Back to Top (English Top Page)
Back to Top (Japanese Top Page)
Publications

(joint work with Simon Brandhorst)
Borcherds' method for Enriques surfaces. Michigan Math. J. 71 (2022), no. 1, 318.

Rational double points on Enriques surfaces. Sci. China Math. 64 (2021), no. 4, 665690.

(joint work with Davide Cesare Veniani)
Enriques involutions on singular K3 surfaces of small discriminants. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 16671701.

(joint work with Igor Dolgachev)
15nodal quartic surfaces. Part II: the automorphism group.
Rend. Circ. Mat. Palermo (2) 69 (2020), no. 3, 11651191.

The elliptic modular surface of level 4 and its reduction modulo 3.
Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 14571489.

On an Enriques surface associated with a quartic Hessian surface.
Canad. J. Math. 71 (2019), no. 1, 213246.
Corrigendum: Canad. J. Math. 2020, pp. 13.

Connected components of the moduli of elliptic K3 surfaces. Michigan Math. J. 67 (2018), no. 3, 511559.

On Edge's correspondence associated with ⋅222. Eur. J. Math. 4 (2018), no. 1, 399412.

An even extremal lattice of rank 64. J. Number Theory 185 (2018), 115.

Holes of the Leech lattice and the projective models of K3 surfaces. Math. Proc. Cambridge Philos. Soc. 163 (2017), no. 1, 125143.

(joint work with Tetsuji Shioda)
On a smooth quartic surface containing 56 lines which is isomorphic as a K3 surface to the Fermat quartic.
Manuscripta Math. 153 (2017), no. 12, 279297.

(joint work with Alex Degtyarev)
On the topology of projective subspaces in complex Fermat varieties. J. Math. Soc. Japan 68 (2016), no. 3, 975996.

Automorphisms of supersingular K3 surfaces and Salem polynomials. Exp. Math. 25 (2016), no. 4, 389398.

The automorphism groups of certain singular K3 surfaces and an Enriques surface. K3 surfaces and their moduli, 297343,
Progr. Math., 315, Birkhäuser/Springer, [Cham], 2016.

An algorithm to compute automorphism groups of K3
surfaces and an application to singular K3 surfaces. Int. Math. Res. Not. IMRN 2015, no. 22,
1196112014.

(joint work with Thanh Hoai Hoang)
On BallicoHefez curves and associated supersingular surfaces. Kodai Math. J. 38 (2015), no. 1, 2336.

(joint work with DeQi Zhang)
Dynkin diagrams of rank 20 on supersingular K3 surfaces. Sci. China Math. 58 (2015), no. 3, 543552.

(joint work with T. Katsura and S. Kondo)
On the supersingular K3 surface in characteristic 5 with Artin invariant 1. Michigan Math. J. 63 (2014), no. 4, 803844.

(joint work with S. Kondo)
On a certain duality of NéronSeveri lattices of supersingular K3 surfaces. Algebr. Geom. 1 (2014), no. 3, 311333.

The graphs of HoffmanSingleton, HigmanSims and McLaughlin, and the Hermitian curve of degree 6 in characteristic 5.
Australas. J. Combin. 59 (2014), 161181.

(joint work with S. Kondo)
The automorphism group of a supersingular K3 surface with Artin invariant 1 in characteristic 3.
Int. Math. Res. Not. IMRN 2014, no. 7, 18851924.

Projective models of the supersingular K3 surface with Artin invariant 1 in
characteristic 5. J. Algebra 403 (2014), 273299.

A note on rational normal curves totally tangent to a Hermitian variety.
Des. Codes Cryptogr. 69 (2013), no. 3, 299303.

On Frobenius incidence varieties of linear subspaces over finite fields. Finite Fields Appl. 18 (2012), no. 2, 337361.

(joint work with N. Takahashi)
Primitivity of sublattices generated by classes
of curves on an algebraic surface.
Comment. Math. Univ. St. Pauli, 59 (2010), no. 2, 7795.

Topology of curves on a surface and latticetheoretic
invariants of coverings of the surface. Algebraic geometry in East AsiaSeoul 2008, 361382, Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010.

Lattice Zariski kples of plane sextic curves and Zsplitting
curves for double plane sextics.
Michigan Math. J., 59 (2010), 621665.

Generalized Zariskivan Kampen theorem and its application to Grassmannian dual varieties. Internat. J. Math. 21 (2010), no. 5, 591637.

Nonhomeomorphic conjugate complex varieties. SingularitiesNiigataToyama 2007, 285301, Adv. Stud. Pure Math., 56, Math. Soc. Japan, Tokyo, 2009.

(joint work with K. Arima) Zariskivan Kampen method and transcendental lattices of certain singular K3 surfaces. Tokyo J. Math. 32 (2009), no. 1, 201227.

Transcendental lattices and supersingular reduction lattices of a singular K3 surface. Trans. Amer. Math. Soc. 361 (2009), no. 2, 909949.

Singularities of dual varieties in characteristic 2. Algebraic geometry in East AsiaHanoi 2005, 299331, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008.

On arithmetic Zariski pairs in degree 6. Adv. Geom. 8 (2008), no. 2, 205225.

(joint work with DeQi Zhang)
On Kummer type construction of supersingular K3 surfaces in characteristic 2. Pacific J. Math. 232 (2007), no. 2, 379400.

On normal K3 surfaces. Michigan Math. J. 55 (2007), no. 2, 395416.
 (joint work with DeQi Zhang)
K3 surfaces with ten cusps. Algebraic geometry, 187211, Contemp. Math., 422, Amer. Math. Soc., Providence, RI, 2007.
 (joint work with Duc Tai Pho)
Unirationality of certain supersingular K3 surfaces in characteristic 5. Manuscripta Math. 121 (2006), no. 4, 425435.

Singularities of dual varieties in characteristic 3. Geom. Dedicata 120 (2006), 141177.

Moduli curves of supersingular K3 surfaces in characteristic 2 with Artin invariant 2. Proc. Edinb. Math. Soc. (2) 49 (2006), no. 2, 435503.

Supersingular K3 surfaces in characteristic 2 as double covers of a projective plane. Asian J. Math. 8 (2004), no. 3, 531586.
 Vanishing cycles, the generalized Hodge conjecture and Gr\"obner bases. Geometric singularity theory, 227259, Banach Center Publ., 65, Polish Acad. Sci., Warsaw, 2004.
 Rational double points on supersingular K3 surfaces. Math. Comp. 73 (2004), no. 248, 19892017 (electronic).
 Supersingular K3 surfaces in odd characteristic and sextic double planes. Math. Ann. 328 (2004), no. 3, 451468.
 Equisingular families of plane curves with many connected components. Vietnam J. Math. 31 (2003), no. 2, 193205.
 Fundamental groups of algebraic fiber spaces. Comment. Math. Helv. 78 (2003), no. 2, 335362.
 The fundamental group of the complement of a resultant hypersurface. Pacific J. Math. 210 (2003), no. 2, 351357.
 Zariski hyperplane section theorem for Grassmannian varieties. Canad. J. Math. 55 (2003), no. 1, 157180.
 On the Zariskivan Kampen theorem. Canad. J. Math. 55 (2003), no. 1, 133156.
 Lattices of algebraic cycles on Fermat varieties in positive characteristics. Proc. London Math. Soc. (3) 82 (2001), no. 1, 131172.
 (joint work with Zhang, DeQi) Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces.
Nagoya Math. J. 161 (2001), 2354.
 On elliptic K3 surfaces. Michigan Math. J. 47 (2000), no. 3, 423446.
 On the commutativity of fundamental groups of complements to plane curves. Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 1, 4952.
 Fundamental groups of complements to singular plane curves. Amer. J. Math. 119 (1997), no. 1, 127157.
 PicardLefschetz theory for the universal coverings of complements to affine hypersurfaces. Publ. Res. Inst. Math. Sci. 32 (1996), no. 5, 835927.
 A note on Zariski pairs. Compositio Math. 104 (1996), no. 2, 125133.
 Grothendieck's generalized Hodge conjecture for certain Fano varieties. Algebraic cycles and related topics (Kitasakado, 1994), 5167, World Sci. Publishing, River Edge, NJ, 1995.
 A generalization of LefschetzZariski theorem on fundamental groups of algebraic varieties. Internat. J. Math. 6 (1995), no. 6, 921932.
 A generalization of MorinPredonzan's theorem on the unirationality of complete intersections. J. Algebraic Geom. 4 (1995), no. 4, 597638.
 On the fundamental group of the complement of a divisor in a homogeneous space. Math. Z. 220 (1995), no. 3, 445448.
 Fundamental groups of open algebraic varieties. Topology 34 (1995), no. 3, 509531.
 Remarks on fundamental groups of complements of divisors on algebraic varieties. Kodai Math. J. 17 (1994), no. 2, 311319.
 A construction of algebraic curves whose Jacobians have nontrivial endomorphisms. Comment. Math. Univ. St. Paul. 43 (1994), no. 1, 2534.
 Unirationality of certain complete intersections in positive characteristics. Tohoku Math. J. (2) 44 (1992), no. 3, 379393.
 On supercuspidal families of curves on a surface in positive characteristic. Math. Ann. 292 (1992), no. 4, 645669.
 On the cylinder homomorphism for a family of algebraic cycles. Duke Math. J. 64 (1991), no. 1, 201205.
 On the cylinder isomorphism associated to the family of lines on a hypersurface. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 3, 703719.
 On the cylinder homomorphisms of Fano complete intersections. J. Math. Soc. Japan 42 (1990), no. 4, 719738.
Back to Top (English Top Page)
Back to Top (Japanese Top Page)
END