ E(Xp,1). The lattices Kφ are calculated in Elkies and Schütt [11] and Sen-
gupta [28] by Nishiyama’s method [22]. We put

T := the root lattice of type

D4 if p = 2,

2A2 if p = 3.

Then, for each [φ] ∈ E(Xp,1), there exist a Niemeier lattice Nφ and a primitive embedding of T

into Nφ such that Kφ is isomorphic to the orthogonal complement of T in Nφ. The entry RN in
Tables 4.1 and 4.2 indicates the ADE-type of R(Nφ). From a Gram matrix of Kφ, we can calculate
the ADE-type of R(K∨

φ (p)) by the algorithm described in [32, Section 4] or [33, Section 3]. ¤

Corollary 4.10. There exist no quasi-elliptic fibrations on X3,10.
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Remark 4.11. Rudakov and Shafarevich [27, Section 5] showed that there exists a quasi-elliptic fibra-
tion on X2,σ for any σ. The quasi-elliptic fibration on X2,10 (No. 18 of Table 4.1) was discovered by
Rudakov and Shafarevich [26, Section 4].

5. CHAMBER DECOMPOSITION OF A POSITIVE CONE

Let S be an even hyperbolic lattice, and let PS ⊂ S ⊗ R be a positive cone. In this section, we
review a general method to find a set of generators of a subgroup of O+(S) by means of a chamber
decomposition of PS , which was developed by Vinberg [37], [38], Conway [7] and Borcherds [3],
[4].

Any real hyperplane in PS is written in the form (v)⊥ by some vector v ∈ S ⊗ R with negative
norm. We denote by HS the set of real hyperplanes in PS , which is canonically identified with

{ v ∈ S ⊗ R | v2 < 0 }/R×.

For a subset V of {v ∈ S ⊗ R | v2 < 0}, we denote by V ∗ ⊂ HS the image of V by v 7→ (v)⊥. A
closed subset D of PS is called a chamber if the interior D◦ of D is non-empty and there exists a set
∆D of vectors v ∈ S ⊗ R with v2 < 0 such that

D = { x ∈ PS | 〈x, v〉 ≥ 0 for all v ∈ ∆D }.

A hyperplane (v)⊥ of PS is called a wall of D if D◦∩ (v)⊥ = ∅ and D∩ (v)⊥ contains an open subset
of (v)⊥. When D is a chamber, we always assume that the set ∆D is minimal in the sense that, for
any v ∈ ∆D, there exists a point x ∈ PS such that 〈x, v〉 < 0 and 〈x, v′〉 ≥ 0 for any v′ ∈ ∆D \ {v},
that is, the projection ∆D → ∆∗

D is bijective and every hyperplane (v)⊥ ∈ ∆∗
D is a wall of D.

For a chamber D, we put

Aut(D) := { g ∈ O+(S) | Dg = D }.

A chamber D is said to be fundamental if the following hold:

(i) PS is the union of all Dg, where g runs through O+(S), and
(ii) if D◦ ∩ Dg ̸= ∅, then g ∈ Aut(D).

Let F be a family of hyperplanes in PS with the following properties:

(a) F is locally finite in PS , and
(b) F is invariant under the action of O+(S) on HS .

Then the closure of each connected component of

PS \
⋃
F

(v)⊥

is a chamber, which we call an F-chamber.
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Suppose that D is an F-chamber. Then Dg is also an F-chamber for any g ∈ O+(S) by the property
(b) of F , and D satisfies the property (ii) in the definition of fundamental chambers. Moreover, D

satisfies the property (i) if and only if every F-chamber is equal to Dg for some g ∈ O+(S).
For each wall (v)⊥ ∈ ∆∗

D of an F-chamber D, there exists a unique F-chamber D′ distinct from
D such that D ∩ D′ ∩ (v)⊥ contains an open subset of (v)⊥. We say that D′ is adjacent to D along
(v)⊥, and that (v)⊥ is the wall between the adjacent chambers D and D′.

Proposition 5.1. An F-chamber D is fundamental if and only if, for each v ∈ ∆D, there exists
gv ∈ O+(S) such that Dgv is adjacent to D along (v)⊥.

Proof. The ‘only if ’ part is obvious. We prove the ‘if ’ part. It is enough to show that, for an arbitrary
F-chamber D′, there exists g ∈ O+(S) such that D′ = Dg. Since the family F of hyperplanes
is locally finite in PS , there exists a finite chain of F-chambers D0 = D,D1, . . . , DN = D′ such
that Di and Di+1 are adjacent. We show, by induction on N , that there exists a sequence of vectors
v1, . . . , vN in ∆D such that Di = Dgvi ···gv1 holds for i = 1, . . . , N . The case N = 0 is trivial.
Suppose that N > 0. Let (w)⊥ be the wall between DN−1 and DN , and let vN ∈ ∆D be the vector
such that the wall (vN)⊥ of D is mapped to the wall (w)⊥ of DN−1 by gvN−1

· · · gv1 . Then we have
DN = DgvN

···gv1 . ¤

Remark 5.2. If an F-chamber is fundamental, then any F-chamber is fundamental.

Let G be a subset of F that is invariant under the action of O+(S). Then G is locally finite, and any
G-chamber is a union of F-chambers. If an F-chamber is fundamental, then any G-chamber is also
fundamental.

Proposition 5.3. Let D be an F-chamber and let C be a G-chamber such that D ⊂ C. Suppose that
D is fundamental. For v ∈ ∆D, let gv ∈ O+(S) be an isometry such that Dgv is adjacent to D along
(v)⊥. We put

Γ := { gv | v ∈ ∆D, (v)⊥ /∈ G }.
Then Aut(C) is generated by Aut(D) and Γ.

Proof. If gv ∈ Γ, then Dgv is contained in C because the wall (v)⊥ between D and Dgv does not
belong to G, and hence gv ∈ Aut(C). Therefore the subgroup 〈Aut(D), Γ〉 of O+(S) generated by
Aut(D) and Γ is contained in Aut(C). To prove Aut(C) ⊂ 〈Aut(D), Γ〉, it is enough to show that, for
any g ∈ Aut(C), there exists a sequence γ1, . . . , γN of elements of Γ such that Dg = DγN ···γ1 . There
exists a sequence of F-chambers D0 = D,D1, . . . , DN = Dg such that each Di is contained in C and
that Di+1 is adjacent to Di for i = 0, . . . , N − 1. Suppose that we have constructed γ1, . . . , γi ∈ Γ

such that Di = Dγi...γ1 holds. The wall (w)⊥ between Di and Di+1 does not belong to G. Let vi+1

be an element of ∆D such that the wall (vi+1)
⊥ of D is mapped to the wall (w)⊥ of Di by γi . . . γ1.

Since G is invariant under the action of O+(S), we have (vi+1)
⊥ /∈ G and hence γi+1 := gvi+1

is an
element of Γ. Then Di+1 = Dγi+1γi···γ1 holds. ¤



14 SHIGEYUKI KONDŌ AND ICHIRO SHIMADA

Remark 5.4. Let D and C be as in Proposition 5.3. Let v and v′ be elements of ∆D. Suppose that
the wall (v)⊥ of D is mapped to the wall (v′)⊥ of D by h ∈ Aut(D). Then Dhgv′h

−1 is adjacent
to D along (v)⊥ . Let ∆′

D be a subset of ∆D such that the subset ∆′∗
D of ∆∗

D is a complete set of
representatives of the orbit decomposition of ∆∗

D by the action of Aut(D). Then Aut(C) is generated
by Aut(D) and {gv | v ∈ ∆′

D, (v)⊥ /∈ G}.

Considering the case G = ∅, we obtain the following:

Corollary 5.5. Let D be an F-chamber. If D is fundamental, then O+(S) is generated by Aut(D)

and the isometries gv that map D to its adjacent chambers.

Example 5.6. Recall that W (S) ⊂ O+(S) is the subgroup generated by {sr | r ∈ R(S)}. Any
R(S)∗-chamber is fundamental, because every r ∈ R(S) defines a reflection sr. It follows that
O+(S) is equal to the semi-direct product of W (S) and the automorphism group Aut(D) of an
R(S)∗-chamber D. In particular, we have

Aut(D) ∼= O+(S)/W (S).

Let L be an even unimodular hyperbolic lattice, and let ι : S ↪→ L be a primitive embedding. Let
PL be the positive cone of L that contains ι(PS). We denote by Tι the orthogonal complement of S

in L, and by
v 7→ vS

the orthogonal projection L ⊗ R → S ⊗ R . Since L is a submodule of S∨ ⊕ T∨
ι , the image of L by

v 7→ vS is contained in S∨. We assume the following:

(5.1) the natural homomorphism O(Tι) → O(qTι) is surjective.

Then we have the following:

Proposition 5.7. For any g ∈ O+(S), there exists g̃ ∈ O+(L) such that ι(vg) = ι(v)g̃ holds for any
v ∈ S ⊗ R.

Proof. See Nikulin [20, Proposition 1.6.1]. ¤

A hyperplane (r)⊥ of PL defined by a (−2)-vector r ∈ R(L) intersects ι(PS) if and only if r2
S < 0.

We put
R(L, ι) := { rS | r ∈ R(L) and r2

S < 0 } ⊂ S∨.

Since Tι is negative definite, we have −2 ≤ r2
S for any r ∈ R(L). Since S∨ is discrete in S ⊗ R,

the family of hyperplanes R(L, ι)∗ is locally finite in PS . By Proposition 5.7, if r ∈ R(L) satisfies
rS ∈ R(L, ι), then, for any g ∈ O+(S), we have rg

S = (rg̃)S ∈ R(L, ι). Therefore R(L, ι) is invariant
under the action of O+(S). Note that R(L, ι) contains R(S), and that R(S) is obviously invariant
under the action of O+(S). Therefore, by Proposition 5.3, we can obtain a set of generators of the
automorphism group Aut(C) of an R(S)∗-chamber C if we find an R(L, ι)∗-chamber D contained
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in C, show that D is fundamental, calculate the group Aut(D), and find isometries of S that map D

to its adjacent chambers.

Let L26 denote an even hyperbolic unimodular lattice of rank 26, which is unique up to isomor-
phisms by Eichler’s theorem (see, for example, Cassels [6]). The walls of an R(L26)

∗-chamber
D ⊂ L26⊗R and the group Aut(D) ⊂ O+(L26) were determined by Conway [7]. Then Borcherds [3],
[4] determined the structure of O+(S) for some even hyperbolic lattices S of rank < 26 by embedding
S into L26 in such a way that Tι is a root lattice.

Kondo [17] applied the Conway-Borcherds method to the study of the automorphism group of
a generic Jacobian Kummer surface. Then Keum and Kondo [14] applied it to Kummer surfaces
associated with the product of two elliptic curves, Dolgachev and Keum [9] applied it to quartic
Hessian surfaces, Dolgachev and Kondo [8] applied it to X2,1, and Kondo and Shimada [18] applied
it to X3,1.

We say that an even hyperbolic lattice S is 2-reflective if the index of W (S) in O+(S) is fi-
nite, or equivalently, if the automorphism group of an R(S)∗-chamber is finite (see Example 5.6).
Nikulin [21] classified all 2-reflective lattices of rank ≥ 5. It turns out that there are no 2-reflective
lattices of rank > 19.

Let Y be a K3 surface with the Néron-Severi lattice SY and the positive cone P(Y ) containing an
ample class. Then the closed subset Nef◦(Y ) = Nef(Y ) ∩ P(Y ) of P(Y ) is an R(SY )∗-chamber by
Proposition 2.1(1), and hence we have

Aut(Nef(Y )) = Aut(Nef◦(Y )) ∼= O+(SY )/W (SY ).

Combining this fact with Nikulin’s classification of 2-reflective lattices, we obtain the following:

Corollary 5.8. For any supersingular K3 surface Xp,σ, the group Aut(Nef(Xp,σ)) is infinite.

6. THE GROUPS Aut(Nef(X2,10)) AND Aut(Nef(X3,10))

6.1. The group Aut(Nef(X2,10)). By Lemma 1.1, the result of Dolgachev and Kondo [8], and the
method of the previous section, we obtain a set of generators of Aut(Nef(X2,10)).

First we recall the results of [8]. As a projective model of X2,1, we consider the minimal resolution
X of the inseparable double cover Y → P2 of P2 defined by

w2 = x0x1x2(x
3
0 + x3

1 + x3
2).

Note that the projective plane P2(F4) defined over F4 contains 21 points p1, . . . , p21 and 21 lines
ℓ1, . . . , ℓ21. The inseparable double cover Y has 21 ordinary nodes over the 21 points in P2(F4)

and hence X has 21 disjoint (−2)-curves. We denote by e1, . . . , e21 ∈ S2,1 the classes of these
(−2)-curves, by h ∈ S2,1 the class of the pullback of a line on P2, and by f1, . . . , f21 ∈ S2,1 the
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classes of the proper transforms of the 21 lines in P2(F4). Then S2,1 is generated by the (−2)-vectors
e1, . . . , e21, f1, . . . , f21. The vector

wM :=
1

3

21∑
i=1

(ei + fi)

has the property

wM ∈ SX , w2
M = 14, 〈wM , ei〉 = 〈wM , fi〉 = 1.

The complete linear system associated with the line bundle corresponding to wM defines an embed-
ding of X into P2 × P2, and its image XM ⊂ P2 × P2 is defined byx0y

2
0 + x1y

2
1 + x2y

2
2 = 0,

x2
0y0 + x2

1y1 + x2
2y2 = 0.

Six points on P2(F4) are said to be general if no three points of them are collinear. There exist 168

sets of general six points in P2(F4). If I = {pi1 , . . . , pi6} is a set of general six points, then the
(−1)-vector

cI := h − 1

2
(ei1 + · · · + ei6)

is contained in S∨
2,1. Note that each cI defines a reflection

x 7→ x + 2〈x, cI〉cI

in O+(S2,1) because cI ∈ S∨
2,1. Let P (X2,1) be the positive cone of S2,1 containing an ample class.

and let ∆(X2,1) be the set consisting of e1, . . . , e21, f1, . . . , f21 and the (−1)-vectors cI defined above.
We define a chamber D(X2,1) in P (X2,1) by

D(X2,1) := { x ∈ P (X2,1) | 〈x, v〉 ≥ 0 for all v ∈ ∆(X2,1) }.

Then, for each v ∈ ∆(X2,1), the hyperplane (v)⊥ is a wall of D(X2,1). Moreover the ample class
wM is contained in the interior of D(X2,1). Recall that L26 is the even unimodular hyperbolic lattice
of rank 26. There exists a primitive embedding ι : S2,1 ↪→ L26, which is unique up to O(L26).
The orthogonal complement Tι of S2,1 in L26 is isomorphic to the root lattice of type D4, and hence
satisfies the hypothesis (5.1).

Proposition 6.1. The chamber D(X2,1) is an R(L26, ι)
∗-chamber contained in the R(S2,1)

∗-chamber
Nef◦(X2,1). An isometry g ∈ O+(S2,1) belongs to Aut(D(X2,1)) if and only if wg

M = wM .

Thus we can apply Proposition 5.3 to the pair of chambers D(X2,1) and Nef◦(X2,1) for the study
of Aut(Nef(X2,1)) and Aut(X2,1).

We have the following elements in Aut(X2,1) and O+(S2,1). Since Aut(X2,1) is naturally embed-
ded in O+(S2,1), we use the same letter to denote an element of Aut(X2,1) and its image in O+(S2,1).
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• The action of PGL(3, F4) on P2 induces automorphisms of the inseparable double cover Y of
P2, and hence automorphisms of X2,1. Their action on S2,1 preserves D(X2,1).

• The interchange of the two factors of P2 × P2 preserves XM ⊂ P2 × P2, and hence it induces
an involution sw ∈ Aut(X2,1), which we call the switch. Its action on S2,1 preserves D(X2,1).

• For each set I of general six points in P2(F4), the linear system of plane curves of degree
5 that pass through the points of I and are singular at each point of I defines a birational
involution of P2, and this involution lifts to an involution of Y . Hence we obtain an involution
CrI ∈ Aut(X2,1), which we call a Cremona automorphism of X2,1. The action of CrI on S2,1

is the reflection with respect to cI ∈ S∨
2,1.

• The Frobenius action of Gal(F4/F2) on XM induces an isometry Fr of S2,1, which preserves
D(X2,1).

• We have the reflections sei
and sfi

with respect to the (−2)-vectors ei and fi.

By the reflections CrI , sei
and sfi

, we see that the chamber D(X2,1) is fundamental.

Theorem 6.2 ([8]). (1) The projective automorphism group Aut(X2,1, wM) of XM ⊂ P2 × P2 is
generated by PGL(3, F4) and the switch sw.

(2) The group Aut(D(X2,1)) is generated by Aut(X2,1, wM) and Fr.
(3) The automorphism group Aut(X2,1) is generated by Aut(X2,1, wM) and the 168 Cremona

automorphisms CrI .
(4) The group Aut(Nef(X2,1)) is generated by Aut(X2,1) and Fr.
(5) The group O+(S2,1) is generated by Aut(Nef(X2,1)) and the 21 + 21 reflections sei

and sfi
.

We then study Aut(Nef(X2,10)). By Corollary 3.2, we have an embedding

j : S2,1 ↪→ S2,10

that induces S∨
2,1(2) ∼= S2,10. Composing j with some element of W (S2,10) × {±1}, we can assume

that j(wM) is contained in Nef(X2,10) (Proposition 2.1(2)). The isomorphism j∗ : O+(S2,1) →∼
O+(S2,10) induced by j is denoted by

g 7→ g′.

The j(R(L26, ι))
∗-chamber j(D(X2,1)) is fundamental, and we have

Aut(j(D(X2,1))) = Aut(D(X2,1))
′.

Lemma 6.3. The set j(R(L26, ι)) contains R(S2,10). Hence the j(R(L26, ι))
∗-chamber j(D(X2,1))

is contained in the R(S2,10)
∗-chamber Nef◦(X2,10).

Proof. It is enough to show that, if v ∈ S∨
2,1 satisfies v2 = −1, then v ∈ R(L26, ι), that is, there

exists u ∈ T∨
ι such that u2 = −1 and that u + v is contained in the submodule L26 of S∨

2,1 ⊕ T∨
ι . By



18 SHIGEYUKI KONDŌ AND ICHIRO SHIMADA

Nikulin [20, Proposition 1.4.1], the submodule L26/(S2,1⊕Tι) of (S∨
2,1⊕T∨

ι )/(S2,1⊕Tι) = AS2,1⊕ATι

is the graph of an isomorphism
qS2,1

∼= −qTι .

Hence it is enough to show that, for any ū ∈ ATι with qTι(ū) = 1, there exists u ∈ T∨
ι such that

u2 = −1 and u mod Tι = ū. Since Tι is a root lattice of type D4, we can confirm this fact by
direct computation. The set of (−1)-vectors in T∨

ι consists of 24 vectors, and its image by the natural
projection T∨

ι → ATι is the set of all non-zero elements of ATι
∼= F2

2. ¤

The set of walls of j(D(X2,1)) is equal to

{(j(ei))
⊥ | i = 1, . . . , 21} ∪ {(j(fi))

⊥ | i = 1, . . . , 21} ∪

{(j(cI))
⊥ | I is a set of general six points}.

Note that the 21+21 vectors j(ei) and j(fi) are of norm −4 and the 168 vectors j(cI) are of norm −2.
Note also that neither (j(ei))

⊥ nor (j(fi))
⊥ are contained in R(S2,10)

∗, because there are no rational
numbers λ such that (−4)λ2 = −2. By Proposition 5.3, Theorem 6.2 and Lemma 6.3, we obtain the
following:

Theorem 6.4. The group Aut(Nef(X2,10)) is generated by PGL(3, F4)
′, sw′, Fr′, s′ei

and s′fi
.

6.2. The group Aut(Nef(X3,10)). By the same argument as above, we obtain a set of generators of
Aut(Nef(X3,10)) from the result of Kondo and Shimada [18].

We consider the Fermat quartic surface

XFQ : x4
0 + x4

1 + x4
2 + x4

3 = 0

in characteristic 3. Then XFQ is isomorphic to X3,1. The surface XFQ contains 112 lines, and their
classes l1, . . . , l112 span S3,1. We denote by hFQ ∈ S3,1 the class of a hyperplane section of XFQ.

There exists a primitive embedding ι : S3,1 ↪→ L26, which is unique up to O(L26). The orthogonal
complement Tι is isomorphic to the root lattice of type 2A2, and hence satisfies the hypothesis (5.1).
We calculated an R(L26, ι)

∗-chamber D(X3,1) that contains hFQ in its interior, and found

648 vectors uj ∈ S∨
3,1 of norm −4/3, and 5184 vectors wk ∈ S∨

3,1 of norm −2/3

such that the walls of D(X3,1) consist of the 112 hyperplanes (li)
⊥, the 648 hyperplanes (uj)

⊥ and
the 5184 hyperplanes (wk)

⊥. Note that the R(L26, ι)
∗-chamber D(X3,1) is contained in the R(S3,1)

∗-
chamber Nef◦(X3,1), because hFQ ∈ D(X3,1)

◦. Moreover, since 28 hFQ =
∑

li, the following holds:

Proposition 6.5. An isometry g ∈ O+(S3,1) belongs to Aut(D(X3,1)) if and only if hg
FQ = hFQ.

We have the following elements in Aut(X3,1) and O+(S3,1). Note that, for a polarization h ∈ S3,1

of degree 2, we have the deck transformation τ(h) ∈ Aut(X3,1) of the generically finite morphism
X3,1 → P2 of degree 2 induced by the the complete linear system associated with h.
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• The subgroup PGU(4, F9) of PGL(4, k) = Aut(P3) acts on XFQ. Its action on S3,1 preserves
D(X3,1). Moreover, the action of PGU(4, F9) on S∨

3,1 is transitive on each of the set of 112

vectors li, the set of 648 vectors uj and the set of 5184 vectors wk.
• There exists a polarization h648 ∈ S3,1 of degree 2 such that the deck transformation τ(h648) ∈

Aut(X3,1) maps D(X3,1) to an R(L26, ι)
∗-chamber adjacent to D(X3,1) along one of the 648

walls (uj)
⊥.

• There exists a polarization h5184 ∈ S3,1 of degree 2 such that the deck transformation τ(h5184) ∈
Aut(X3,1) maps D(X3,1) to an R(L26, ι)

∗-chamber adjacent to D(X3,1) along one of the 5184

walls (wk)
⊥.

• The Frobenius action of Gal(F9/F3) on XFQ gives rise to an element Fr ∈ Aut(D(X3,1)) of
order 2.

• We have the reflections sli with respect to the classes li of the 112 lines on XFQ.

Remark 6.6. The actions of the involutions τ(h648) and τ(h5184) on S3,1 are not reflections.

Thus D(X3,1) is fundamental, and hence we have the following:

Theorem 6.7 ([18]). (1) The projective automorphism group Aut(X, hFQ) of the Fermat quartic
surface XFQ ⊂ P3 is equal to PGU(4, F9).

(2) The group Aut(D(X3,1)) is generated by Aut(X, hFQ) and Fr.
(3) The automorphism group Aut(X3,1) is generated by Aut(X, hFQ) and the two involutions

τ(h648) and τ(h5184).
(4) The group Aut(Nef(X3,1)) is generated by Aut(X3,1) and Fr.
(5) The group O+(S3,1) is generated by Aut(Nef(X3,1)) and the 112 reflections sli .

By Corollary 3.2, we have an embedding

j : S3,1 ↪→ S3,10

that induces S∨
3,1(3) ∼= S3,10. By Proposition 2.1(2), we can assume that j(hFQ) is contained in

Nef(X3,10). The isomorphism j∗ : O+(S3,1) →∼ O+(S3,10) induced by j is denoted by g 7→ g′. The
j(R(L26, ι))

∗-chamber j(D(X3,1)) is fundamental, and Aut(j(D(X3,1))) is equal to Aut(D(X3,1))
′.

Lemma 6.8. The set j(R(L26, ι)) contains R(S3,10). Hence the j(R(L26, ι))
∗-chamber j(D(X3,1))

is contained in the R(S3,10)
∗-chamber Nef◦(X3,10).

Proof. It is enough to show that, if v ∈ S∨
3,1 satisfies v2 = −2/3, then there exists u ∈ T∨

ι such that
u2 = −4/3 and that u + v is contained in L26 ⊂ S∨

3,1 ⊕ T∨
ι . For this, it suffices to prove that, for any

ū ∈ ATι with qTι(ū) = −4/3, there exists u ∈ T∨
ι such that u2 = −4/3 and u mod Tι = ū. Since Tι

is a root lattice of type 2A2, we can confirm this fact by direct computation. ¤
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The set of walls of j(D(X3,1)) is equal to

{(j(li))⊥ | i = 1, . . . , 112} ∪ {(j(uj))
⊥ | j = 1, . . . , 648} ∪

{(j(wk))
⊥ | k = 1, . . . , 5184}.

Note that the vectors j(li) are of norm −6, the vectors j(uj) are of norm −4, and the vectors j(wk)

are of norm −2. Note also that neither (j(li))
⊥ nor (j(uj))

⊥ are contained in R(S3,10)
∗. By Proposi-

tion 5.3, Theorem 6.7 and Lemma 6.8, we obtain the following:

Theorem 6.9. The group Aut(Nef(X3,10)) is generated by PGU(4, F9)
′, Fr′, s′li and τ(h648)

′.

7. TORELLI THEOREM FOR SUPERSINGULAR K3 SURFACES

We review the theory of period mapping and Torelli theorem for supersingular K3 surfaces in odd
characteristics by Ogus [24], [25]. Throughout this section, we assume that p is odd.

We summarize results on quadratic spaces over finite fields. See, for example, Kitaoka [15, Section
1.3]. Let Fq be a finite extension of Fp. There exist exactly two isomorphism classes of non-degenerate
quadratic forms in 2σ variables x1, . . . , x2σ over Fq. They are represented by

f+ := x1x2 + · · · + x2σ−1x2σ, and(7.1)

f− := x2
1 + cx1x2 + x2

2 + x3x4 + · · · + x2σ−1x2σ,(7.2)

where c is an element of Fq such that t2 + ct + 1 ∈ Fq[t] is irreducible. The quadratic form f+

(resp. f−) is called neutral (resp. non-neutral). The group O(F2σ
q , fϵ) of the self-isometries of the

quadratic space (F2σ
q , fϵ), where ϵ = ±1, is of order

2 qσ(σ−1)(qσ − ϵ)
σ−1∏
i=1

(q2i − 1).

Let N be an even hyperbolic p-elementary lattice of rank 22 with discriminant −p2σ. We define a
quadratic space (N0, q0) over Fp by (1.2). It is known that q0 is non-degenerate and non-neutral. We
denote by O(N0, q0) the group of the self-isometries of (N0, q0). Note that the scalar multiplications
in O(N0, q0) are only ±1. Let k be a field of characteristic p. We put

ϕ := idN0 ⊗ Fk : N0 ⊗ k → N0 ⊗ k,

where Fk is the Frobenius map of k.

Definition 7.1. A subspace K of N0 ⊗ k with dim K = σ is said to be a characteristic subspace of
(N0, q0) if K is totally isotropic with respect to the quadratic form q0⊗k and dim(K∩ϕ(K)) = σ−1

holds.
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Suppose that k is algebraically closed. Let X be a supersingular K3 surface with Artin invariant σ

defined over k. An isomorphism

η : N →∼ SX

of lattices is called a marking of X . We fix a marking η of X . The composite of the marking η and
the Chern class map SX → H2

DR(X/k) defines a linear homomorphism

η̄ : N ⊗ k → H2
DR(X/k).

It is known that Ker η̄ is contained in N0 ⊗ k, and is totally isotropic with respect to q0 ⊗ k. We put

K(X,η) := ϕ−1(Ker η̄),

and call K(X,η) the period of the marked supersingular K3 surface (X, η). Then it is proved by
Ogus [24], [25] that K(X,η) is a characteristic subspace of (N0, q0). We denote by η∗ : O(SX) →∼ O(N)

the isomorphism induced by the marking η, and let

η̄∗ : O(SX) → O(N0, q0)

be the composite of η∗ with the natural homomorphism O(N) → O(N0, q0). As a corollary of Torelli
theorem by Ogus [25, Corollary of Theorem II′′], we have the following:

Corollary 7.2. Let η be a marking of X . Then, as a subgroup of O+(SX), the automorphism group
Aut(X) of X is equal to

{ g ∈ Aut(Nef(X)) | K
η̄∗(g)
(X,η) = K(X,η) }.

In particular, the index of Aut(X) in Aut(Nef(X)) is at most |O(N0, q0)/{±1}|.

Combining Corollaries 5.8 and 7.2, we obtain the following:

Corollary 7.3. The automorphism group Aut(X) is infinite.

Remark 7.4. When p = 3 and σ = 1, the group O(N0, q0) is of order 8, while the index of Aut(X3,1)

in Aut(Nef(X3,1)) is 2 by Theorem 6.7.

Definition 7.5. We say that a supersingular K3 surface X with Artin invariant σ is generic if there
exists a marking η for X such that the subgroup

(7.3) { γ ∈ O(N0, q0) | Kγ
(X,η) = K(X,η) }

of O(N0, q0) consists of only scalar multiplications ±1.

If X is generic, then the subgroup (7.3) consists of only scalar multiplications for any marking η.
The existence of generic supersingular K3 surfaces with Artin invariant > 1 (Theorem 1.7) is proved
in the next section.
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Recall that ASX
is the discriminant group of SX , and qSX

: ASX
→ Q/2Z is the discriminant

quadratic form. We will regard ASX
as a 2σ-dimensional vector space over Fp. Note that the image

of qSX
is contained in (2/p)Z/2Z. We define q̄SX

: ASX
→ Fp by

q̄SX
(x mod SX) := p · qSX

(x) mod p.

Then we obtain a quadratic space (ASX
, q̄SX

) over Fp. Note that we can recover qSX
from q̄SX

. We
have natural homomorphisms

(7.4) O(SX) → O(qSX
) ∼= O(ASX

, q̄SX
) →→ PO(ASX

, q̄SX
) := O(ASX

, q̄SX
)/{±1}.

Let η : N∨ →∼ S∨
X be the isomorphism induced by a marking η. Then the map

px mod pN ∈ N0 7→ η(x) mod SX ∈ ASX
(x ∈ N∨)

induces an isomorphism of quadratic spaces from (N0, q0) to (ASX
, q̄SX

). By Corollary 7.2, we obtain
the following:

Corollary 7.6. Suppose that X is generic. Then Aut(X) is equal to the kernel of the homomorphism

Φ : Aut(Nef(X)) → PO(ASX
, q̄SX

)

obtained by restricting (7.4) to Aut(Nef(X)) ⊂ O(SX).

Remark 7.7. Suppose that X is generic, and that we are given a subset {g1, . . . , gn} of Aut(Nef(X))

that generate Aut(Nef(X)). Then a finite set of generators of Aut(X) is obtained by the following
procedure. We construct a finite directed graph (V,E) as follows. The set V of vertices is the image
of Φ, that is, the subgroup of PO(ASX

, q̄SX
) generated by Φ(g1), . . . , Φ(gn). The set E of directed

edges is the set of triples

α = (sα, gi, tα),

where sα, tα ∈ V and sαΦ(gi) = tα. The edge α is directed from sα to tα and labelled with a
generator gi. We put α−1 := (tα, g−1

i , sα). We use the identity element e ∈ V as a base point of the
1-dimensional CW -complex Γ associated with (V,E). Then the fundamental group π1(Γ, e) is a free
group of finite rank, and its generators are calculated from the graph (V,E). Consider a loop

γ = αε0
0 . . . αεm

m

of Γ from e to e, where εi = ±1 and α
εj

j = (vj, g
εj

ij
, vj+1). Then we have v0 = vm+1 = e, and

γ̃ := gε0
i0
· · · gεm

im
∈ Aut(Nef(X))

is mapped to e by Φ. If π1(Γ, e) is generated by loops γ1, . . . , γl, then Aut(X) = Ker Φ is generated
by γ̃1, . . . , γ̃l.
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Remark 7.8. Suppose that X3,10 is generic. Applying the procedure in Remark 7.7 to the generators
of Aut(Nef(X3,10)) given in Theorem 6.9, we can obtain a finite set of generators of Aut(X3,10).
However, a naive application of the procedure would be inexecutable, because, when p = 3 and
σ = 10, the order of O(N0, q0) is

236 · 390 · 56 · 73 · 112 · 133 · 17 · 19 · 37 · 412 · 61 · 73 · 193 · 547 · 757 · 1093 · 1181,

which is about 7.886 × 1090.

For a non-zero vector v ∈ SX ⊗ Q, we denote by 〈v〉Q the linear subspace of SX ⊗ Q spanned by
v, and put

v̄ := (〈v〉Q ∩ S∨
X)/(〈v〉Q ∩ SX),

which is a linear subspace of ASX
∼= F2σ

p . When v̄ ̸= 0, we denote by

[v̄] ∈ P(ASX
)

the corresponding point of the projective space P(ASX
) over Fp. We consider the action of O(SX) on

P(ASX
).

Remark 7.9. By definition, the reflections sr with respect to r ∈ R(SX) act on ASX
trivially. Hence

the restriction Φ of the homomorphism (7.4) to the subgroup Aut(Nef(X)) of O(SX) is also obtained
by passing to the quotient O(SX)/(W (SX)×{±1}) ∼= Aut(Nef(X)). Thus the orbit of [v̄] under the
action of Aut(Nef(X)) is equal to the orbit of [v̄] under the action of O(SX).

Corollary 7.10. Suppose that X is generic. Let v ∈ SX be a vector such that v̄ ⊂ ASX
is not zero.

Let m be the cardinality of the orbit of [v̄] ∈ P(ASX
) under the action of O(SX). Then the number of

Aut(X)-orbits contained in the O(SX)-orbit of v in SX is at least m.

8. EXISTENCE OF GENERIC SUPERSINGULAR K3 SURFACES

We prove Theorem 1.7. For the proof, we recall the construction by Ogus [24] of the scheme M
parameterizing characteristic subspaces of the 2σ-dimensional quadratic space (N0, q0) over Fp. This
scheme M plays the role of the period domain for supersingular K3 surfaces. We continue to assume
that p is odd.

Let Grass(ν,N0) denote the Grassmannian variety of ν-dimensional subspaces of N0, and let
Isot(ν, q0) be the subscheme of Grass(ν,N0) parameterizing ν-dimensional totally isotropic sub-
spaces of (N0, q0). We put

Gen := Isot(σ, q0),

where Gen is for “generatrix”. Note that Isot(ν, q0) is defined over Fp for any ν. Let k be a field of
characteristic p. For a subspace L of N0 ⊗ k with dimension ν, we denote by [L] the k-valued point
of Grass(ν,N0) corresponding to L. We then have the following:

(1) If ν < σ, then Isot(ν, q0) is geometrically connected.
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(2) The scheme Gen ⊗ Fp2 has two connected components Gen+ and Gen−, each of which is
geometrically connected. Since q0 is non-neutral, the action of Gal(Fp2/Fp) interchanges the
two connected components.

(3) Let K and K ′ be two σ-dimensional totally isotropic subspaces of (N0, q0)⊗ k. Suppose that
dim(K ∩ K ′) = σ − 1. Then the k-valued points [K] and [K ′] belong to distinct connected
components of Gen.

(4) Suppose that k is algebraically closed. Then, for each k-valued point [L] of the scheme
Isot(σ−1, q0), there exist exactly two σ-dimensional totally isotropic subspaces of (N0, q0)⊗k

that contain L.
(5) Let P be the subscheme of Gen × Gen parameterizing pairs (K,K ′) such that dim(K ∩

K ′) = σ − 1. Then the scheme P ⊗ Fp2 has two connected components, each of which
is isomorphic to Isot(σ − 1, q0) over Fp2 . The action of Gal(Fp2/Fp) interchanges the two
connected components.

Consider the graph

id × ϕ : Gen → Gen × Gen

of the Frobenius morphism Gen → Gen given by K 7→ ϕ(K). The subscheme M of Gen that
parametrizes the characteristic subspaces of (N0, q0) is defined by the fiber product

M ↪→ Gen

↓ ¤ ↓ id × ϕ

P ↪→ Gen × Gen.

Ogus [24] proved the following:

Theorem 8.1. The scheme M defined over Fp is smooth and projective of dimension σ − 1. The
scheme M⊗ Fp2 has two connected components M+ = M∩ Gen+ and M− = M∩ Gen−, each
of which is geometrically connected. The action of Gal(Fp2/Fp) interchanges M+ and M−.

Proof of Theorem 1.7. Let κ be an algebraic closure of the function field of the scheme M+ over Fp2 ,
and let [Kκ] be the geometric generic point of M+. By the surjectivity of the period mapping for
supersingular K3 surfaces (Ogus [25, Theorem III′′]), there exist a supersingular K3 surface X of
Artin invariant σ defined over κ and a marking η : N →∼ SX such that K(X,η) = Kκ. We prove that
this X is generic, that is,

Gκ := { γ ∈ O(N0, q0) | Kγ
κ = Kκ }

is equal to {±1}. Note that the closure of the point [Kκ] coincides with M+. Therefore we have the
following: If a field k contains Fp2 , then the action of Gκ leaves K invariant for any k-valued point
[K] of M+.
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Suppose that σ ≥ 3. Let u be an arbitrary non-zero isotropic vector of N0. We will prove that u is
an eigenvector of Gκ. Let

b0 : N0 × N0 → Fp

denote the symmetric bilinear form obtained from q0. There exists a vector v ∈ N0 such that q0(v) = 0

and b0(u, v) = 1, and hence (N0, q0) has an orthogonal direct-sum decomposition

N0 = U⊥ ⊕ U,

where U is the subspace spanned by u and v. Repeating this procedure and noting that q0 is non-
neutral, we obtain a basis a1, . . . , a2σ of N0 with u = a2σ such that q0(x1a1 + · · · + x2σa2σ) is equal
to the quadratic polynomial f− in (7.2). Let α and ᾱ = αp be the roots in Fp2 of the irreducible
polynomial t2 + ct + 1 ∈ Fp[t]. We consider the basis

(8.1)
b
(−1)
1 := αa1 + a2, b

(1)
1 := ᾱa1 + a2, and

b
(−1)
i := a2i−1, b

(1)
i := a2i (i = 2, . . . , σ)

of N0 ⊗ Fp2 . Note that each b
(±1)
i is isotropic, and that

b0(b
(α)
i , b

(β)
j ) = 0 if i ̸= j, b0(b

(1)
i , b

(−1)
i ) =

(4 − c2)/2 if i = 1,

1/2 if i ≥ 2.

We put
E := {1,−1}σ.

For e = (ε1, . . . , εσ) ∈ E , we denote by Ke the linear subspace of N0 ⊗ Fp2 spanned by

b
(ε1)
1 , . . . , b(εσ)

σ .

It is obvious that Ke is isotropic. Moreover, since

ϕ(b
(ε)
1 ) = b

(−ε)
1 and ϕ(b

(ε)
i ) = b

(ε)
i if i ≥ 2,

we have dim(Ke ∩ ϕ(Ke)) = σ − 1. Therefore Ke is a characteristic subspace of (N0, q0). Suppose
that e and e′ ∈ E differ only at one component. Then we have dim(Ke ∩Ke′) = σ − 1, and hence the
Fp2-valued points [Ke] and [Ke′ ] of M belong to distinct connected components. We put

E+ := { e ∈ E | the number of −1 in e is even }, 1 := (1, . . . , 1) ∈ E+.

Interchanging α and ᾱ if necessary, we can assume that [K1] is an Fp2-valued point of M+, and hence
[Ke] is an Fp2-valued point of M+ for any e ∈ E+. It follows that Ke is invariant under the action
of Gκ for any e ∈ E+. Let b

(α)
i be an arbitrary element among the basis (8.1). Recall that we have

assumed σ ≥ 3. Therefore, for each element b
(β)
j among the basis (8.1) that is distinct from b

(α)
i , there

exists e(j, β) = (ε1, . . . , εσ) ∈ E+ such that εi = α and εj ̸= β. Since⋂
(j,β) ̸=(i,α)

Ke(j,β) = 〈b(α)
i 〉
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is invariant under the action of Gκ, we see that b
(α)
i is an eigenvector of Gκ. In particular, the isotropic

vector u = a2σ = b
(1)
σ given at the beginning is an eigenvector of Gκ.

Let

λ
(α)
i : Gκ → F×

p2

be the character defined by b
(α)
i . Suppose that i, j ≥ 2 and i ̸= j. Then b

(α)
i + b

(β)
j is an isotropic

vector of N0 for any choice of α, β ∈ {±1}, and hence is an eigenvector of Gκ. Therefore we have

(8.2) λ
(α)
i = λ

(β)
j if i, j ≥ 2 and i ̸= j.

Since the cardinality of {x2 |x ∈ Fp} is (p + 1)/2, there exist ξ, η ∈ Fp such that

(4 − c2) + ξ2 + η2 = 0.

Then

b
(1)
1 + b

(−1)
1 + ξ(b

(1)
2 + b

(−1)
2 ) + η(b

(1)
3 + b

(−1)
3 )

is also an isotropic vector of N0, and hence is an eigenvector of Gκ. Therefore we have

(8.3) λ
(1)
1 = λ

(−1)
1 = λ

(1)
2 = λ

(−1)
2 or λ

(1)
1 = λ

(−1)
1 = λ

(1)
3 = λ

(−1)
3 .

Combining (8.2) and (8.3), we see that all the characters λ
(α)
i are equal to each other. Thus Gκ consists

of only scalar multiplications.

Suppose that σ = 2. In this case, the scheme M coincides with Isot(2, q0), which is the scheme
parametrizing lines on the smooth quadratic surface Q0 = {q0 = 0} in the projective space P∗N0 =

Grass(1, N0). Hence M+ and M− correspond to the two rulings of Q0. Let g be an element of Gκ.
Then g leaves every line in the ruling of Q0 corresponding to M+ invariant. Since g is defined over Fp

and Gal(Fp2/Fp) interchanges M+ and M−, we see that g also leaves every line in the other ruling
of Q0 invariant. Therefore g fixes every point of Q0, and hence every point of P∗N0. ¤

9. LATTICE EQUIVALENCE CLASSES VERSUS Aut-EQUIVALENCE CLASSES ON X3,10

Suppose that p > 2 and σ + σ′ = 11. We denote by Ap,σ′ the discriminant group S∨
p,σ′/Sp,σ′ of

Sp,σ′ , and use the notation in Section 7.

Let φ : Xp,σ → P1 be a genus one fibration, and let φ′ : Xp,σ′ → P1 be a genus one fibration
whose lattice equivalence class [φ′] ∈ E(Xp,σ′) corresponds to [φ] ∈ E(Xp,σ) by Theorem 1.3. By
Remark 4.6, we have an embedding j : Sp,σ ↪→ Sp,σ′ inducing S∨

p,σ(p) ∼= Sp,σ′ such that j(fφ) is a
positive scalar multiple of fφ′ . Suppose that

fφ′ = j(fφ) = (〈fφ′〉Q ∩ S∨
p,σ′)/(〈fφ′〉Q ∩ Sp,σ′) ⊂ Ap,σ′

is not zero. Let m be the cardinality of the orbit of [fφ′ ] ∈ P(Ap,σ′) by the action of O(Sp,σ′) (or
equivalently, in virtue of Remark 7.9, by the action of Aut(Nef(Xp,σ′))). By Corollary 7.10, the
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number of Aut-equivalence classes of genus one fibrations contained in the lattice equivalence class
[φ′] is at least m, provided that Xp,σ′ is generic.

Remark 9.1. We can regard Sp,σ′ as a submodule of Sp,σ ⊗ Q by j. Then S∨
p,σ′ is equal to (1/p)Sp,σ.

Hence (1/p)j(fφ) is contained in S∨
p,σ′ .

As a consequence of the fact that Aut(Nef(X3,10)) contains the subgroup PGU(4, F9)
′ of order

13063680, we obtain the following:

Proposition 9.2. Suppose that X3,10 is generic. Then there exists a genus one fibration on X3,10

whose lattice equivalence class contains at least 6531840 Aut-equivalence classes.

Proof. Let (w, x, y) be the affine coordinates of the Fermat quartic surface

XFQ = {w4 + x4 + y4 + 1 = 0}

in characteristic 3, and let i denote
√
−1 ∈ F9. Consider the following ten lines on XFQ

∼= X3,1:

ℓ1 := {w + (1 + i) = x + (1 + i) y = 0}, ℓ2 := {w + (1 + i) = x + (1 − i) y = 0},
ℓ3 := {w + i y − i = x + i y + i = 0}, ℓ4 := {w + i y + 1 = x + i y − 1 = 0},
ℓ5 := {w − y + 1 = x − y − 1 = 0}, ℓ6 := {w − i y − 1 = x + y + i = 0},
ℓ7 := {w + (1 − i) = x − (1 + i) y = 0}, ℓ8 := {w − (1 − i) y = x + (1 + i) = 0},
ℓ9 := {w + (1 + i) x = y + (1 − i) = 0}, ℓ10 := {w + i y − 1 = x − i y − 1 = 0}.

They form a configuration of (−2)-curves whose dual graph is the affine Dynkin diagram of type Ã9.
Then the class fφ :=

∑10
k=1 [ℓk] defines a genus one fibration φ : X3,1 → P1 in the lattice equivalence

class No. 20 of Table 4.2. The line defined by {w + y + 1 = x + i y − i = 0} provides us with a
section of φ that intersects ℓ10.

Let φ′ : X3,10 → P1 be a genus one fibration corresponding to φ by Theorem 1.3. Since the Néron-
Severi lattice of XFQ is generated by the classes of lines, we can calculate the action of PGU(4, F9)

on S3,1 from the permutations of lines induced by PGU(4, F9), and thus we can calculate the action
of PGU(4, F9)

′ on S3,10. By computer, we calculate the action of PGU(3, F4)
′ on the vector space

A3,10
∼= F20

3 . It turns out that the stabilizer subgroup of the non-zero vector

(1/3)j(fφ) mod S3,10 ∈ A3,10

is trivial. Hence the orbit of [fφ′ ] ∈ P(A3,10) ∼= P19(F3) by the action of PGU(4, F9)
′ contains at least

|PGU(4, F9)|/|F×
3 | points. ¤
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