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§1. Construction of the Moduli Space

Let X be a supersingular K3 surface.

Let L be a line bundle on X with L2 = 2. We say that

L is a polarization of type (♯) if the following conditions

are satisfied:

• the complete linear system |L| has no fixed compo-

nents, and

• the set of curves contracted by the morphism

Φ|L| : X → P2

defined by |L| consists of 21 disjoint (−2)-curves.

If (X, L) is a polarized supersingular K3 surface of type

(♯), then Φ|L| : X → P2 is purely inseparable.

Every supersingular K3 surface has a polarization of

type (♯).

We will construct the moduli space M of polarized su-

persingular K3 surfaces of type (♯).
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Let G = G(X0, X1, X2) be a non-zero homogeneous

polynomial of degree 6.

We can define

dG ∈ Γ(P2, Ω1
P2(6)),

because we are in characteristic 2 and we have OP2(6) ∼=
OP2(3)⊗2.

We put

Z(dG) := {dG = 0} =

{
∂G

∂X0

=
∂G

∂X1

=
∂G

∂X2

= 0

}
⊂ P2.

If dim Z(dG) = 0, then

length OZ(dG) = c2(Ω
1
P2(6)) = 21.

We put

U := { G | Z(dG) is reduced of dimension 0 }

⊂ H0(P2, OP2(6)).

For G ∈ U , we put

YG := {W 2 = G(X0, X1, X2)}
πG−→ P2,

and let

ρG : XG → YG

be the minimal resolution of YG.

We have

Sing(YG) = π−1
G (Z(dG)) = { 21 ordinary nodes }.
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We then put

LG := (πG ◦ ρG)∗OP2(1).

(X, L) is a polarized supersingular K3 surface

of type (♯)

⇕
there exists G ∈ U such that (X, L) ∼= (XG, LG)

We put

V := H0(P2, OP2(3)).

Because we have d(G + H2) = dG for H ∈ V, the

additive group V acts on the space U by

(G, H) ∈ U × V 7→ G + H2 ∈ U .

Let G and G′ be homogeneous polynomials in U .

Then the following conditions are equivalent:

(i) YG and YG′ are isomorphic over P2,

(ii) Z(dG) = Z(dG′), and

(iii) there exist c ∈ k× and H ∈ V such that G′ =

c G + H2.
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Therefore the moduli space M of polarized supersingu-

lar K3 surfaces of type (♯) is constructed by

M = PGL(3, k)\P∗(U/V).

We put

P := {P1, . . . , P21},

on which the full symmetric group S21 acts from left.

We denote by G the space of all injective maps

γ : P ↪→ P2

such that there exists G ∈ U satisfying γ(P) = Z(dG).

Then we can construct M by

M = PGL(3, k)\G/S21.

Example by Dolgachev-Kondo:

GDK := X0X1X2(X
3
0 + X3

1 + X3
2),

Z(dGDK) = P2(F4).

The Artin invariant of the supersingular K3 surface

XGDK is 1.

[GDK] ∈ M: the Dolgachev-Kondo point.
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§2. Stratification by Isomorphism Classes of

Codes

Let G be a polynomial in U .

NS(XG) : the Néron-Severi lattice of XG,

discNS(XG) = −22σ(XG),

(σ(XG) is the Artin invariant of XG).

Let γ : P ↪→ P2 be an injective map such that

γ(P) = Z(dG) = πG(Sing YG),

that is, γ is a numbering of the singular points of YG.

Ei ⊂ XG : the (−2)-curve that is contracted to γ(Pi).

Then NS(XG) contains a sublattice

S0 = 〈 [E1], . . . , [E21], [LG] 〉 =



−2

−2

−2

2


.

S∨
0 = Hom(S0, Z) = 〈 [E1]/2, . . . , [E21]/2, [LG]/2 〉

⊃ NS(XG).
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We put

C̃G := NS(XG)/S0 ⊂ S0
∨/S0 = F⊕21

2 ⊕ F2,

CG := pr(C̃G) ⊂ F⊕21
2

∼= 2P(the power set of P).

Here the identification F⊕21
2

∼= 2P is given by

v 7→ { Pi ∈ P | the i-th coordinate of v is 1 }.

We have

dim C̃G = dim CG = 11 − σ(XG).

We say that a reduced irreducible curve C ⊂ P2 splits in

XG if the proper transform of C in XG is non-reduced,

that is, of the form 2FC, where FC ⊂ XG is a reduced

curve in XG.

We say that a reduced curve C ⊂ P2 splits in XG if

every irreducible component of C splits in XG.
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C ⊂ P2 : a curve of degree d splitting in XG,

mi(C) : the multiplicity of C at γ(Pi) ∈ Z(dG).

[FC] =
1

2
(d · [LG] −

21∑
i=1

mi(C)[Ei]) ∈ NS(XG),

w̃(C) := [FC] mod S0 ∈ C̃G = NS(XG)/S0,

w(C) := pr(w̃(C))

= { Pi ∈ P | mi(C) is odd } ∈ CG.

A general member Q of the linear system

|IZ(dG)(5)| =
〈 ∂G

∂X0

,
∂G

∂X1

,
∂G

∂X2

〉
splits in XG.

In particular,

w(Q) = P = (1, 1, . . . , 1) ∈ CG.

What kind of codes can appear as CG for some G ∈ U?
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NS(XG) has the following properties;

• type II (that is, v2 ∈ Z for any v ∈ NS(XG)∨),

• there are no u ∈ NS(XG) such that u · [LG] = 1 and

u2 = 0 (that is, |LG| is fixed component free), and

• if u ∈ NS(XG) satisfies u · [LG] = 0 and u2 = −2,

then u = [Ei] or −[Ei] for some i (that is, Sing YG

consists of 21 ordinary nodes).

CG has the following properties;

• P = (1, 1, . . . , 1) ∈ CG, and

• |w| ∈ {0, 5, 8, 9, 12, 13, 16, 21} for any w ∈ CG.

The isomorphism classes [C] of codes C ⊂ F⊕21
2 = 2P

satisfying these conditions are classified:

σ = 11 − dim C,

r(σ) = the number of the isomorphism classes.

σ 1 2 3 4 5 6 7 8 9 10 total

r(σ) 1 3 13 41 58 43 21 8 3 1 193 .
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the isomorphism class of (XG, LG) ∈ M[C]

⇐⇒ CG ∈ [C]

M = PGL(3, k)\P∗(U/V) =
⊔

the isom. classes

M[C].

Each M[C] is non-empty.

dim M[C] = σ − 1 = 10 − dim C.

Case of σ = 1.

There exists only one isomorphism class [CDK] with di-

mension 10.

P ∼= P2(F4),

CDK := 〈 L(F4) | L : F4-rational lines〉 ⊂ 2P.

The weight enumerator of CDK is

1+21z5 +210z8 +280z9 +280z12 +210z13 +21z16 + z21.

The 0-dimensional stratum MDK consists of a single

point [(XDK, LDK)], where XDK is the resolution of

W 2 = X0X1X2(X
3
0 + X3

1 + X3
2).
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§3. Geometry of Splitting Curves and Codes

G ∈ U .

We fix a bijection

γ : P ∼→ Z(dG) = πG(Sing YG).

Let L ⊂ P2 be a line.

L splits in (XG, LG),

⇐⇒ |L ∩ Z(dG)| ≥ 3,

⇐⇒ |L ∩ Z(dG)| = 5.

Let Q ⊂ P2 be a non-singular conic curve.

Q splits in (XG, LG),

⇐⇒ |Q ∩ Z(dG)| ≥ 6, and

⇐⇒ |Q ∩ Z(dG)| = 8.

The word w(L) = γ−1(L ∩ Z(dG)) of a splitting line L

is of weight 5.

The word w(Q) = γ−1(Q ∩ Z(dG)) of a splitting non-

singular conic curve Q is of weight 8.
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A pencil E of cubic curves in P2 is called a regular pencil

if the following hold:

• the base locus Bs(E) consists of distinct 9 points,

and

• every singular member has only one ordinary node.

We say that a regular pencil E splits in (XG, LG) if every

member of E splits in (XG, LG).

Let E be a regular pencil of cubic curves spanned by

E0 and E∞. Let H0 = 0 and H∞ = 0 be the defining

equations of E0 and E∞, respectively. Then E splits in

(XG, LG) if and only if

Z(dG) = Z(d(H0H∞)),

or equivalently

YG and YH0H∞ are isomorphisc over P2,

or equivalently

∃c ∈ k×, ∃H ∈ V, H0H∞ = cG + H2.

If E splits in (XG, LG), then Bs(E) is contained in Z(dG),

and

w(Et) = γ−1(Bs(E))

holds for every member Et of E. In particular, the word

w(Et) is of weight 9.
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Let A be a word of CG.

(i) We say that A is a linear word if |A| = 5.

(ii) Suppose |A| = 8. If A is not a sum of two linear

words, then we say that A is a quadratic word.

(iii) Suppose |A| = 9. If A is neither a sum of three

linear words nor a sum of a linear and a quadratic words,

then we say that A is a cubic word.

By C 7→ w(C), we obtain the following bijections:

{ lines splitting in (XG, LG) }
∼= { linear words in CG },

{ non-singular conic curves splitting in (XG, LG) }
∼= { quadratic words in CG }.

By E 7→ w(Et) = γ−1(Bs(E)), we obtain the bijection

{ regular pencils of cubic curves splitting in (XG, LG) }
∼= { cubic words in CG }.
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§4. The Case of Artin Invariant 2

We start from a code C ⊂ 2P such that

• P = (1, 1, . . . , 1) ∈ C, and

• |w| ∈ {0, 5, 8, 9, 12, 13, 16, 21} for any w ∈ C,

and construct the stratum M[C].

For simplicity, we assume that C is generated by P and

words of weight 5 and 8.

We denote by GC the space of all injective maps

γ : P ↪→ P2

with the following properties:

(i) γ(P) = Z(dG) for some G ∈ U (that is, γ ∈ G),

(ii) for a subset A ⊂ P of weight 5, γ(A) is collinear if

and only if A ∈ C,

(iii) for a subset A ⊂ P of weight 8, γ(A) is on a non-

singular conic curve if and only if A ∈ C and A is

not a sum of words of weight 5 in C.
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M = PGL(3, k)\G/S21 ⊃
M[C] = PGL(3, k)\GC/ Aut(C).

Suppose that the isomorphism class of (XG, LG) is a

point of M[C].

Let γ ∈ GC be the injective map such that γ(P) =

Z(dG).

Then

Aut(XG, LG) = { g ∈ PGL(3, k) | g(Z(dG)) = Z(dG) }

is the stabilizer subgroup

Stab(〈γ〉) ⊂ Aut(C)

of the projective equivalence class 〈γ〉 ∈ PGL(3, k)\GC.

We carry out this construction of M[C] for the three iso-

morphism classes [CA], [CB], [CC] of codes with dimension

9, that is, the Artin invariant 2.
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Generators of the code CA

[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 ]

[ 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 ]

[ 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 ]

[ 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 ]

[ 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 ]

[ 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 ]

[ 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 ]

Generators of the code CB

[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 ]

[ 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 ]

[ 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 ]

[ 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 ]

[ 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 ]

[ 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 ]

[ 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 ]

Generators of the code CC

[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 ]

[ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 ]

[ 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 ]

[ 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 ]

[ 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ]

[ 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 ]

[ 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 ]

[ 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 ]

16



The weight enumerators of these codes are as follows:

CA : 1 + z21 + 13(z5 + z16) + 106(z8 + z13) + 136(z9 + z12),

CB : 1 + z21 + 9(z5 + z16) + 102(z8 + z13) + 144(z9 + z12),

CC : 1 + z21 + 5(z5 + z16) + 130(z8 + z13) + 120(z9 + z12).

The numbers of linear, quadratic and cubic words in

these codes, and the order of the automorphism group

are given in the following table:

linear quadratic cubic | Aut(C)|
CA 13 28 0 1152

CB 9 66 0 432

CC 5 120 0 23040 .

These codes are generated by P and linear and qua-

dratic words.
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For T = A, B and C, the following hold.

(ω is the third root of unity, and ω̄ = ω + 1.)

The space PGL(3, k)\GT has exactly two connected com-

ponents, both of which are isomorphic to

Spec k[λ, 1/(λ4 + λ)] = A1 \ {0, 1, ω, ω̄}.

Let NT ⊂ Aut(CT ) be the subgroup of index 2 that

preserves the connected components, and let ΓT be the

image of NT in

Aut(A1 \ {0, 1, ω, ω̄}).

The moduli curve

MT = (A1 \ {0, 1, ω, ω̄})/ΓT

is isomorphic to a punctured affine line

Spec k[JT , 1/JT ] = A1 \ {0}.

The punctured origin JT = 0 corresponds to the Dolgachev-

Kondo point.

The action of ΓT on A1\{0, 1, ω, ω̄} is free. Hence the or-

der of Stab(〈γ〉) ⊂ Aut(CT ) is constant on PGL(3, k)\GT .

We have an exact sequence

1 → Aut(X, L) → NT → ΓT → 1.
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The case A:

ΓA =
{

λ, λ + 1,
1

λ
,

1

λ + 1
,

λ

λ + 1
,
λ + 1

λ

}
∼= S3,

JA =
(λ2 + λ + 1)3

λ2 (λ + 1)2
,

GA[λ] := X0X1X2 (X0 + X1 + X2) ·(
X0

2 + X1
2 +

(
λ2 + λ

)
X2

2 + X0X1 + X1X2 + X2X0

)
.

The family

W 2 = GA[λ]

is the universal family of polarized supersingular K3

surfaces over the λ-line.

For α ∈ k \ {0, 1, ω, ω̄}, Aut(XGA[α], LGA[α]) is equal to

the group

{ [
A

a
b

0 0 1

]
∈ PGL(3, k)

∣∣∣∣∣ A ∈ GL(2, F2),

a, b ∈ {0, 1, α, α + 1}

}
.

19



ΓB is isomorphic to the alternating group A4.

JB = (λ + ω)12/
(
λ3(λ + 1)3(λ + ω̄)3

)
.

GB[λ] = X0X1X2 (X0 + X1 + X2) ·(
(ω̄λ + ω) X0

2 + ω̄ X1
2 + ωλ X2

2+

(λ + 1) X0X1 + (ω̄λ + ω)X1X2 + (λ + 1) X2X0

)
.

ΓC is the group of affine transformations of an affine line

over F4.

JC = (λ4 + λ)3.

GC[λ] = X0X1X2

(
X3

0 + X3
1 + X3

2

)
+ (λ4 + λ)X3

0X3
1 .

The orders of the groups above are given as follows.

T | Aut(CT )| = 2 × |ΓT | × | Aut(X, L)|

A 1152 = 2 × 6 × 96

B 432 = 2 × 12 × 18

C 23040 = 2 × 12 × 960
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§5. Cremona transformations

Let Σ = {p1, . . . , p6} ⊂ Z(dG) be a subset with |Σ| = 6

satisfying the following:

• no three points of Σ are collinear, and

• for each i, the non-singular conic curve Qi contain-

ing Σ \ {pi} satisfies Qi ∩ Z(dG) = Σ \ {pi}.

Let β : S → P2 be the blowing up at the points in Σ,

and

let β′ : S → P2 be the blowing down of the strict trans-

forms Q′
i of the conic curves Qi.

The birational map

c := β′ ◦ β−1 : P2 · · · → P2

is called the Cremona transformation with the center

Σ.

There exists G′ ∈ U such that

c(Z(dG) \ Σ) ∪ {β′(Q′
i) | i = 1, . . . , 6} = Z(dG′).

Obviously, XG and XG′ are isomorphic.

But (XG, LG) and (XG′, LG′) may fail to be isomorphic.
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A curve D ⊂ MT × MT ′ is called an isomorphism cor-

respondence if, for any pair

([X, L], [X ′, L′]) ∈ D,

the K3 surfaces X and X ′ are isomorphic as non-polarized

surfaces.

Using Cremona transformations, we obtain an example

of non-trivial isomorphism correspondences.

Let (X, L) and (X ′, L′) be polarized supersingular K3

surfaces of type (♯) with Artin invariant 2, and let JT

and JT ′ be their J-invariants.

If T = T ′ = A and

1 + JA J ′
A + JA

2J ′
A

2
+ JA

2J ′
A

3
+ JA

3J ′
A

2
= 0,

then X and X ′ are isomorphic.

If T = A and T ′ = B and

JB + JA JB + JA JB
2 + JA

2JB + JA
4 = 0,

then X and X ′ are isomorphic.
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The isomorphism correspondence

1 + JA J ′
A + JA

2J ′
A

2
+ JA

2J ′
A

3
+ JA

3J ′
A

2
= 0

intersects with the diagonal ∆A ⊂ MA × MA at two

points (JA, J ′
A) = (ω, ω) and (ω̄, ω̄).

At these points, the automorphism group Aut(X) of the

supersingular K3 surface jumps.

Do all isomorphism correspondences come from Cre-

mona transformations?
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