Moduli of supersingular K3 surfaces in characteristic 2

Ichiro Shimada
(Hokkaido University, Sapporo, JAPAN)
§1. Construction of the moduli space
§2. Stratification by codes
§3. Geometry of splitting curves and codes
§4. The case of Artin invariant 2
§5. Cremona transformations

We work over an algebraically closed field k of characteristic 2.

§1. Construction of the Moduli Space

Let X be a supersingular $K 3$ surface.
Let \mathcal{L} be a line bundle on X with $\mathcal{L}^{2}=2$. We say that \mathcal{L} is a polarization of type (\sharp) if the following conditions are satisfied:

- the complete linear system $|\mathcal{L}|$ has no fixed components, and
- the set of curves contracted by the morphism

$$
\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}
$$

defined by $|\mathcal{L}|$ consists of 21 disjoint (-2)-curves.

If (X, \mathcal{L}) is a polarized supersingular $K 3$ surface of type (\sharp), then $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$ is purely inseparable.

Every supersingular $K 3$ surface has a polarization of type (\sharp).

We will construct the moduli space \mathcal{M} of polarized supersingular K3 surfaces of type (\sharp).

Let $G=G\left(X_{0}, X_{1}, X_{2}\right)$ be a non-zero homogeneous polynomial of degree 6 .
We can define

$$
d G \in \Gamma\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(6)\right)
$$

because we are in characteristic 2 and we have $\mathcal{O}_{\mathbb{P}^{2}}(6) \cong$ $\mathcal{O}_{\mathbb{P}^{2}}(3)^{\otimes 2}$.
We put
$Z(d G):=\{d G=0\}=\left\{\frac{\partial G}{\partial X_{0}}=\frac{\partial G}{\partial X_{1}}=\frac{\partial G}{\partial X_{2}}=0\right\} \subset \mathbb{P}^{2}$.
If $\operatorname{dim} Z(d G)=0$, then

$$
\text { length } \mathcal{O}_{Z(d G)}=c_{2}\left(\Omega_{\mathbb{P}^{2}}^{1}(6)\right)=21
$$

We put

$$
\begin{aligned}
\mathcal{U} & :=\{G \mid Z(d G) \text { is reduced of dimension } 0\} \\
& \subset H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)
\end{aligned}
$$

For $G \in \mathcal{U}$, we put

$$
\boldsymbol{Y}_{G}:=\left\{\boldsymbol{W}^{2}=G\left(\boldsymbol{X}_{0}, \boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right)\right\} \quad \xrightarrow{\pi_{G}} \quad \mathbb{P}^{2},
$$

and let

$$
\rho_{G}: X_{G} \rightarrow Y_{G}
$$

be the minimal resolution of \boldsymbol{Y}_{G}.
We have
$\operatorname{Sing}\left(Y_{G}\right)=\pi_{G}^{-1}(Z(d G))=\{21$ ordinary nodes $\}$.

We then put

$$
\mathcal{L}_{G}:=\left(\pi_{G} \circ \rho_{G}\right)^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) .
$$

(X, \mathcal{L}) is a polarized supersingular $K 3$ surface of type ($\#$)

I
there exists $G \in \mathcal{U}$ such that $(X, \mathcal{L}) \cong\left(X_{G}, \mathcal{L}_{G}\right)$

We put

$$
\mathcal{V}:=H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)
$$

Because we have $d\left(G+H^{2}\right)=d G$ for $H \in \mathcal{V}$, the additive group \mathcal{V} acts on the space \mathcal{U} by

$$
(G, H) \in \mathcal{U} \times \mathcal{V} \quad \mapsto \quad G+H^{2} \in \mathcal{U}
$$

Let G and G^{\prime} be homogeneous polynomials in \mathcal{U}. Then the following conditions are equivalent:
(i) \boldsymbol{Y}_{G} and $\boldsymbol{Y}_{G^{\prime}}$ are isomorphic over \mathbb{P}^{2},
(ii) $Z(d G)=Z\left(d G^{\prime}\right)$, and
(iii) there exist $c \in \boldsymbol{k}^{\times}$and $\boldsymbol{H} \in \mathcal{V}$ such that $G^{\prime}=$ $c G+H^{2}$.

Therefore the moduli space \mathcal{M} of polarized supersingular $K 3$ surfaces of type (\sharp) is constructed by

$$
\mathcal{M}=P G L(3, k) \backslash \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})
$$

We put

$$
\mathcal{P}:=\left\{P_{1}, \ldots, P_{21}\right\},
$$

on which the full symmetric group S_{21} acts from left.
We denote by \mathcal{G} the space of all injective maps

$$
\gamma: \mathcal{P} \hookrightarrow \mathbb{P}^{2}
$$

such that there exists $G \in \mathcal{U}$ satisfying $\gamma(\mathcal{P})=Z(d G)$.
Then we can construct \mathcal{M} by

$$
\mathcal{M}=P G L(3, k) \backslash \mathcal{G} / S_{21} .
$$

Example by Dolgachev-Kondo:

$$
\begin{aligned}
G_{\mathrm{DK}} & :=X_{0} X_{1} X_{2}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}\right), \\
Z\left(d G_{\mathrm{DK}}\right) & =\mathbb{P}^{2}\left(\mathbb{F}_{4}\right) .
\end{aligned}
$$

The Artin invariant of the supersingular $K 3$ surface $X_{G_{\mathrm{DK}}}$ is 1 .
$\left[G_{\mathrm{DK}}\right] \in \mathcal{M}$: the Dolgachev-Kondo point.
§2. Stratification by Isomorphism Classes of Codes

Let G be a polynomial in \mathcal{U}. $N S\left(X_{G}\right)$: the Néron-Severi lattice of X_{G}, $\operatorname{disc} N S\left(X_{G}\right)=-2^{2 \sigma\left(X_{G}\right)}$,
($\sigma\left(X_{G}\right)$ is the Artin invariant of $\left.X_{G}\right)$.
Let $\gamma: \mathcal{P} \hookrightarrow \mathbb{P}^{2}$ be an injective map such that

$$
\gamma(\mathcal{P})=Z(d G)=\pi_{G}\left(\operatorname{Sing} Y_{G}\right)
$$

that is, γ is a numbering of the singular points of \boldsymbol{Y}_{G}. $E_{i} \subset X_{G}$: the (-2)-curve that is contracted to $\gamma\left(P_{i}\right)$. Then $N S\left(X_{G}\right)$ contains a sublattice

$$
S_{0}=\left\langle\left[E_{1}\right], \ldots,\left[E_{21}\right],\left[\mathcal{L}_{G}\right]\right\rangle=\left[\begin{array}{lllll}
-2 & & & \\
& -2 & & \\
& & & & \\
& & & -2 & \\
& & & 2
\end{array}\right]
$$

$$
\begin{aligned}
S_{0}^{\vee} & =\operatorname{Hom}\left(S_{0}, \mathbb{Z}\right)=\left\langle\left[E_{1}\right] / 2, \ldots,\left[E_{21}\right] / 2,\left[\mathcal{L}_{G}\right] / 2\right\rangle \\
& \supset \operatorname{NS}\left(X_{G}\right) .
\end{aligned}
$$

We put
$\widetilde{\mathcal{C}}_{G}:=N S\left(X_{G}\right) / S_{0} \subset S_{0}{ }^{\vee} / S_{0}=\mathbb{F}_{2}^{\oplus 21} \oplus \mathbb{F}_{2}$,
$\mathcal{C}_{G}:=\operatorname{pr}\left(\widetilde{\mathcal{C}}_{G}\right) \subset \mathbb{F}_{2}^{\oplus 21} \cong 2^{\mathcal{P}}($ the power set of $\mathcal{P})$.
Here the identification $\mathbb{F}_{2}^{\oplus 21} \cong 2^{\mathcal{P}}$ is given by $v \mapsto\left\{P_{i} \in \mathcal{P} \mid\right.$ the i-th coordinate of \boldsymbol{v} is 1$\}$.

We have

$$
\operatorname{dim} \widetilde{\mathcal{C}}_{G}=\operatorname{dim} \mathcal{C}_{G}=11-\sigma\left(X_{G}\right)
$$

We say that a reduced irreducible curve $C \subset \mathbb{P}^{2}$ splits in X_{G} if the proper transform of C in X_{G} is non-reduced, that is, of the form $2 F_{C}$, where $F_{C} \subset X_{G}$ is a reduced curve in $\boldsymbol{X}_{\boldsymbol{G}}$.

We say that a reduced curve $C \subset \mathbb{P}^{2}$ splits in X_{G} if every irreducible component of C splits in X_{G}.
$C \subset \mathbb{P}^{2}$: a curve of degree d splitting in X_{G}, $m_{i}(C)$: the multiplicity of C at $\gamma\left(P_{i}\right) \in Z(d G)$.

$$
\begin{aligned}
{\left[F_{C}\right] } & =\frac{1}{2}\left(d \cdot\left[\mathcal{L}_{G}\right]-\sum_{i=1}^{21} m_{i}(C)\left[E_{i}\right]\right) \in N S\left(X_{G}\right), \\
\tilde{w}(C) & :=\left[F_{C}\right] \bmod S_{0} \in \widetilde{\mathcal{C}}_{G}=N S\left(X_{G}\right) / S_{0}, \\
w(C) & :=\operatorname{pr}(\tilde{w}(C)) \\
& =\left\{P_{i} \in \mathcal{P} \mid m_{i}(C) \text { is odd }\right\} \in \mathcal{C}_{G} .
\end{aligned}
$$

A general member Q of the linear system

$$
\left|\mathcal{I}_{Z(d G)}(5)\right|=\left\langle\frac{\partial G}{\partial X_{0}}, \frac{\partial G}{\partial X_{1}}, \frac{\partial G}{\partial X_{2}}\right\rangle
$$

splits in X_{G}.
In particular,

$$
w(Q)=\mathcal{P}=(1,1, \ldots, 1) \in \mathcal{C}_{G} .
$$

What kind of codes can appear as \mathcal{C}_{G} for some $G \in \mathcal{U}$?
$N S\left(X_{G}\right)$ has the following properties;

- type II (that is, $v^{2} \in \mathbb{Z}$ for any $\left.v \in N S\left(X_{G}\right)^{\vee}\right)$,
- there are no $u \in N S\left(X_{G}\right)$ such that $u \cdot\left[\mathcal{L}_{G}\right]=1$ and $u^{2}=0$ (that is, $\left|\mathcal{L}_{G}\right|$ is fixed component free), and
- if $u \in N S\left(X_{G}\right)$ satisfies $u \cdot\left[\mathcal{L}_{G}\right]=0$ and $u^{2}=-2$, then $u=\left[\boldsymbol{E}_{i}\right]$ or $-\left[\boldsymbol{E}_{i}\right]$ for some i (that is, $\operatorname{Sing} \boldsymbol{Y}_{G}$ consists of 21 ordinary nodes).
\mathcal{C}_{G} has the following properties;
- $\mathcal{P}=(1,1, \ldots, 1) \in \mathcal{C}_{G}$, and
- $|w| \in\{0,5,8,9,12,13,16,21\}$ for any $w \in \mathcal{C}_{G}$.

The isomorphism classes $[\mathcal{C}]$ of codes $\mathcal{C} \subset \mathbb{F}_{2}^{\oplus 21}=2^{\mathcal{P}}$ satisfying these conditions are classified:
$\sigma=11-\operatorname{dim} \mathcal{C}$,
$r(\sigma)=$ the number of the isomorphism classes.

σ	1	2	3	4	5	6	7	8	9	10	total
$r(\sigma)$	1	3	13	41	58	43	21	8	3	1	193

the isomorphism class of $\left(X_{G}, \mathcal{L}_{G}\right) \in \mathcal{M}_{[\mathcal{C}]}$
$\Longleftrightarrow \mathcal{C}_{G} \in[\mathcal{C}]$

$$
\mathcal{M}=P G L(3, k) \backslash \mathbb{P}_{*}(\mathcal{U} / \mathcal{V})=\underset{\text { the isom. classes }}{\bigsqcup} \mathcal{M}_{[\mathcal{C}]} .
$$

Each $\mathcal{M}_{[\mathcal{C}]}$ is non-empty. $\operatorname{dim} \mathcal{M}_{[\mathcal{C}]}=\sigma-1=10-\operatorname{dim} \mathcal{C}$.

Case of $\sigma=1$.
There exists only one isomorphism class $\left[\mathcal{C}_{\text {DK }}\right]$ with dimension 10.

$$
\begin{gathered}
\mathcal{P} \cong \mathbb{P}^{2}\left(\mathbb{F}_{4}\right), \\
\left.\mathcal{C}_{\mathrm{DK}}:=\left\langle L\left(\mathbb{F}_{4}\right)\right| L: \mathbb{F}_{4} \text {-rational lines }\right\rangle \subset 2^{\mathcal{P}} .
\end{gathered}
$$

The weight enumerator of $\mathcal{C}_{\text {DK }}$ is
$1+21 z^{5}+210 z^{8}+280 z^{9}+280 z^{12}+210 z^{13}+21 z^{16}+z^{21}$.
The 0 -dimensional stratum $\mathcal{M}_{\mathrm{DK}}$ consists of a single point $\left[\left(X_{\mathrm{DK}}, \mathcal{L}_{\mathrm{DK}}\right)\right.$], where X_{DK} is the resolution of

$$
W^{2}=X_{0} X_{1} X_{2}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}\right) .
$$

§3. Geometry of Splitting Curves and Codes
$G \in \mathcal{U}$.
We fix a bijection

$$
\gamma: \mathcal{P} \xrightarrow{\sim} Z(d G)=\pi_{G}\left(\operatorname{Sing} Y_{G}\right)
$$

Let $L \subset \mathbb{P}^{2}$ be a line.
L splits in $\left(X_{G}, \mathcal{L}_{G}\right)$,
$\Longleftrightarrow|L \cap Z(d G)| \geq 3$,
$\Longleftrightarrow|L \cap Z(d G)|=5$.

Let $Q \subset \mathbb{P}^{2}$ be a non-singular conic curve.
Q splits in $\left(X_{G}, \mathcal{L}_{G}\right)$,
$\Longleftrightarrow|Q \cap Z(d G)| \geq 6$, and
$\Longleftrightarrow|Q \cap Z(d G)|=8$.

The word $w(L)=\gamma^{-1}(L \cap Z(d G))$ of a splitting line L is of weight 5 .
The word $w(Q)=\gamma^{-1}(Q \cap Z(d G))$ of a splitting nonsingular conic curve Q is of weight 8 .

A pencil \mathcal{E} of cubic curves in \mathbb{P}^{2} is called a regular pencil if the following hold:

- the base locus $\operatorname{Bs}(\mathcal{E})$ consists of distinct 9 points, and
- every singular member has only one ordinary node.

We say that a regular pencil \mathcal{E} splits in $\left(\boldsymbol{X}_{G}, \mathcal{L}_{G}\right)$ if every member of \mathcal{E} splits in $\left(X_{G}, \mathcal{L}_{G}\right)$.

Let \mathcal{E} be a regular pencil of cubic curves spanned by \boldsymbol{E}_{0} and \boldsymbol{E}_{∞}. Let $\boldsymbol{H}_{0}=0$ and $\boldsymbol{H}_{\infty}=0$ be the defining equations of E_{0} and E_{∞}, respectively. Then \mathcal{E} splits in $\left(X_{G}, \mathcal{L}_{G}\right)$ if and only if

$$
Z(d G)=Z\left(d\left(H_{0} H_{\infty}\right)\right)
$$

or equivalently
Y_{G} and $Y_{H_{0} H_{\infty}}$ are isomorphisc over \mathbb{P}^{2},
or equivalently

$$
\exists c \in k^{\times}, \quad \exists H \in \mathcal{V}, \quad H_{0} H_{\infty}=c G+H^{2} .
$$

If \mathcal{E} splits in $\left(X_{G}, \mathcal{L}_{G}\right)$, then $\operatorname{Bs}(\mathcal{E})$ is contained in $Z(d G)$, and

$$
w\left(\boldsymbol{E}_{t}\right)=\gamma^{-1}(\operatorname{Bs}(\mathcal{E}))
$$

holds for every member E_{t} of \mathcal{E}. In particular, the word $w\left(E_{t}\right)$ is of weight 9.

Let A be a word of \mathcal{C}_{G}.
(i) We say that A is a linear word if $|A|=5$.
(ii) Suppose $|A|=8$. If A is not a sum of two linear words, then we say that A is a quadratic word. (iii) Suppose $|\boldsymbol{A}|=9$. If \boldsymbol{A} is neither a sum of three linear words nor a sum of a linear and a quadratic words, then we say that A is a cubic word.

By $C \mapsto w(C)$, we obtain the following bijections:
$\left\{\right.$ lines splitting in $\left.\left(X_{G}, \mathcal{L}_{G}\right)\right\}$
$\cong\left\{\right.$ linear words in $\left.\mathcal{C}_{G}\right\}$,
$\left\{\right.$ non-singular conic curves splitting in $\left.\left(\boldsymbol{X}_{G}, \mathcal{L}_{G}\right)\right\}$ $\cong\left\{\right.$ quadratic words in $\left.\mathcal{C}_{G}\right\}$.

By $\mathcal{E} \mapsto \boldsymbol{w}\left(\boldsymbol{E}_{t}\right)=\gamma^{-1}(\operatorname{Bs}(\mathcal{E}))$, we obtain the bijection
$\left\{\right.$ regular pencils of cubic curves splitting in $\left(X_{G}, \mathcal{L}_{G}\right)$ \} $\cong\left\{\right.$ cubic words in $\left.\mathcal{C}_{G}\right\}$.

§4. The Case of Artin Invariant 2

We start from a code $\mathcal{C} \subset 2^{\mathcal{P}}$ such that

- $\mathcal{P}=(1,1, \ldots, 1) \in \mathcal{C}$, and
- $|w| \in\{0,5,8,9,12,13,16,21\}$ for any $w \in \mathcal{C}$, and construct the stratum $\mathcal{M}_{[\mathrm{c}]}$.

For simplicity, we assume that \mathcal{C} is generated by \mathcal{P} and words of weight 5 and 8.

We denote by $\mathcal{G}_{\mathcal{C}}$ the space of all injective maps

$$
\gamma: \mathcal{P} \hookrightarrow \mathbb{P}^{2}
$$

with the following properties:
(i) $\gamma(\mathcal{P})=Z(d G)$ for some $G \in \mathcal{U}$ (that is, $\gamma \in \mathcal{G}$),
(ii) for a subset $A \subset \mathcal{P}$ of weight $5, \gamma(A)$ is collinear if and only if $A \in \mathcal{C}$,
(iii) for a subset $A \subset \mathcal{P}$ of weight $8, \gamma(A)$ is on a nonsingular conic curve if and only if $A \in \mathcal{C}$ and A is not a sum of words of weight 5 in \mathcal{C}.

$$
\begin{gathered}
\mathcal{M}=P G L(3, k) \backslash \mathcal{G} / S_{21} \quad \supset \\
\mathcal{M}_{[\mathcal{C}]}=P G L(3, k) \backslash \mathcal{G}_{\mathcal{C}} / \operatorname{Aut}(\mathcal{C}) .
\end{gathered}
$$

Suppose that the isomorphism class of $\left(X_{G}, \mathcal{L}_{G}\right)$ is a point of $\mathcal{M}_{[\mathcal{C}]}$.
Let $\gamma \in \mathcal{\mathcal { G } _ { \mathcal { C } }}$ be the injective map such that $\gamma(\mathcal{P})=$ $Z(d G)$.

Then
$\operatorname{Aut}\left(X_{G}, \mathcal{L}_{G}\right)=\{g \in P G L(3, k) \mid g(Z(d G))=Z(d G)\}$ is the stabilizer subgroup

$$
\operatorname{Stab}(\langle\gamma\rangle) \subset \operatorname{Aut}(\mathcal{C})
$$

of the projective equivalence class $\langle\gamma\rangle \in P G L(3, k) \backslash \mathcal{G}_{\mathcal{C}}$.

We carry out this construction of $\mathcal{M}_{[\mathcal{C}]}$ for the three isomorphism classes $\left[\mathcal{C}_{A}\right],\left[\mathcal{C}_{B}\right],\left[\mathcal{C}_{C}\right]$ of codes with dimension 9, that is, the Artin invariant 2.

Generators of the code \mathcal{C}_{A}

$\left[\begin{array}{llllllllllllllllllllll}{[} & 1 \\ {[}\end{array} \mathbf{0}\right.$

Generators of the code \mathcal{C}_{B}

$\left[\begin{array}{lllllllllllllllllllllll}{[} & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 &] \\ {[} & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &] \\ {[} & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 &] \\ {[} & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 &]\end{array}\right]$

Generators of the code \mathcal{C}_{C}

$\left[\begin{array}{lllllllllllllllllllllll}{[} & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 &] \\ {[} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 &] \\ {[} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 &] \\ {[} & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 &] \\ {[} & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 &]\end{array}\right]$

The weight enumerators of these codes are as follows: $\mathcal{C}_{A}: 1+z^{21}+13\left(z^{5}+z^{16}\right)+106\left(z^{8}+z^{13}\right)+136\left(z^{9}+z^{12}\right)$, $\mathcal{C}_{B}: 1+z^{21}+9\left(z^{5}+z^{16}\right)+102\left(z^{8}+z^{13}\right)+144\left(z^{9}+z^{12}\right)$, $\mathcal{C}_{C}: 1+z^{21}+5\left(z^{5}+z^{16}\right)+130\left(z^{8}+z^{13}\right)+120\left(z^{9}+z^{12}\right)$.

The numbers of linear, quadratic and cubic words in these codes, and the order of the automorphism group are given in the following table:

	linear	quadratic	cubic	$\|\operatorname{Aut}(\mathcal{C})\|$
\mathcal{C}_{A}	13	28	0	1152
\mathcal{C}_{B}	9	66	0	432
\mathcal{C}_{C}	5	120	0	23040

These codes are generated by \mathcal{P} and linear and quadratic words.

For $T=A, B$ and C, the following hold. (ω is the third root of unity, and $\bar{\omega}=\omega+1$.)

The space $P G L(3, k) \backslash \mathcal{G}_{T}$ has exactly two connected components, both of which are isomorphic to

$$
\operatorname{Spec} k\left[\lambda, 1 /\left(\lambda^{4}+\lambda\right)\right]=\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\} .
$$

Let $N_{T} \subset \operatorname{Aut}\left(\mathcal{C}_{T}\right)$ be the subgroup of index 2 that preserves the connected components, and let Γ_{T} be the image of N_{T} in

$$
\operatorname{Aut}\left(\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right)
$$

The moduli curve

$$
\mathcal{M}_{T}=\left(\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}\right) / \Gamma_{T}
$$

is isomorphic to a punctured affine line

$$
\text { Spec } k\left[J_{T}, 1 / J_{T}\right]=\mathbb{A}^{1} \backslash\{0\} .
$$

The punctured origin $J_{T}=0$ corresponds to the DolgachevKondo point.

The action of Γ_{T} on $\mathbb{A}^{1} \backslash\{0,1, \omega, \bar{\omega}\}$ is free. Hence the order of $\operatorname{Stab}(\langle\gamma\rangle) \subset \operatorname{Aut}\left(\mathcal{C}_{T}\right)$ is constant on $\operatorname{PGL}(3, k) \backslash \mathcal{G}_{T}$. We have an exact sequence

$$
1 \rightarrow \operatorname{Aut}(X, \mathcal{L}) \rightarrow N_{T} \rightarrow \Gamma_{T} \rightarrow 1
$$

The case A :

$$
\begin{gathered}
\Gamma_{A}=\left\{\lambda, \lambda+1, \frac{1}{\lambda}, \frac{1}{\lambda+1}, \frac{\lambda}{\lambda+1}, \frac{\lambda+1}{\lambda}\right\} \cong S_{3} \\
J_{A}=\frac{\left(\lambda^{2}+\lambda+1\right)^{3}}{\lambda^{2}(\lambda+1)^{2}},
\end{gathered}
$$

$$
\begin{aligned}
& G A[\lambda]:=X_{0} X_{1} X_{2}\left(X_{0}+X_{1}+X_{2}\right) . \\
& \left(X_{0}^{2}+X_{1}^{2}+\left(\lambda^{2}+\lambda\right) X_{2}^{2}+X_{0} X_{1}+X_{1} X_{2}+X_{2} X_{0}\right) .
\end{aligned}
$$

The family

$$
W^{2}=G A[\lambda]
$$

is the universal family of polarized supersingular $K 3$ surfaces over the λ-line.
For $\alpha \in k \backslash\{0,1, \omega, \bar{\omega}\}, \operatorname{Aut}\left(X_{G A[\alpha]}, \mathcal{L}_{G A[\alpha]}\right)$ is equal to the group

$$
\left\{\left.\left[\begin{array}{c|c|}
A & a \\
\hline \begin{array}{l|l|}
b & 1
\end{array} \\
\hline 0 & 0
\end{array}\right] \in P G L(3, k) \right\rvert\, \begin{array}{l}
A \in G L\left(2, \mathbb{F}_{2}\right), \\
a, b \in\{0,1, \alpha, \alpha+1\}
\end{array}\right\} .
$$

Γ_{B} is isomorphic to the alternating group \boldsymbol{A}_{4}. $J_{B}=(\lambda+\omega)^{12} /\left(\lambda^{3}(\lambda+1)^{3}(\lambda+\bar{\omega})^{3}\right)$.

$$
\begin{aligned}
& G B[\lambda]= X_{0} X_{1} X_{2}\left(X_{0}+X_{1}+X_{2}\right) . \\
&\left((\bar{\omega} \lambda+\omega) X_{0}^{2}+\bar{\omega} X_{1}^{2}+\omega \lambda X_{2}^{2}+\right. \\
&\left.(\lambda+1) X_{0} X_{1}+(\bar{\omega} \lambda+\omega) X_{1} X_{2}+(\lambda+1) X_{2} X_{0}\right) .
\end{aligned}
$$

Γ_{C} is the group of affine transformations of an affine line over \mathbb{F}_{4}.
$J_{C}=\left(\lambda^{4}+\lambda\right)^{3}$.

$$
G C[\lambda]=X_{0} X_{1} X_{2}\left(X_{0}^{3}+X_{1}^{3}+X_{2}^{3}\right)+\left(\lambda^{4}+\lambda\right) X_{0}^{3} X_{1}^{3} .
$$

The orders of the groups above are given as follows.

\boldsymbol{T}	$\left\|\operatorname{Aut}\left(\mathcal{C}_{T}\right)\right\|$	$=2 \times\left\|\Gamma_{T}\right\| \times\|\operatorname{Aut}(X, \mathcal{L})\|$			
\boldsymbol{A}	1152	$=2 \times$	6	\times	96
\boldsymbol{B}	432	$=2 \times$	12	\times	18
\boldsymbol{C}	23040	$=2 \times$	12	\times	960

§5. Cremona transformations

Let $\Sigma=\left\{p_{1}, \ldots, p_{6}\right\} \subset Z(d G)$ be a subset with $|\Sigma|=6$ satisfying the following:

- no three points of Σ are collinear, and
- for each i, the non-singular conic curve Q_{i} containing $\Sigma \backslash\left\{p_{i}\right\}$ satisfies $Q_{i} \cap Z(d G)=\Sigma \backslash\left\{p_{i}\right\}$.
Let $\beta: S \rightarrow \mathbb{P}^{2}$ be the blowing up at the points in Σ, and
let $\beta^{\prime}: S \rightarrow \mathbb{P}^{2}$ be the blowing down of the strict transforms Q_{i}^{\prime} of the conic curves Q_{i}.

The birational map

$$
c:=\beta^{\prime} \circ \beta^{-1}: \mathbb{P}^{2} \cdots \rightarrow \mathbb{P}^{2}
$$

is called the Cremona transformation with the center Σ.

There exists $G^{\prime} \in \mathcal{U}$ such that

$$
c(Z(d G) \backslash \Sigma) \cup\left\{\beta^{\prime}\left(Q_{i}^{\prime}\right) \mid i=1, \ldots, 6\right\}=Z\left(d G^{\prime}\right)
$$

Obviously, \boldsymbol{X}_{G} and $\boldsymbol{X}_{G^{\prime}}$ are isomorphic.
But $\left(X_{G}, \mathcal{L}_{G}\right)$ and $\left(X_{G^{\prime}}, \mathcal{L}_{G^{\prime}}\right)$ may fail to be isomorphic.

A curve $D \subset \mathcal{M}_{T} \times \mathcal{M}_{T^{\prime}}$ is called an isomorphism correspondence if, for any pair

$$
\left([\boldsymbol{X}, \mathcal{L}],\left[\boldsymbol{X}^{\prime}, \mathcal{L}^{\prime}\right]\right) \in \boldsymbol{D},
$$

the $K 3$ surfaces X and X^{\prime} are isomorphic as non-polarized surfaces.

Using Cremona transformations, we obtain an example of non-trivial isomorphism correspondences.

Let (X, \mathcal{L}) and $\left(X^{\prime}, \mathcal{L}^{\prime}\right)$ be polarized supersingular $K 3$ surfaces of type (\sharp) with Artin invariant 2, and let J_{T} and $J_{T^{\prime}}$ be their J-invariants.

If $T=T^{\prime}=A$ and

$$
1+J_{A} J_{A}^{\prime}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{2}+J_{A}{ }^{2} J_{A}^{\prime}{ }^{3}+J_{A}{ }^{3} J_{A}^{\prime}{ }^{2}=0,
$$

then X and X^{\prime} are isomorphic.
If $\boldsymbol{T}=\boldsymbol{A}$ and $\boldsymbol{T}^{\prime}=B$ and

$$
J_{B}+J_{A} J_{B}+J_{A} J_{B}{ }^{2}+J_{A}{ }^{2} J_{B}+J_{A}{ }^{4}=0,
$$

then X and X^{\prime} are isomorphic.

The isomorphism correspondence

$$
1+J_{A} J_{A}^{\prime}+J_{A}^{2} J_{A}^{\prime 2}+J_{A}^{2} J_{A}^{\prime 3}+J_{A}^{3} J_{A}^{\prime 2}=0
$$

intersects with the diagonal $\Delta_{A} \subset \mathcal{M}_{A} \times \mathcal{M}_{A}$ at two points $\left(J_{A}, J_{A}^{\prime}\right)=(\omega, \omega)$ and $(\bar{\omega}, \bar{\omega})$.

At these points, the automorphism group $\operatorname{Aut}(X)$ of the supersingular K3 surface jumps.

Do all isomorphism correspondences come from Cremona transformations?

