Supersingular K3 surfaces (in characteristic 2)

Ichiro Shimada
(Hokkaido University, Sapporo)

We work over an algebraically closed field k of characteristic $\boldsymbol{p}>0$.

Definition

A non-singular projective surface \boldsymbol{X} is called a $K 3$ surface if

- $K_{X} \cong \mathcal{O}_{X}$, and
- $h^{1}\left(X, \mathcal{O}_{X}\right)=0$.

Example: $K 3$ surfaces as double covers of \mathbb{P}^{2}.
Let $C\left(x_{0}, x_{1}, x_{2}\right)$ and $F\left(x_{0}, x_{1}, x_{2}\right)$ be homogeneous polynomials of degree 3 and 6 , respectively.

Let Y be a double cover of \mathbb{P}^{2} defined by

$$
w^{2}+w \cdot C\left(x_{0}, x_{1}, x_{2}\right)+F\left(x_{0}, x_{1}, x_{2}\right)=0,
$$

and let $X \rightarrow Y$ be the minimal resolution of \boldsymbol{Y}.
Then X is a $K 3$ surface if and only if Y has only rational double points as its singularities; that is, if and only only if the exceptional divisor of $X \rightarrow Y$ is an $\boldsymbol{A D E}$-configuration of smooth rational curves of selfintersection -2.

Conversely, let X be a $K 3$ surface.
Let \mathcal{L} be a line bundle of X with $\mathcal{L}^{2}=2$.
If the complete linear system $|\mathcal{L}|$ has no fixed components, then $\operatorname{dim}|\mathcal{L}|=2$, and the morphism

$$
\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}
$$

defined by $|\mathcal{L}|$ is factored as

$$
X \rightarrow Y \rightarrow \mathbb{P}^{2}
$$

where $\boldsymbol{Y} \rightarrow \mathbb{P}^{2}$ is a double cover defined by

$$
w^{2}+w \cdot C\left(x_{0}, x_{1}, x_{2}\right)+\boldsymbol{F}\left(x_{0}, x_{1}, x_{2}\right)=0,
$$

with $\operatorname{deg} C=3$ and $\operatorname{deg} F=6$, and Y has only rational double points as its singularities.

Remarks

(1) Suppose that k is not of characteristic 2. Then we can assume that

$$
C\left(x_{0}, x_{2}, x_{2}\right)=0
$$

by the coordinate change

$$
w \mapsto w+C / 2
$$

Let $B \subset \mathbb{P}^{2}$ be the branch curve of $\boldsymbol{Y} \rightarrow \mathbb{P}^{2}$;

$$
B=\left\{F\left(x_{0}, x_{1}, x_{2}\right)=0\right\} \quad \subset \quad \mathbb{P}^{2}
$$

Then X is a $K 3$ surface if and only if the plane curve B has only rational double points as its singularities.
(2) In characteristic 2 ,

$$
C\left(x_{0}, x_{2}, x_{2}\right)=0
$$

X is purely inseparable over \mathbb{P}^{2}.

Let X be a $K 3$ surface.

Let D be a divisor on X.
We say that D is numerically equivalent to 0 (denoted by $D \equiv 0$) if

$$
C D=0 \quad \text { for any curve } C \subset X
$$

holds. (Here $C D$ is the intersection number.)

The Néron-Severi lattice $N S(X)$ of X is the free abelian group

$$
\{\text { divisors on } X\} / \equiv
$$

equipped with the non-degenerate pairing

$$
[D]\left[D^{\prime}\right]:=D D^{\prime}
$$

The rank of $N S(X)$ is called the Picard number of X :

$$
\rho(X):=\operatorname{rank} N S(X)
$$

Corollary of Hodge Index Theorem

The signature of the quadratic form on $N S(X) \otimes \mathbb{R}$ defined by the intersection pairing is $(1, \rho(X)-1)$.

In characteristic 0 , we have

$$
N S(X)=H^{1,1}(X) \cap H^{2}(X, \mathbb{Z})
$$

In particular, $\quad \rho(X) \leq h^{1,1}(X)=20$.

In positive characteristics, the possible values of $\rho(X)$ are $1, \ldots, 20$ and 22 .

A $K 3$ surface \boldsymbol{X} is supersingular (in the sense of Shioda) if $\rho(X)=22$ holds.

Example

Suppose that k is of characteristic 2.
Let $G\left(x_{0}, x_{1}, x_{2}\right)$ be a general homogeneous polynomial of degree 6. Then the purely inseparable double cover $Y_{G} \rightarrow \mathbb{P}^{2}$ defined by

$$
w^{2}=G\left(x_{0}, x_{1}, x_{2}\right)
$$

has 21 rational double points of type A_{1}.
Proof. We put $g(x, y):=G(x, y, 1)$. Since

$$
\frac{\partial w^{2}}{\partial w}=0
$$

in characteristic 2 , the singular points of Y_{G} is given by

$$
\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0
$$

The affine curves $\partial g / \partial x=0$ and $\partial g / \partial y=0$ intersect at 21 points transversely when G is general. (Other four intersection points are always on the line at infinity.) \square

Let $X_{G} \rightarrow Y_{G}$ be the minimal resolution of Y_{G}. Since

$$
\rho\left(X_{G}\right)=21+1=22
$$

the $K 3$ surface X_{G} is supersingular.

Example (Pho D. Tai)
Suppose that k is of characteristic 5.
Let $f(x)$ be a general polynomial of degree 6, and let $B \subset \mathbb{P}^{2}$ be the projective completion of the affine curve defined by

$$
y^{5}=f(x)
$$

Then $\operatorname{Sing} B$ consists of five rational double points of type \boldsymbol{A}_{4}.

Indeed, let $\alpha_{1}, \ldots, \alpha_{5}$ be the roots of $f^{\prime}(x)=0$, and let β_{i} be the (unique) 5 -th root of $y^{5}=f\left(\alpha_{i}\right)$. Then

$$
\operatorname{Sing} B=\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{5}, \beta_{5}\right)\right\}
$$

At each singular point, B is formally isomorphic to

$$
\eta^{5}-\xi^{2}=0
$$

Let $\boldsymbol{Y} \rightarrow \mathbb{P}^{2}$ be the double cover defined by

$$
w^{2}=y^{5}-f(x)
$$

and let $\boldsymbol{X} \rightarrow \boldsymbol{Y}$ be the minimal resolution of \boldsymbol{Y}. Then

$$
\rho(X) \geq 5 \times 4+1=21
$$

Hence $\rho(X)=22$.

The discriminant of a lattice is the determinant of the intersection matrix.

Theorem (Artin)
Let X be a supersingular $K 3$ surface in characteristic p. Then the discriminant of $N S(X)$ is of the form

$$
-p^{2 \sigma_{X}}
$$

where σ_{X} is a positive integer ≤ 10.

The integer σ_{X} is called the Artin invariant of the supersingular $K 3$ surface \boldsymbol{X}.

Theorem (Artin, Shioda, Rudakov-Shafarevich)
For any pair (p, σ) of a prime integer p and a positive integer $\sigma \leq 10$, there exists a supersingular $K 3$ surface X in characteristic p with Artin invariant σ.

Theorem (Rudakov-Shafarevich)

The Néron-Severi lattice of a supersingular K3 surface is determined uniquely (up to isomorphisms of lattices) by p and the Artin invariant.

More precisely:
Let $\Lambda_{p, \sigma}$ be the lattice of rank 22 with the following properties:
(i) even (i.e., $v^{2} \in 2 \mathbb{Z}$ for every $v \in \Lambda_{p, \sigma}$),
(ii) the signature is $(1,21)$,
(iii) the cokernel of the natural embedding

$$
\Lambda_{p, \sigma} \hookrightarrow \Lambda_{p, \sigma}^{\vee}:=\operatorname{Hom}\left(\Lambda_{p, \sigma}, \mathbb{Z}\right) \subset \Lambda_{p, \sigma} \otimes_{\mathbb{Z}} \mathbb{Q}
$$

is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{\oplus 2 \sigma}$, and (iv) if $p=2$, then $u^{2} \in \mathbb{Z}$ for every $u \in \Lambda_{2, \sigma}^{\vee} \subset \Lambda_{2, \sigma} \otimes_{\mathbb{Z}} \mathbb{Q}$.

- These properties determine the lattice $\Lambda_{p, \sigma}$ uniquely up to isomorphisms.
- If X is a supersingular $K 3$ surface in characteristic p with $\sigma_{X}=\sigma$, then $N S(X)$ has these properties.

Hence there exists an isomorphism

$$
\phi: \Lambda_{p, \sigma} \xrightarrow{\sim} N S(X) .
$$

Theorem (Rudakov-Shafarevich)

Let $h \in \Lambda_{p, \sigma}$ be a vector with $h^{2}=2$ such that

$$
\left\{v \in \Lambda_{p, \sigma} \mid v^{2}=0, v h=1\right\}=\emptyset .
$$

Then we can choose an isomorphism

$$
\phi: \Lambda_{p, \sigma} \xrightarrow{\sim} N S(X)
$$

in such a way that

$$
\phi(h)=[\mathcal{L}],
$$

where \mathcal{L} is a line bundle on X whose complete linear system $|\mathcal{L}|$ has no fixed components.

Let

$$
X \rightarrow Y \rightarrow \mathbb{P}^{2}
$$

be the Stein factorization of $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$. Then the $A D E$-type of the singularity of Y is equal to the $A D E-$ type of the root system

$$
\left\{v \in \Lambda_{p, \sigma} \mid v^{2}=-2, v h=0\right\}
$$

For a supersingular $K 3$ surface X, the set
\{generically finite morphisms $X \rightarrow \mathbb{P}^{2}$ of degree 2 \} is completely determined by the characteristic p and the Artin invariant of \boldsymbol{X}.

Theorem (S.)

(1) Every supersingular $K 3$ surface in odd characteristic is birational to a double cover of \mathbb{P}^{2} branched along a plane curve of degree 6 .
(2) Every supersingular $K 3$ surface in characteristic 2 is birational to a purely inseparable double cover of \mathbb{P}^{2} that has 21 rational double points of type \boldsymbol{A}_{1}.

Problem in odd characteristics
For each pair (p, σ), find a plane curve

$$
F\left(x_{0}, x_{1}, x_{2}\right)=0
$$

of degree 6 such that the minimal resolution of the surface $\boldsymbol{w}^{2}=\boldsymbol{F}\left(x_{0}, x_{1}, x_{2}\right)$ is a supersingular $K 3$ surface in characteristic p with Artin invariant σ.

Example in characteristic 5 (Pho D. Tai)
Suppose that k is of characteristic 5 , and let X be the supersingular $K 3$ surface birational to

$$
\left\{w^{2}=y^{5}-f(x)\right\} \quad \subset \quad \mathbb{A}^{3}
$$

where $f(x)$ is a general polynomial of degree 6 . Then $N S(X)$ is isomorphic to
$R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$,
where $R\left(A_{4}\right)$ is the (negative-definite) root lattice given by the Cartan matrix of type \boldsymbol{A}_{4};

$$
\left(\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right)
$$

Since $\operatorname{disc} R\left(A_{4}\right)=5$, we have disc $N S(X)=-5^{6}$, and hence

$$
\sigma_{X}=3
$$

Example (continued)
Conversely, suppose that X is a supersingular $K 3$ surface in characteristic 5 with Artin invariant 3. Then, by the theorem of Rudakov-Shafarevich, $N S(X)$ is isomorphic to
$R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus R\left(A_{4}\right) \oplus\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$.
It follows that X has a line bundle \mathcal{L} of degree $2\left(\mathcal{L}^{2}=2\right)$ such that

- $|\mathcal{L}|$ has no fixed components, and
- the Stein factorization of the morphism $\Phi_{|\mathcal{L}|}: X \rightarrow$ \mathbb{P}^{2} defined by $|\mathcal{L}|$ is

$$
\boldsymbol{X} \rightarrow \boldsymbol{Y} \rightarrow \mathbb{P}^{2}
$$

where Y has $5 A_{4}$ as its singularities.
On the other hand, we can show that, if a plane curve B of degree 6 has $5 A_{4}$ as its singularities, then B is defined by an equation of the form

$$
y^{5}-f(x)=0
$$

Theorem (Pho D. Tai)

Every supersingular $K 3$ surface in characteristic 5 with Artin invariant ≤ 3 is birational to a surface defined by an equation of the form

$$
w^{2}=y^{5}-f(x)
$$

Corollary
Every supersingular $K 3$ surface X in characteristic 5 with Artin invariant ≤ 3 is unirational; that is, the function field $k(X)$ of X is contained in $k\left(\mathbb{P}^{2}\right)=k(u, v)$.

Conjecture (Artin-Shioda)
Every supersingular $K 3$ surface X is unirational.

Artin-Shioda Conjecture has been verified in the following cases:

- $p=2$,
- $p=3$ and $\sigma \leq 6$, and
- $\sigma \leq 2$.

Suppose that k is of characteristic 2.
Then every supersingular $K 3$ surface is obtained as the minimal resolution $X_{G} \rightarrow \boldsymbol{Y}_{G}$ of a purely inseparable double cover

$$
Y_{G}: \quad w^{2}=G\left(x_{0}, x_{1}, x_{2}\right)
$$

of \mathbb{P}^{2} with 21 ordinary nodes.

We put
$\mathcal{U}:=\left\{G \mid \operatorname{Sing}\left(Y_{G}\right)\right.$ consists of 21 ordinary nodes $\}$
$\subset H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$.
Then \mathcal{U} is a Zariski open dense subset of $H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$.

For any $G \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(6)\right)$, we can define

$$
d G \in \Gamma\left(\mathbb{P}^{2}, \Omega_{\mathbb{P}^{2}}^{1}(6)\right)
$$

because we are in characteristic 2 and we have $\mathcal{O}_{\mathbb{P}^{2}}(6) \cong$ $\mathcal{O}_{\mathbb{P}^{2}}(3)^{\otimes 2}$ so that the transition functions of $\mathcal{O}_{\mathbb{P}^{2}}(6)$ are squares:

$$
g^{\prime}=t^{2} g \quad \Longrightarrow d g^{\prime}=2 g d t+t^{2} d g=t^{2} d g
$$

Let $Z(d G)$ be the subscheme of \mathbb{P}^{2} defined by $d G=0$.
Then we have

$$
\operatorname{Sing}\left(Y_{G}\right)=\pi_{G}^{-1}(Z(d G))
$$

where $\pi_{G}: Y_{G} \rightarrow \mathbb{P}^{2}$ is the covering morphism.

Hence

$$
\mathcal{U}=\{G \mid Z(d G) \text { is reduced of dimension } 0\}
$$

$\left(\right.$ Note that $c_{2}\left(\Omega_{\mathbb{P}^{2}}^{1}(6)\right)=21$.)

We put

$$
\mathcal{V}:=\boldsymbol{H}^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(3)\right)
$$

Because we have $d\left(G+H^{2}\right)=d G$ for $H \in \mathcal{V}$, the additive group \mathcal{V} acts on the space \mathcal{U} by

$$
(G, H) \in \mathcal{U} \times \mathcal{V} \quad \mapsto \quad G+H^{2} \in \mathcal{U}
$$

Let G and G^{\prime} be homogeneous polynomials in \mathcal{U}.
Then the following conditions are equivalent:
(i) Y_{G} and $Y_{G^{\prime}}$ are isomorphic over \mathbb{P}^{2},
(ii) $Z(d G)=Z\left(d G^{\prime}\right)$, and
(iii) there exist $c \in \boldsymbol{k}^{\times}$and $\boldsymbol{H} \in \mathcal{V}$ such that

$$
G^{\prime}=c G+H^{2}
$$

Therefore a moduli space \mathcal{M} of polarized supersingular $K 3$ surfaces of degree 2 is constructed by

$$
\mathcal{M}=G L(3, k) \backslash \mathcal{U} / \mathcal{V}
$$

Let

$$
(\mathcal{U} / \mathcal{V})^{s} \subset \mathcal{U} / \mathcal{V}
$$

be the locus of stable points with respect to the action of $G L(3, k)$ on the vector space $\mathcal{U} / \mathcal{V}$.

By Hilbert-Mumford criterion, we can see that $(\mathcal{U} / \mathcal{V})^{s}=\left\{G \mid Y_{G}\right.$ has only rational double points $\}$. If $[G] \in(\mathcal{U} / \mathcal{V})^{s}$, then $\operatorname{Sing}\left(\boldsymbol{Y}_{G}\right)$ consists of rational double points of type

$$
A_{1}, \quad D_{2 m}, \quad E_{7} \quad \text { or } \quad E_{8} .
$$

We can calculate the Artin invariant of X_{G} from $G \in \mathcal{U}$.

Example
If $G \in \mathcal{U}$ is general, the Artin invariant of X_{G} is 10 .
Let G_{1} and G_{2} be general homogeneous polynomials such that

$$
\operatorname{deg} G_{1}+\operatorname{deg} G_{2}=6
$$

Then

$$
G=G_{1} G_{2}
$$

is a member of \mathcal{U}, and the Artin invariant of X_{G} is 9 .
The proper transform of the plane curve C_{1} defined by $G_{1}=0$ is non-reduced divisor on X_{G}. It is written as $2 F_{1}$. The class of the curve F_{1} gives an extra algebraic cycles.

Example

Let L_{1}, \ldots, L_{6} be general linear forms of \mathbb{P}^{2}. Then

$$
G:=L_{1} L_{2} \ldots L_{6}
$$

is a member of \mathcal{U}, and the Artin invariant of X_{G} is 5 .

Example
We put

$$
G[a]:=x_{0} x_{1} x_{2}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)+a x_{0}^{3} x_{1}^{3},
$$

where a is a parameter.
Then $G[a]$ is a member of \mathcal{U} for any a, and the Artin invariant of $\boldsymbol{X}_{G[a]}$ is

$$
\begin{cases}2 & \text { if } a \neq 0 \\ 1 & \text { if } a=0\end{cases}
$$

Compactification of the moduli.
Rudakov, Shafarevich and Zink showed that, at least in characteristic >3, every smooth family of of supersingular K3 surfaces can be extended, after base change by finite covering and birational transformation of the total space, to a non-degenerate complete family.

Problem
Construct explicitly a non-degenerate completion of a finite cover of the moduli space \mathcal{M}.

Example in characteristic 3 (S. and De Qi Zhang)
In characteristic 3, every supersingular K3 with Artin invariant ≤ 6 is birational to a purely inseparable triple cover \boldsymbol{Y} of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ defined by

$$
w^{3}=f\left(x_{0}, x_{1} ; y_{0}, y_{1}\right),
$$

where f is a bi-homogeneous polynomial of degree $(3,3)$, and Y has 10 rational double points of type A_{2} as its only singularities.

The minimal resolution of the surface

$$
w^{3}=\left(x_{0}^{3}-x_{0}^{2} x_{1}\right)\left(y_{0}^{3}-y_{0}^{2} y_{1}\right)
$$

is a supersingular $K 3$ surface with Artin invariant 1.

