Supersingular K3 surfaces (in characteristic 2)

Ichiro Shimada

(Hokkaido University, Sapporo)

We work over an algebraically closed field k of characteristic p > 0.

Definition

A non-singular projective surface X is called

- a K3 surface if
 - $K_X \cong \mathcal{O}_X$, and
 - $ullet h^1(X,\mathcal{O}_X)=0.$

Example: K3 surfaces as double covers of \mathbb{P}^2 .

Let $C(x_0, x_1, x_2)$ and $F(x_0, x_1, x_2)$ be homogeneous polynomials of degree 3 and 6, respectively.

Let Y be a double cover of \mathbb{P}^2 defined by

$$w^2 + w \cdot C(x_0, x_1, x_2) + F(x_0, x_1, x_2) = 0,$$

and let $X \to Y$ be the minimal resolution of Y.

Then X is a K3 surface if and only if Y has only rational double points as its singularities; that is, if and only only if the exceptional divisor of $X \to Y$ is an *ADE*-configuration of smooth rational curves of selfintersection -2.

 A_n

 D_n

 E_{6}, E_{7}, E_{8}

Conversely, let X be a K3 surface.

Let \mathcal{L} be a line bundle of X with $\mathcal{L}^2 = 2$.

If the complete linear system $|\mathcal{L}|$ has no fixed components, then dim $|\mathcal{L}| = 2$, and the morphism

$$\Phi_{|\mathcal{L}|}:X o \mathbb{P}^2$$

defined by $|\mathcal{L}|$ is factored as

$$X \ o \ Y \ o \ \mathbb{P}^2$$

where $Y \to \mathbb{P}^2$ is a double cover defined by

$$w^2 + w \cdot C(x_0, x_1, x_2) + F(x_0, x_1, x_2) = 0,$$

with deg C = 3 and deg F = 6, and Y has only rational double points as its singularities.

Remarks

(1) Suppose that k is *not* of characteristic 2. Then we can assume that

$$C(x_0,x_2,x_2)=0$$

by the coordinate change

$$w \mapsto w + C/2.$$

Let $B \subset \mathbb{P}^2$ be the branch curve of $Y \to \mathbb{P}^2$;

$$B = \{F(x_0, x_1, x_2) = 0\} \ \subset \ \mathbb{P}^2.$$

Then X is a K3 surface if and only if the plane curve B has only rational double points as its singularities.

(2) In characteristic 2,

Let X be a K3 surface.

Let D be a divisor on X. We say that D is numerically equivalent to 0 (denoted by $D \equiv 0$) if

CD=0 for any curve $C\subset X$

holds. (Here CD is the intersection number.)

The Néron-Severi lattice NS(X) of X is the free abelian group

 ${\text{divisors on } X} / \equiv ,$

equipped with the non-degenerate pairing

[D][D'] := DD'.

The rank of NS(X) is called the *Picard number* of X: $ho(X) := \operatorname{rank} NS(X).$ Corollary of Hodge Index Theorem

The signature of the quadratic form on $NS(X) \otimes \mathbb{R}$ defined by the intersection pairing is $(1, \rho(X) - 1)$.

In characteristic 0, we have

$$NS(X)=H^{1,1}(X)\cap H^2(X,\mathbb{Z}).$$

In particular, $ho(X) \leq h^{1,1}(X) = 20.$

In positive characteristics, the possible values of $\rho(X)$ are $1, \ldots, 20$ and 22.

A K3 surface X is supersingular (in the sense of Shioda) if $\rho(X) = 22$ holds.

Example

Suppose that k is of characteristic 2.

Let $G(x_0, x_1, x_2)$ be a general homogeneous polynomial of degree 6. Then the purely inseparable double cover $Y_G \to \mathbb{P}^2$ defined by

$$w^2=G(x_0,x_1,x_2)$$

has 21 rational double points of type A_1 .

Proof. We put
$$g(x,y):=G(x,y,1).$$
 Since $\dfrac{\partial w^2}{\partial w}=0$

in characteristic 2, the singular points of Y_G is given by $\partial a = \partial a$

$$rac{\partial g}{\partial x} = rac{\partial g}{\partial y} = 0.$$

The affine curves $\partial g/\partial x = 0$ and $\partial g/\partial y = 0$ intersect at 21 points transversely when G is general. (Other four intersection points are always on the line at infinity.) \Box

Let $X_G \to Y_G$ be the minimal resolution of Y_G . Since

$$ho(X_G) = 21 + 1 = 22,$$

7

the K3 surface X_G is supersingular.

Example (Pho D. Tai)

Suppose that k is of characteristic 5.

Let f(x) be a general polynomial of degree 6, and let $B \subset \mathbb{P}^2$ be the projective completion of the affine curve defined by

$$y^5 = f(x).$$

Then $\operatorname{Sing} B$ consists of five rational double points of type A_4 .

Indeed, let $\alpha_1, \ldots, \alpha_5$ be the roots of f'(x) = 0, and let β_i be the (unique) 5-th root of $y^5 = f(\alpha_i)$. Then

$$\operatorname{Sing} B = \{(lpha_1,eta_1),\ldots,(lpha_5,eta_5)\}.$$

At each singular point, B is formally isomorphic to

$$\eta^5-\xi^2=0.$$

Let $Y \to \mathbb{P}^2$ be the double cover defined by

$$w^2 = y^5 - f(x),$$

and let $X \to Y$ be the minimal resolution of Y. Then

$$\rho(X) \ge 5 \times 4 + 1 = 21.$$

8

Hence $\rho(X) = 22$.

The *discriminant* of a lattice is the determinant of the intersection matrix.

Theorem (Artin)

Let X be a supersingular K3 surface in characteristic p. Then the discriminant of NS(X) is of the form

 $-p^{2\sigma_X},$

where σ_X is a positive integer ≤ 10 .

The integer σ_X is called the *Artin invariant* of the supersingular K3 surface X.

Theorem (Artin, Shioda, Rudakov-Shafarevich)

For any pair (p, σ) of a prime integer p and a positive integer $\sigma \leq 10$, there exists a supersingular K3 surface X in characteristic p with Artin invariant σ . Theorem (Rudakov-Shafarevich)

The Néron-Severi lattice of a supersingular K3 surface is determined uniquely (up to isomorphisms of lattices) by p and the Artin invariant.

More precisely:

Let $\Lambda_{p,\sigma}$ be the lattice of rank 22 with the following properties:

- (i) even (i.e., $v^2 \in 2\mathbb{Z}$ for every $v \in \Lambda_{p,\sigma}),$
- (ii) the signature is (1, 21),
- (iii) the cokernel of the natural embedding

$$egin{array}{ccc} \Lambda_{p,\sigma} & \hookrightarrow & \Lambda_{p,\sigma}^ee := \operatorname{Hom}(\Lambda_{p,\sigma},\mathbb{Z}) & \subset & \Lambda_{p,\sigma}\otimes_{\mathbb{Z}}\mathbb{Q} \end{array}$$

is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^{\oplus 2\sigma}$, and (iv) if p = 2, then $u^2 \in \mathbb{Z}$ for every $u \in \Lambda_{2,\sigma}^{\vee} \subset \Lambda_{2,\sigma} \otimes_{\mathbb{Z}} \mathbb{Q}$.

• These properties determine the lattice $\Lambda_{p,\sigma}$ uniquely up to isomorphisms.

• If X is a supersingular K3 surface in characteristic p with $\sigma_X = \sigma$, then NS(X) has these properties.

Hence there exists an isomorphism

$$\phi \hspace{0.1 in} : \hspace{0.1 in} \Lambda_{p,\sigma} \hspace{0.1 in} \xrightarrow{\sim} \hspace{0.1 in} NS(X).$$

Theorem (Rudakov-Shafarevich)

Let $h\in \Lambda_{p,\sigma}$ be a vector with $h^2=2$ such that

$$\{ \ v\in \Lambda_{p,\sigma} \ \mid \ v^2=0, vh=1 \ \}= \emptyset.$$

Then we can choose an isomorphism

$$\phi \hspace{0.1 in} : \hspace{0.1 in} \Lambda_{p,\sigma} \hspace{0.1 in} \stackrel{\sim}{
ightarrow} \hspace{0.1 in} NS(X)$$

in such a way that

$$\phi(h) = [\mathcal{L}],$$

where \mathcal{L} is a line bundle on X whose complete linear system $|\mathcal{L}|$ has no fixed components.

Let

$$X o Y o \mathbb{P}^2$$

be the Stein factorization of $\Phi_{|\mathcal{L}|} : X \to \mathbb{P}^2$. Then the *ADE*-type of the singularity of Y is equal to the *ADE*-type of the root system

$$\{ \; v \in \Lambda_{p,\sigma} \; \mid \; v^2 = -2, vh = 0 \; \}.$$

For a supersingular K3 surface X, the set

{generically finite morphisms $X \to \mathbb{P}^2$ of degree 2} is completely determined by the characteristic p and the Artin invariant of X. Theorem (S.)

(1) Every supersingular K3 surface in odd characteristic is birational to a double cover of \mathbb{P}^2 branched along a plane curve of degree 6.

(2) Every supersingular K3 surface in characteristic 2 is birational to a purely inseparable double cover of \mathbb{P}^2 that has 21 rational double points of type A_1 .

Problem in odd characteristics

For each pair (p, σ) , find a plane curve

$$F(x_0, x_1, x_2) = 0$$

of degree 6 such that the minimal resolution of the surface $w^2 = F(x_0, x_1, x_2)$ is a supersingular K3 surface in characteristic p with Artin invariant σ . Example in characteristic 5 (Pho D. Tai)

Suppose that k is of characteristic 5, and let X be the supersingular K3 surface birational to

$$\{w^2=y^5-f(x)\} \quad \subset \quad \mathbb{A}^3,$$

where f(x) is a general polynomial of degree 6. Then NS(X) is isomorphic to

$$R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus inom{2}{1-2},$$

where $R(A_4)$ is the (negative-definite) root lattice given by the Cartan matrix of type A_4 ;

$$egin{pmatrix} -2 & 1 & 0 & 0 \ 1 & -2 & 1 & 0 \ 0 & 1 & -2 & 1 \ 0 & 0 & 1 & -2 \end{pmatrix}$$

Since disc $R(A_4) = 5$, we have disc $NS(X) = -5^6$, and hence

$$\sigma_X = 3.$$

Example (continued)

Conversely, suppose that X is a supersingular K3 surface in characteristic 5 with Artin invariant 3. Then, by the theorem of Rudakov-Shafarevich, NS(X) is isomorphic to

$$R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus R(A_4)\oplus egin{pmatrix} 2&1\ 1&-2 \end{pmatrix}.$$

It follows that X has a line bundle \mathcal{L} of degree 2 ($\mathcal{L}^2 = 2$) such that

- $|\mathcal{L}|$ has no fixed components, and
- the Stein factorization of the morphism $\Phi_{|\mathcal{L}|}: X \to \mathbb{P}^2$ defined by $|\mathcal{L}|$ is

$$X o Y o \mathbb{P}^2,$$

where Y has $5A_4$ as its singularities.

On the other hand, we can show that, if a plane curve B of degree 6 has $5A_4$ as its singularities, then B is defined by an equation of the form

$$y^5 - f(x) = 0.$$

Theorem (Pho D. Tai)

Every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is birational to a surface defined by an equation of the form

$$w^2 = y^5 - f(x).$$

Corollary

Every supersingular K3 surface X in characteristic 5 with Artin invariant ≤ 3 is unirational; that is, the function field k(X) of X is contained in $k(\mathbb{P}^2) = k(u, v)$.

Conjecture (Artin-Shioda)

Every supersingular K3 surface X is unirational.

Artin-Shioda Conjecture has been verified in the following cases:

•
$$p=2,$$

- p = 3 and $\sigma \leq 6$, and
- $\sigma \leq 2$.

Suppose that k is of characteristic 2.

Then every supersingular K3 surface is obtained as the minimal resolution $X_G \rightarrow Y_G$ of a purely inseparable double cover

$$Y_G \ : \ w^2 = G(x_0, x_1, x_2)$$

of \mathbb{P}^2 with 21 ordinary nodes.

We put

 $egin{array}{lll} \mathcal{U} \ := \ \setlength{\belowdotsinew$

Then $\mathcal U$ is a Zariski open dense subset of $H^0(\mathbb P^2,\mathcal O_{\mathbb P^2}(6)).$

For any $G \in H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(6))$, we can define

$$dG \ \in \ \Gamma(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(6)),$$

because we are in characteristic 2 and we have $\mathcal{O}_{\mathbb{P}^2}(6) \cong \mathcal{O}_{\mathbb{P}^2}(3)^{\otimes 2}$ so that the transition functions of $\mathcal{O}_{\mathbb{P}^2}(6)$ are squares:

$$g'=t^2\,g \implies dg'=2g\,dt+t^2\,dg=t^2\,dg.$$

Let Z(dG) be the subscheme of \mathbb{P}^2 defined by dG = 0. Then we have

$$\operatorname{Sing}(Y_G)=\pi_G^{-1}(Z(dG)),$$

where $\pi_G: Y_G \to \mathbb{P}^2$ is the covering morphism.

Hence

 $\mathcal{U}=\{ \ G \ \mid \ Z(dG) ext{ is reduced of dimension } 0 \ \}.$ (Note that $c_2(\Omega^1_{\mathbb{P}^2}(6))=21.)$

We put

$$\mathcal{V}:=H^0(\mathbb{P}^2,\mathcal{O}_{\mathbb{P}^2}(3)).$$

Because we have $d(G + H^2) = dG$ for $H \in \mathcal{V}$, the additive group \mathcal{V} acts on the space \mathcal{U} by

$$(G,H)\in \mathcal{U} imes \mathcal{V} \ \mapsto \ G+H^2\in \mathcal{U}.$$

Let G and G' be homogeneous polynomials in \mathcal{U} . Then the following conditions are equivalent: (i) Y_G and $Y_{G'}$ are isomorphic over \mathbb{P}^2 , (ii) Z(dG) = Z(dG'), and

(iii) there exist $c \in k^{\times}$ and $H \in \mathcal{V}$ such that $G' = c G + H^2.$

Therefore a moduli space \mathcal{M} of polarized supersingular K3 surfaces of degree 2 is constructed by

$$\mathcal{M} = GL(3,k)ackslash \mathcal{U}/\mathcal{V}.$$

Let

$$(\mathcal{U}/\mathcal{V})^s~\subset~\mathcal{U}/\mathcal{V}$$

be the locus of stable points with respect to the action of GL(3,k) on the vector space \mathcal{U}/\mathcal{V} .

By Hilbert-Mumford criterion, we can see that

 $(\mathcal{U}/\mathcal{V})^s = \{ \; G \; \mid \; Y_G \; ext{has only rational double points} \; \}.$

If $[G] \in (\mathcal{U}/\mathcal{V})^s$, then $\operatorname{Sing}(Y_G)$ consists of rational double points of type

 $A_1, \quad D_{2m}, \quad E_7 \quad ext{or} \quad E_8.$

We can calculate the Artin invariant of X_G from $G \in \mathcal{U}$.

Example

If $G \in \mathcal{U}$ is general, the Artin invariant of X_G is 10.

Let G_1 and G_2 be general homogeneous polynomials such that

$$\deg G_1 + \deg G_2 = 6.$$

Then

$$G = G_1 G_2$$

is a member of \mathcal{U} , and the Artin invariant of X_G is 9.

The proper transform of the plane curve C_1 defined by $G_1 = 0$ is non-reduced divisor on X_G . It is written as $2F_1$. The class of the curve F_1 gives an extra algebraic cycles.

Example

Let L_1,\ldots,L_6 be general linear forms of \mathbb{P}^2 . Then $G:=L_1L_2\ldots L_6$

is a member of \mathcal{U} , and the Artin invariant of X_G is 5.

Example

We put

$$G[a]:=x_0x_1x_2\left(x_0^3+x_1^3+x_2^3
ight)+a\,x_0^3x_1^3,$$

where a is a parameter.

Then G[a] is a member of \mathcal{U} for any a, and the Artin invariant of $X_{G[a]}$ is

$$egin{cases} 2 & ext{if} \ a
eq 0, \ 1 & ext{if} \ a = 0. \end{cases}$$

Compactification of the moduli.

Rudakov, Shafarevich and Zink showed that, at least in characteristic > 3, every smooth family of of supersingular K3 surfaces can be extended, after base change by finite covering and birational transformation of the total space, to a *non-degenerate complete* family.

Problem

Construct explicitly a non-degenerate completion of a finite cover of the moduli space \mathcal{M} .

Example in characteristic 3 (S. and De Qi Zhang)

In characteristic 3, every supersingular K3 with Artin invariant ≤ 6 is birational to a purely inseparable triple cover Y of $\mathbb{P}^1 \times \mathbb{P}^1$ defined by

$$w^3=f(x_0,x_1;y_0,y_1),$$

where f is a bi-homogeneous polynomial of degree (3, 3), and Y has 10 rational double points of type A_2 as its only singularities.

The minimal resolution of the surface

$$w^3=(x_0^3-x_0^2x_1)(y_0^3-y_0^2y_1)$$

is a supersingular K3 surface with Artin invariant 1.