Singularity of dual varieties in characteristic 3

Ichiro Shimada
(Hokkaido University, Sapporo)

Talk at 長沙, 9 Sept 2006

We work over an algebraically closed field k.

§1. An Example

Let $E \subset \mathbb{P}^{2}$ be a smooth cubic plane curve.
We fix a flex point $O \in E$, and consider the elliptic curve (E, O).

Let $\left(\mathbb{P}^{2}\right)^{\vee}$ be the dual projective plane, and let $\boldsymbol{E}^{\vee} \subset\left(\mathbb{P}^{2}\right)^{\vee}$ be the dual curve of \boldsymbol{E}.
We denote by

$$
\phi: E \rightarrow E^{\vee}
$$

the morphism that maps a point $P \in E$ to the tangent line $T_{P}(E) \in E^{\vee}$ to E at P.

Suppose that $\operatorname{char}(k) \neq 2$.

Then E^{\vee} is of degree 6 , and ϕ is birational. The singular points $\operatorname{Sing}\left(\boldsymbol{E}^{\vee}\right)$ of \boldsymbol{E}^{\vee} are in one-to-one correspondence with the flex points of E via ϕ.
On the other hand, the flex points of E are in one-toone correspondence with the 3-torsion subgroup $E[3]$ of (E, O).

We have
$E[3] \cong$
$\begin{cases}\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} & \text { if } \operatorname{char}(k) \neq 3, \\ \mathbb{Z} / 3 \mathbb{Z} & \text { if } \operatorname{char}(k)=3 \text { and } E \text { is not supersingular, } \\ 0 & \text { if } \operatorname{char}(k)=3 \text { and } E \text { is supersingular. }\end{cases}$

Then we have
$\operatorname{Sing}\left(\boldsymbol{E}^{\vee}\right)$ consists of
$\int 9$ points of type $A_{2} \quad$ if $\operatorname{char}(k) \neq 3$,
$\left\{3\right.$ points of type $E_{6} \quad$ if $\operatorname{char}(k)=3$ and E is not s-singular,
1 point of type T_{3} if $\operatorname{char}(k)=3$ and E is s-singular.

type	defining equation	normalization
A_{2}	$x^{2}+y^{3}=0$	$t \mapsto\left(t^{3}, t^{2}\right)$
E_{6}	$x^{4}+y^{3}+x^{2} y^{2}=0 \quad$ or	$t \mapsto\left(t^{4}, t^{3}+t^{5}\right) \quad$ or
	$x^{4}+y^{3}=0$	$t \mapsto\left(t^{4}, t^{3}\right)$
T_{3}	$x^{10}+y^{3}+x^{6} y^{2}=0$	$t \mapsto\left(t^{10}, t^{3}+t^{11}\right)$

Remark. When $\operatorname{char}(k) \neq 3$, then the two types of the \boldsymbol{E}_{6}-singular point are isomorphic.

§2. Introduction

The aim of this talk is to investigate the singularity of the dual variety of a smooth projective variety $X \subset \mathbb{P}^{m}$ in arbitrary characteristics.

It turns out that the nature of the singularity differs according to the following cases:

- $\operatorname{char}(k)>3$ or $\operatorname{char}(k)=0$ (the classical case),
- $\operatorname{char}(k)=3$,
- $\operatorname{char}(k)=2$ and $\operatorname{dim} X$ is even,
- $\operatorname{char}(k)=2$ and $\operatorname{dim} X$ is odd (I could not analyze the singularity in this case).

§3. Definition of the dual variety

We need some preparation.

Let \boldsymbol{V} be a variety, and let \boldsymbol{E} and \boldsymbol{F} be vector bundles on V with rank e and f, respectively. For a bundle homomorphism $\sigma: E \rightarrow \boldsymbol{F}$, we define the degeneracy subscheme of σ to be the closed subscheme of V defined locally on V by all r-minors of the $f \times e$-matrix expressing σ, where $r:=\min (e, f)$.

Let V and W be smooth varieties, and let $\phi: V \rightarrow W$ be a morphism.

The critical subscheme of ϕ is the degeneracy subscheme of the homomorphism $d \phi: T(V) \rightarrow \phi^{*} T(W)$.

Suppose that $\operatorname{dim} V \leq \operatorname{dim} W$. We say that ϕ is a closed immersion formally at $P \in V$ if $d_{P} \phi: T_{P}(V) \rightarrow$ $T_{\phi(P)}(W)$ is injective, or equivalently, the induced homomorphism $\left(\mathcal{O}_{W, \phi(P)}\right)^{\wedge} \rightarrow\left(\mathcal{O}_{V, P}\right)^{\wedge}$ is surjective.

When $\operatorname{dim} V \leq \operatorname{dim} W$, a point $P \in V$ is in the support of the critical subscheme of ϕ if and only if ϕ is not a closed immersion formally at P.

Let $X \subset \mathbb{P}^{m}$ be a smooth projective variety with $\operatorname{dim} X=$ $n>0$. We put

$$
\mathcal{L}:=\mathcal{O}_{X}(1)
$$

We assume that X is not contained in any hyperplane of \mathbb{P}^{m}. Then the dual projective space

$$
\mathbb{P}:=\left(\mathbb{P}^{m}\right)^{\vee}
$$

is regarded as a linear system $|M|$ of divisors on X, where M is a linear subspace of $\boldsymbol{H}^{0}(X, \mathcal{L})$.
Let $\mathcal{D} \subset X \times \mathbb{P}$ be the universal family of the hyperplane sections of X, which is smooth of dimension $n+m-1$. The support of \mathcal{D} is equal to

$$
\{(p, \boldsymbol{H}) \in \boldsymbol{X} \times \mathbb{P} \mid p \in \boldsymbol{H} \cap \boldsymbol{X}\} .
$$

Let $\mathcal{C} \subset \mathcal{D}$ be the critical subscheme of the second projection $\mathcal{D} \rightarrow \mathbb{P}$. It turns out that \mathcal{C} is smooth of dimension $m-1$. The support of \mathcal{C} is equal to

$$
\{(p, H) \in \mathcal{D} \mid H \cap X \text { is singular at } p\}
$$

Let $\mathcal{E} \subset \mathcal{C}$ be the critical subscheme of the second projection $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$. The support of \mathcal{E} is equal to $\{(p, H) \in \mathcal{C} \mid$ the Hessian of $\boldsymbol{H} \cap X$ at p is degenerate $\}$.

The image of $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$ is called the dual variety of $X \subset \mathbb{P}^{m}$.

We will study the singularity of the dual variety by investigating the morphism $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$ at a point of the critical subscheme \mathcal{E}

Let $P=(p, H) \in X \times \mathbb{P}$ be a point of \mathcal{E}, so that $H \cap X$ has a degenerate singularity at p.
Let $\Lambda \subset \mathbb{P}$ be a general plane passing through the point $\boldsymbol{\pi}_{2}(\boldsymbol{P})=\boldsymbol{H} \in \mathbb{P}$.
We denote by $C_{\Lambda} \subset \mathcal{C}$ the pull-back of Λ by π_{2}, and by $\pi_{\Lambda}: C_{\Lambda} \rightarrow \Lambda$ the restriction of π_{2} to C_{Λ}.

- What type of singular point does the plane curve $\Lambda \cap \pi_{2}(\mathcal{C})$ have at \boldsymbol{H} ?
- Does there exist any normal form for the morphism $\pi_{\Lambda}: C_{\Lambda} \rightarrow \Lambda$ at P ?

§4. The scheme \mathcal{E}

For $P=(p, H) \in \mathcal{C}$, we have the Hessian

$$
H_{P}: T_{p}(X) \times T_{p}(X) \rightarrow k
$$

of the hypersurface singularity $p \in H \cap X \subset X$. If $H \cap X$ is defined locally by $f=0$ in X, then H_{P} is expressed by the symmetric matrix

$$
M_{P}:=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(p)\right) .
$$

Over \mathcal{C}, we can define the universal Hessian

$$
\mathcal{H}: \pi_{1}^{*} T(X) \otimes \pi_{1}^{*} T(X) \rightarrow \tilde{\mathcal{L}}:=\pi_{1}^{*} \mathcal{L} \otimes \pi_{2}^{*} \mathcal{O}_{\mathbb{P}}(1)
$$

where $\pi_{1}: \mathcal{C} \rightarrow X$ and $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$ are the projections.
The critical subscheme \mathcal{E} of $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$ coincides with the degeneracy subscheme of the homomorphism $\pi_{1}^{*} T(X) \rightarrow \pi_{1}^{*} T(X)^{\vee} \otimes \widetilde{\mathcal{L}}$ induced from \mathcal{H}.

From this proposition, we see that $\mathcal{E} \subset \mathcal{C}$ is either empty or of codimension ≤ 1. In positive characteristics, we sometimes have $\mathcal{E}=\mathcal{C}$.

Example.

Suppose that $\operatorname{char}(k)=2$. Then the Hessian H_{P} is not only symmetric but also anti-symmetric, because we have

$$
M_{P}={ }^{t} M_{P}=-{ }^{t} M_{P} \quad \text { and } \quad \frac{\partial^{2} \phi}{\partial x_{i}^{2}}(p)=0 .
$$

On the other hand, the rank of an anti-symmetric bilinear form is always even. Hence we obtain the following:

If $\operatorname{char}(k)=2$ and $\operatorname{dim} X$ is odd, then $\mathcal{C}=\mathcal{E}$. (N. Katz)

§5. The quotient morphism by an integrable tangent subbundle

In order to describe the situation in characteristic 2 and 3 , we need the notion of the quotient morphism by an integrable tangent subbundle.

In this section, we assume that k is of characteristic $p>0$. Let V be a smooth variety.

Abstract

A subbundle \mathcal{N} of $T(V)$ is called integrable if \mathcal{N} is closed under the p-th power operation and the bracket product of Lie.

The following is due to Seshadri:
Let \mathcal{N} be an integrable subbundle of $T(V)$. Then there exists a unique morphism $q: V \rightarrow V^{\mathcal{N}}$ with the following properties;
(i) \boldsymbol{q} induces a homeomorphism on the underlying topological spaces,
(ii) q is a radical covering of height 1 , and
(iii) the kernel of $d q: T(V) \rightarrow q^{*} T\left(V^{\mathcal{N}}\right)$ is equal to \mathcal{N}. Moreover, the variety $V^{\mathcal{N}}$ is smooth, and the morphism q is finite of degree p^{r}, where $r=\operatorname{rank} \mathcal{N}$.

For an integrable subbundle \mathcal{N} of $T(V)$, the morphism $q: V \rightarrow V^{\mathcal{N}}$ is called the quotient morphism by \mathcal{N}.

The construction of $q: V \rightarrow V^{\mathcal{N}}$.
Let V be covered by affine schemes $U_{i}:=\operatorname{Spec} \boldsymbol{A}_{i}$. We put

$$
A_{i}^{\mathcal{N}}:=\left\{f \in A_{i} \mid D f=0 \text { for all } D \in \Gamma\left(U_{i}, \mathcal{N}\right)\right\}
$$

Then the natural morphisms $\operatorname{Spec} A_{i} \rightarrow \operatorname{Spec} A_{i}^{\mathcal{N}}$ patch together to form $q: V \rightarrow V^{\mathcal{N}}$.

Let $\phi: V \rightarrow W$ be a morphism from a smooth variety V to a smooth variety W. Suppose that the kernel \mathcal{K} of $d \phi: T(V) \rightarrow \phi^{*} T(W)$ is a subbundle of $T(V)$, which is always the case if we restrict ϕ to a Zariski open dense subset of V. Then \mathcal{K} is integrable, and ϕ factors through the quotient morphism by \mathcal{K}.

§6. The case where $\operatorname{char}(k) \neq 2$

Suppose that the characteristic of k is not 2.
Let $(\boldsymbol{p}, \boldsymbol{H})$ be a point of \mathcal{E}, so that the divisor $\boldsymbol{H} \cap \boldsymbol{X}$ has a degenerate singularity at p.

We say that the singularity of $H \cap X$ at p is of type \boldsymbol{A}_{2} if there exists a formal parameter system $\left(x_{1}, \ldots, x_{n}\right)$ of X at p such that $H \cap X$ is given as the zero of the function of the form

$$
x_{1}^{2}+\cdots+x_{n-1}^{2}+x_{n}^{3}+(\text { higher degree terms })
$$

We then put
$\mathcal{E}^{A_{2}}:=\left\{\begin{array}{l|l}(\boldsymbol{p}, \boldsymbol{H}) \in \mathcal{E} & \begin{array}{l}\text { the singularity of } H \cap X \text { at } \\ p \text { is of type } A_{2}\end{array}\end{array}\right\}$.
We also put
$\mathcal{E}^{\text {sm }}:=\left\{\begin{array}{l|l}(\boldsymbol{p}, \boldsymbol{H}) \in \mathcal{E} & \begin{array}{l}\mathcal{E} \text { is smooth of dimension } \\ m-2 \text { at }(p, \boldsymbol{H})\end{array}\end{array}\right\}$.

We see that \mathcal{E} is irreducible and the loci $\mathcal{E}^{A_{2}}$ and $\mathcal{E}^{\mathrm{sm}}$ are dense in \mathcal{E} if the linear system $|M|$ is sufficiently ample; e.g., if the evaluation homomorphism

$$
v_{p}^{[3]}: M \rightarrow \mathcal{L}_{p} / m_{p}^{4} \mathcal{L}_{p}
$$

is surjective at every point p of X, where $m_{p} \subset \mathcal{O}_{X, p}$ is the maximal ideal.

The case where $\operatorname{char}(k)>3$ or $\operatorname{char}(k)=0$.

In this case, we have the following:
Let $\boldsymbol{P}=(\boldsymbol{p}, \boldsymbol{H})$ be a point of \mathcal{E}. The following two conditions are equivalent:

- $P \in \mathcal{E}^{A_{2}}$,
- $P \in \mathcal{E}^{\text {sm }}$, and the projection $\mathcal{E} \rightarrow \mathbb{P}$ is a closed immersion formally at P.
Moreover, if these conditions are satisfied, then the curve $C_{\Lambda}=\pi_{2}^{-1}(\Lambda)$ is smooth at P, and $\pi_{\Lambda}: C_{\Lambda} \rightarrow \Lambda$ has a critical point of A_{2}-type at $P ;$ that is,

$$
\begin{aligned}
& \pi_{\Lambda}^{*} u=a t^{2}+b t^{3}+(\text { terms of degree } \geq 4) \quad \text { and } \\
& \pi_{\Lambda}^{*} v=c t^{2}+d t^{3}+(\text { terms of degree } \geq 4)
\end{aligned}
$$

with $a d-b c \neq 0$ hold for a formal parameter system (u, v) of Λ at $\pi(P)=H$ and a formal parameter t of C_{Λ} at P.
By suitable choice of formal parameters, we have

$$
\pi_{\Lambda}^{*} u=t^{3}, \quad \pi_{\Lambda}^{*} v=t^{2}
$$

and the plane curve $\pi_{2}(\mathcal{C}) \cap \Lambda \subset \Lambda$ is defined by $u^{2}-v^{3}=$ 0 locally at $H \in \Lambda$.

The case where $\operatorname{char}(k)=3$.

In this case, $P \in \mathcal{E}^{A_{2}}$ does not necessarily imply $P \in$ $\mathcal{E}^{\mathrm{sm}}$. Our main results are as follows.
(I) Let $\varpi: \mathcal{E}^{\mathrm{sm}} \rightarrow \mathbb{P}$ be the projection. Then the kernel \mathcal{K} of $d \varpi: T\left(\mathcal{E}^{\mathrm{sm}}\right) \rightarrow \varpi^{*} \boldsymbol{T}(\mathbb{P})$ is a subbundle of $T\left(\mathcal{E}^{\mathrm{sm}}\right)$ with rank 1. Hence ϖ factors as

$$
\mathcal{E}^{\mathrm{sm}} \xrightarrow{q}\left(\mathcal{E}^{\mathrm{sm}}\right)^{\mathcal{K}} \xrightarrow{\tau} \mathbb{P},
$$

where $\mathcal{E}^{\mathrm{sm}} \rightarrow\left(\mathcal{E}^{\mathrm{sm}}\right)^{\mathcal{K}}$ is the quotient morphism by \mathcal{K}.
(II) Suppose that P is a point of $\mathcal{E}^{\mathrm{sm}} \cap \mathcal{E}^{A_{2}}$. Then
$\tau:\left(\mathcal{E}^{\mathrm{sm}}\right)^{\mathcal{K}} \rightarrow \mathbb{P}$ is a closed immersion formally at $q(P)$. Moreover the curve C_{Λ} is smooth at P, and $\pi_{\Lambda}: C_{\Lambda} \rightarrow \Lambda$ has a critical point of E_{6}-type at P; i. e.,

$$
\begin{aligned}
& \pi_{\Lambda}^{*} u=a t^{3}+b t^{4}+(\text { terms of degree } \geq 5) \quad \text { and } \\
& \pi_{\Lambda}^{*} v=c t^{3}+d t^{4}+(\text { terms of degree } \geq 5)
\end{aligned}
$$

with $a d-b c \neq 0$ hold.
By suitable choice of formal parameters, we have either

$$
\left(\pi_{\Lambda}^{*} u=t^{3}, \pi_{\Lambda}^{*} v=t^{4}\right) \text { or }\left(\pi_{\Lambda}^{*} u=t^{3}+t^{5}, \pi_{\Lambda}^{*} v=t^{4}\right)
$$

The plane curve $\pi_{2}(\mathcal{C}) \cap \Lambda \subset \Lambda$ is defined at $H \in \Lambda$ by either

$$
x^{4}+y^{3}=0 \text { or } x^{4}+y^{3}+x^{2} y^{2}=0
$$

In the case of a projective plane curve (i.e., the case where $(n, m)=(1,2)$), the locus $\mathcal{E}^{\mathrm{sm}}$ is always empty. In this case, we have the following:
(III) Suppose that $(n, m)=(1,2)$, and that the projection $\mathcal{C} \rightarrow \mathbb{P}$ is separable onto its image. (This assumption excludes the case of, for example, the Fermat curve of degree $3^{\nu}+1$.)

Then $\operatorname{dim} \mathcal{E}=0$. Let $P=(p, H)$ be a point of \mathcal{E}. Then the length of $\mathcal{O}_{\mathcal{E}, P}$ is divisible by 3 . If $P \in \mathcal{E}^{A_{2}}$ (that is, H is an ordinary flex tangent line to X at p), then, with appropriate choice of formal parameters, the formal completion of $\pi_{2}: \mathcal{C} \rightarrow \mathbb{P}$ at P is given by

$$
T_{l} \quad: \quad t \mapsto\left(t^{3 l+1}, t^{3}+t^{3 l+2}\right),
$$

where $l:=$ length $\mathcal{O}_{\mathcal{E}, P} / 3$.

