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• We work over the complex number field C.

• The coefficients of the (co-)homology groups are in Z.

• By a lattice, we mean a finitely generated free Z-module Λ

equipped with a non-degenerate symmetric bilinear form

Λ × Λ → Z.

• A lattice Λ is said to be even if (v, v) ∈ 2Z for any v ∈ Λ.
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§1. Conjugate varieties

An affine algebraic variety X ⊂ CN is defined by a finite num-

ber of polynomial equations:

X : f1(x1, . . . , xN) = · · · = fm(x1, . . . , xN) = 0.

Let cj,I ∈ C be the coefficients of the polynomial fj:

fj(x1, . . . , xN) =
∑

I

cj,Ix
I, where xI = xi1

1 · · · x
iN
N .

We then denote by

FX := Q(. . . , cj,I, . . . ) ⊂ C

the minimal sub-field of C containing all the coefficients of the

defining equations of X.

There are many other embeddings

σ : FX ↪→ C

of the field FX into C.

Example.

(1) If FX = Q(
√

2, t), where t ∈ C is transcendental over Q,

then the set of embeddings FX ↪→ C is equal to

{
√

2, −
√

2} × { transcendental complex numbers }.

(2) If all cj,I are algebraic over Q, then the set of embeddings

is finite, and the Galois group of the Galois closure of the al-

gebraic extension FX/Q acts on the set transitively.
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For an embedding σ : FX ↪→ C, we put

fσ
j (x1, . . . , xN) :=

∑
I

cσ
j,Ix

I,

and denote by Xσ ⊂ CN the affine algebraic variety defined by

fσ
1 = · · · = fσ

m = 0.

We can define Xσ for a projective or quasi-projective variety

X ⊂ PN in the same way.

(Replace “polynomials” by “homogeneous polynomials”.)

Definition.

We say that two algebraic varieties X and Y are said to be

conjugate if there exists an embedding σ : FX ↪→ C such that

Y is isomorphic (over C) to Xσ.

In the language of schemes, two varieties X and Y over Spec C
are conjugate if there exists a diagram

Y −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec C.

of the fiber product for some morphism σ∗ : Spec C → Spec C.

It is obvious that being conjugate is an equivalence relation.
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§2. Topology of conjugate varieties

Conjugate varieties cannot be distinguished by any algebraic

methods.

In particular, they are homeomorphic in Zariski topology.

How about in the complex topology?

Example (Serre (1964)).

There exist conjugate non-singular projective varieties X and

Xσ such that their fundamental groups are not isomorphic:

π1(X) 6∼= π1(X
σ).

In particular, they are not homotopically equivalent.
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Other examples of non-homeomorphic conjugate varieties.

• Abelson: Topologically distinct conjugate varieties with fi-

nite fundamental group.

Topology 13 (1974).

• Artal Bartolo, Carmona Ruber, Cogolludo Agust́ın: Effec-

tive invariants of braid monodromy.

Trans. Amer. Math. Soc. 359 (2007).

• S.-: On arithmetic Zariski pairs in degree 6.

arXiv:math/0611596, to appear in Adv. Geom.

• S.-: Non-homeomorphic conjugate complex varieties.

arXiv:math/0701115

• Easton, Vakil: Absolute Galois acts faithfully on the com-

ponents of the moduli space of surfaces: A Belyi-type the-

orem in higher dimension.

arXiv:0704.3231

• Bauer, Catanese, Grunewald: The absolute Galois group

acts faithfully on the connected components of the moduli

space of surfaces of general type.

arXiv:0706.1466

• F. Charles: Conjugate varieties with distinct real cohomol-

ogy algebras.

arXiv:0706.3674
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Main result.

We introduce a new topological invariant

(BU , βU)

of open algebraic varieties U , which allows us to distinguish

conjugate varieties topologically in some cases.

Combining this topological invariant with the arithmetic theory

of abelian surfaces and K3 surfaces, we obtain examples of non-

homeomorphic conjugate varieties.

Our examples are as follows:

• Zariski open subsets of abelian surfaces.

• Zariski open subsets of K3 surfaces.

• Arithmetic Zariski pairs in degree 6.
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§3. Arithmetic Zariski pairs

Definition.

A pair [C, C′] of complex projective plane curves is said to be

a Zariski pair if the following hold:

(i) There exist tubular neighborhoods T ⊂ P2 of C and T ′ ⊂ P2

of C′ such that (T , C) and (T ′, C′) are diffeomorphic.

(ii) (P2, C) and (P2, C′) are not homeomorphic.

Example.

The first example of Zariski pair was discovered by Zariski in

1930’s, and studied by Oka. They presented a Zariski pair

[C, C ′] of plane curves of degree 6, each of which has six ordi-

nary cusps as its only singularities. The fact (P2, C) and (P2, C′)

are not homeomorphic follows from

π1(P2 \ C) ∼= (Z/2Z) ∗ (Z/3Z) and π1(P2 \ C′) ∼= Z/6Z.
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Definition.

A Zariski pair [C, C ′] is said to be an arithmetic Zariski pair

if the following hold.

Suppose that C = {Φ = 0}. Then there exists an embedding

σ : FC ↪→ C such that C′ is isomorphic (as a plane curve) to

Cσ := {Φσ = 0} ⊂ P2.

Remark.

The Zariski pair of Zariski and Oka is not an arithmetic Zariski

pair, because the pro-finite completion of

π1(P2 \ C) ∼= (Z/2Z) ∗ (Z/3Z) and π1(P2 \ C′) ∼= Z/6Z

are not isomorphic; there exists a surjective homomorphism

from π1(P2 \ C) to the symmetric group S3 on three letters,

while there are no such homomorphism from π1(P2 \ C′).

Remark.

The first example of an arithmetic Zariski pair was discovered

by Artal, Carmona, Cogolludo (2007) in degree 12.

They used the invariant of braid monodromies in order to dis-

tinguish (P2, C) and (P2, C′) topologically.
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Example (Artal, Carmona, Cogolludo (2002)).

We consider the following cubic extension of Q:

K := Q[t]/(ϕ), where ϕ = 17t3 − 18t2 − 228t + 556.

The roots of ϕ = 0 are α, ᾱ, β, where

α = 2.590 · · · + 1.108 · · ·
√

−1, β = −4.121 · · · .

There are three corresponding embeddings

σα : K ↪→ C, σᾱ : K ↪→ C and σβ : K ↪→ C.

There exists a homogeneous polynomial

Φ(x0, x1, x2) ∈ K[x0, x1, x2]

of degree 6 with coefficients in K such that the plane curve

C = {Φ = 0}

has three simple singular points of type

A16 + A2 + A1

as its only singularities. Consider the conjugate plane curves

Cα = {Φσα = 0}, Cᾱ = {Φσᾱ = 0} and Cβ = {Φσβ = 0}.

They show that, if C′ is a plane curve possessing A16 +A2 +A1

as its only singularities, then C′ is projectively isomorphic to

Cα, Cᾱ or Cβ.

Since simple singularities have no moduli, there are tubular

neighborhoods Tα ⊂ P2 of Cα ⊂ P2 and Tβ ⊂ P2 of Cβ ⊂ P2

such that (Tα, Cα) is diffeomorphic to (Tβ, Cβ).
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Using the new topological invariant, we can show that there

are no homeomorphisms between (P2, Cα) and (P2, Cβ).

Let YC → P2 be the double covering branching exactly along

the curve C : Φ = 0, and U ⊂ YC the pull-back of P2 \ C. Then

U is a variety defined over K. Consider the conjugate open

varieties Uα and Uβ corresponding to the embeddings σα and

σβ. Then the topological invariants

(BUα, βUα) and (BUβ
, βUβ

)

differ.

Hence [Cα, Cβ] is an arithmetic Zariski pair in degree 6.
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§4. The topological invariant

Let U be an oriented topological manifold of dimension 4n. Let

ιU : H2n(U) × H2n(U) → Z

be the intersection pairing.

Definition.

We put

J∞(U) :=
⋂
K

Im(H2n(U \ K) → H2n(U)),

where K runs through the set of all compact subsets of U . We

then put

B̃U := H2n(U)/J∞(U) and BU := (B̃U)/torsion.

Since any topological cycle is compact, the intersection pairing

ιU induces a symmetric bilinear form

βU : BU × BU → Z.

It is obvious that, if U and U ′ are homeomorphic, then there

exists an isomorphism

(BU , βU) ∼= (BU ′, βU ′),

and hence the isomorphism class of (BU , βU) is a topological

invariant of U .
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We study the invariant (BU , βU) for an open algebraic variety

U := X \ Y,

where X is a non-singular projective variety of complex di-

mension 2n, and Y is a union of irreducible (possibly singular)

subvarieties Y1 . . . , YN of complex dimension n:

Y = Y1 ∪ · · · ∪ YN .

We denote by

Σ̃(X,Y ) := 〈[Y1], . . . , [YN ]〉 ⊂ H2n(X)

the submodule of H2n(X) generated by the homology classes

[Yi] ∈ H2n(X), and put

Σ(X,Y ) := (Σ̃(X,Y ))/torsion.

We then put

Λ̃(X,Y ) := {x ∈ H2n(X) | ιX(x, y) = 0 for any y ∈ Σ̃(X,Y )},

Λ(X,Y ) := (Λ̃(X,Y ))/torsion.

Finally, we denote by

σ(X,Y ) : Σ(X,Y ) × Σ(X,Y ) → Z and

λ(X,Y ) : Λ(X,Y ) × Λ(X,Y ) → Z

the symmetric bilinear forms induced from the intersection

pairing

ιX : H2n(X) × H2n(X) → Z.

Theorem.

Let X, Y and U be as above. Suppose that σ(X,Y ) is non-

degenerate. Then (BU , βU) is isomorphic to (Λ(X,Y ), λ(X,Y )).
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Sketch of the proof.

We consider the homomorphism

jU : H2n(U) → H2n(X)

induced by the inclusion. It is obvious that the image of jU is

contained in Λ̃(X,Y ). We first show that

Im(jU) = Λ̃(X,Y ).

Let a homology class

[W ] ∈ Λ̃(X,Y )

be represented by a real 2n-dimensional topological cycle W .

We can assume that W ∩Y consists of a finite number of points

in Y \Sing(Y ), and that the intersection of W with Y is trans-

verse at each intersection point.

Let Pi,1, . . . , Pi,k(i) (resp. Qi,1, . . . , Qi,l(i)) be the intersection

points of W and Yi with local intersection number 1 (resp. −1).

Since ιX([W ], [Yi]) = 0, we have

k(i) = l(i).

Modifying W by adding the tube

∂(D2n × I)

for each pair (Pi,j, Qi,j), we obtain a topological cycle W ′ that

is homologous to W in X and is disjoint from Y . Hence [W ] =

[W ′] is represented by W ′ ⊂ U . Thus

Im(jU) = Λ̃(X,Y )

holds.
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Since X is non-singular and complete, the intersection pair-

ing ιX on H2n(X)/torsion is non-degenerate. Hence the as-

sumption that σ(X,Y ) is non-degenerate implies that λ(X,Y ) is

non-degenerate.

Using Mayer-Vietris sequence, we can prove

Ker(jU) ⊆ J∞(U)

from the assumption that λ(X,Y ) is non-degenerate.

By the commutative diagram

0 −→ Ker(jU) −→ H2n(U)
jU−→ Λ̃(X,Y ) −→ 0

↪→

=

→
→ ṽ

0 −→ J∞(U) −→ H2n(U) −→ B̃U −→ 0 ,

we obtain the isomorphism (Λ(X,Y ), λ(X,Y )) ∼= (BU , βU).
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§5. Transcendental lattices

Let X be a non-singular projective variety of dimension 2n.

Then we have a natural isomorphism

H2n(X)/torsion ∼= H2n(X)/torsion

that transforms ιX to the cup-product ( , )X. Let

SX ⊂ H2n(X)/torsion

be the submodule generated by the classes [Z] of irreducible

subvarieties Z of X with codimension n; that is, SX is the

space of algebraic cycles in the middle dimension. We then

denote by

sX : SX × SX → Z
the restriction of ( , )X to SX.

By the theory of Lefschetz decomposition and Hodge-Riemann

bilinear relations, we see that sX is non-degenerate.

Proposition.

Let X and Xσ be conjugate non-singular projective varieties.

Then the map [Z] 7→ [Zσ] induces an isomorphism

(SX, sX) ∼= (SXσ, sXσ).

In other words, (SX, sX) is algebraic.
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Definition.

We define the transcendental lattice TX of X to be the free

Z-module

TX := {x ∈ H2n(X)/torsion | (x, y)X = 0 for any y ∈ SX}.

Theorem.

Let X be a non-singular projective variety of dimension 2n. Let

Y1, . . . , YN be irreducible subvarieties of X with codimension n

whose classes [Y1], . . . , [YN ] span SX ⊗ Q over Q. We put

Y :=
N⋃

i=1

Yi and U := X \ Y.

Then the transcendental lattice TX of X is isomorphic to the

topological invariant (BU , βU) of U .

Corollary.

Let X and Xσ be conjugate non-singular projective varieties of

dimension 2n. Let Y ⊂ X and U ⊂ X be as above. If TXσ is

not isomorphic to TX, then Uσ = Xσ \Y σ is not homeomorphic

to U .
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§6. Genus theory of lattices

Definition.

Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z

are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

Let X be a non-singular projective variety of dimension 2n.

Recall that SX is the submodule of H2n(X)/torsion generated

by the algebraic cycles. We consider the following condition:

(P) The submodule SX is primitive in H2n(X)/torsion; that is,

the quotient (H2n(X)/torsion)/SX is torsion-free.

Remark.

The condition (P) is satisfied for X if the integral Hodge con-

jecture

SX = H2n(X, Z) ∩ Hn,n(X)

is true for X. In particular, the condition (P) is satisfied if

dim X = 2. There exists, however, a counter-example for (P)

in higher-dimension. (Atiyah-Hirzebruch (1962).)
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Theorem.

Let X and Xσ be conjugate non-singular projective varieties of

dimension 2n. Suppose that (P) holds for both of X and Xσ.

Then the transcendental lattices TX and TXσ are contained in

the same genus.

Let X be a surface. Then TX and TXσ are contained in the

same genus. Let Y1, . . . , YN be irreducible curves of X whose

classes span SX ⊗ Q. We put

Y :=
N⋃

i=1

Yi and U := X \ Y.

If TX and TXσ are not isomorphic, then U and Uσ are not

homeomorphic.
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By the classical theory of Gauss

Disquisitiones arithmeticae,

we have a complete theory of the decomposition of the set of

isomorphism classes of lattices of rank 2 (binary lattices) into

the disjoint union of genera.

Example.

Two binary lattices[
10 4

4 22

]
and

[
6 0

0 34

]
are not isomorphic, but in the same genus.

Problem.

Can one find a surface X and σ : FX ↪→ C such that

TX
∼=

[
10 4

4 22

]
and TXσ ∼=

[
6 0

0 34

]
?
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§7. Singular K3 surfaces

Let X be a K3 surface; that is, a simply-connected surface

with KX
∼= OX. Then H2(X) is a unimodular lattice of rank

22 with signature (3, 19).

Definition.

A K3 surface X is said to be singular if the rank of the tran-

scendental lattice

T (X) := TX

is 2 (the possible minimum).

The transcendental lattice T (X) of a singular K3 surface X is

positive-definite. Moreover, by the Hodge decomposition

T (X) ⊗ C ∼= H2,0(X) ⊕ H0,2(X),

this lattice has a canonical orientation. We denote by T̃ (X)

the oriented transcendental lattice of X.
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Definition.

We denote by

L :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

4ac − b2 > 0

} /
GL2(Z)

the set of isomorphism classes of even positive-definite binary

lattices, and by

L̃ :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

4ac − b2 > 0

} /
SL2(Z)

the set of isomorphism classes of even positive-definite oriented

binary lattices.

For a singular K3 surface X, we denote by

[T̃ (X)] ∈ L̃

the isomorphism class of the oriented transcendental lattice

T̃ (X) of X.

Theorem (Shioda and Inose).

The map X 7→ [T̃ (X)] induces a bijection from the set of iso-

morphism classes of complex singular K3 surfaces to the set of

isomorphism classes of even, positive-definite oriented binary

lattices.
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Shioda and Inose also gave an explicit construction of a singular

K3 surface X with a given oriented transcendental lattice.

Suppose that

T̃ =

[
2a b

b 2c

]
with d := b2 − 4ac < 0

is given. We put

E′ := C/(Z + τ ′Z), where τ ′ =
−b +

√
d

2a
, and

E := C/(Z + τZ) , where τ =
b +

√
d

2
,

and consider the abelian surface

A := E′ × E.

Theorem (Shioda and Mitani).

The oriented transcendental lattice T̃ (A) of the abelian surface

A is isomorphic to T̃ .

We then consider the Kummer surface

Km(A).

Shioda and Inose showed that, on Km(A), there exist reduced

effective divisors C and Θ such that

(1) C = C1 + · · · + C8 and Θ = Θ1 + · · · + Θ8 are disjoint,

(2) C is an ADE-configuration of (−2)-curves of type E8,

(3) Θ is an ADE-configuration of (−2)-curves of type 8A1,

(4) there exists a class [L] ∈ NS(Km(A)) such that 2[L] = [Θ].
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Let

Ỹ → Km(A)

be the double covering branched exactly along Θ, and let

Y ← Ỹ

be the contraction of the (−1)-curves on Ỹ (that is, the inverse

images of Θ1, . . . , Θ8).

Theorem (Shioda and Inose).

The surface Y is a singular K3 surface, and the diagram

Y ←− Ỹ −→ Km(A) ←− Ã −→ A

induces an isomorphism

T̃ (Y ) ∼= T̃ (A) ( ∼= T̃ )

of the oriented transcendental lattices.
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Using this construction and the classical theory of complex mul-

tiplication in the class field theory, S.- and M. Schütt proved

the following:

Theorem (S.- and M. Schütt).

Let G ⊂ L be a genus of even positive-definite lattices of rank

2, and let

G̃ ⊂ L̃
be the pull-back of G by the natural projection L̃ → L. Then

there exists a singular K3 surface X defined over a number

field F such that the set

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } ⊂ L̃

coincides with the oriented genus G̃, where Emb(F, C) denotes

the set of embeddings of F into C.

Corollary.

Let X and X ′ be singular K3 surfaces. If their transcendental

lattices are in the same genus, then they are conjugate.
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Corollary.

Consider two oriented lattices

T̃1 ∈ L̃ and T̃2 ∈ L̃.

Suppose that their underlying (non-oriented) lattices are not

isomorphic but in the same genus. Let X be a singular K3

surface such that T̃ (X) ∼= T̃1, and let Xσ be a singular K3

surface conjugate to X such that T̃ (Xσ) ∼= T̃2.

We choose a divisor D of X such that the classes of the irre-

ducible components of D span SX ⊗ Q. We put

U := X \ D,

and let Uσ ⊂ Xσ be the Zariski open subset corresponding to

U . Then U and Uσ are not homeomorphic.
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§8. Arithmetic Zariski pairs of maximizing sextics

Definition.

A plane curve C ⊂ P2 of degree 6 is called a maximizing sextic

if C has only simple singularities and the total Milnor number

of C attains the possible maximum 19.

If C is a maximizing sextic, then the minimal resolution XC →
YC of the double covering YC → P2 branching exactly along C

is a singular K3 surface. We denote by T [C] the transcendental

lattice of XC.

Let

R =
∑

alAl +
∑

dmDm +
∑

enEn

be an ADE-type such that∑
all +

∑
dmm +

∑
enn = 19.

Using the surjectivity of the period map for K3 surfaces, we

can determine whether there exists a maximizing sextics C such

that Sing(C) is of type R. This task was worked out by Yang

(1996).

We can also determine all possible isomorphism classes of the

transcendental lattice T [C].
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Using computer, we obtain the following examples of arithmetic

Zariski pairs of maximizing sextics.

We put

L[2a, b, 2c] :=

[
2a b

b 2c

]
.
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No. the type of Sing(C) T [C] and T [C′]

1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]

4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]

5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]

6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]

7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]

8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

10 D7 + A12 L[6, 2, 18], L[2, 0, 52]

11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]

12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]

13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]

14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]

15 A18 + A1 L[8, 2, 10], L[2, 0, 38]

16 A16 + A3 L[4, 0, 34], L[2, 0, 68]

17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]

18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]

19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]

20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]

21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]

22 A10 + A9 L[10, 0, 22], L[2, 0, 110]

23 A10 + A9 L[8, 3, 8], L[2, 1, 28]

24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]

25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]

26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]

27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]

28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]

29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]

30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]

31 A8 + A6 + A4 + A1 L[22, 4, 58], L[18, 0, 70]

32 A7 + A6 + A4 + A2 L[24, 0, 70], L[6, 0, 280]

33 A7 + A6 + A4 + 2A1 L[18, 4, 32], L[2, 0, 280]

34 A7 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6, 0, 120]
29


