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• By a lattice, we mean a finitely generated free Z-module

Λ equipped with a non-degenerate symmetric bilinear

form

Λ × Λ → Z.

• A lattice Λ is said to be even if (v, v) ∈ 2Z for any v ∈ Λ.
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§1. Introduction

For a K3 surface X defined over a field k, we denote by

NS(X) the Néron-Severi lattice of X ⊗ k̄.

Definition. A K3 surface X defined over a field of char-

acteristic 0 is said to be singular if rank(NS(X)) attains the

possible maximum 20. For a singular K3 surface X, we put

d(X) := disc(NS(X)),

which is a negative integer.

Shioda and Inose showed that every singular K3 surface X

is defined over a number field F . We denote by Emb(F, C)

the set of embeddings of F into C, and investigate the the

transcendental lattice

T (Xσ) := (NS(X) ↪→ H2(Xσ, Z))⊥

for each embedding σ ∈ Emb(F, C), where Xσ is the complex

K3 surface X ⊗F,σ C. Note that each T (Xσ) is a positive-

definite even lattice of rank 2 with discriminant −d(X).
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§2. Shioda-Mitani-Inose theory

For a negative integer d, we put

Md :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

b2 − 4ac = d

}
,

on which GL2(Z) acts by M 7→ tgMg, where M ∈ Md and

g ∈ GL2(Z). We denote the set of isomorphism classes of

even, positive-definite lattices (resp. oriented lattices) of

rank 2 with discriminant −d by

Ld := Md/ GL2(Z) (resp. L̃d := Md/ SL2(Z) ).

Let S be a complex singular K3 surface. By the Hodge

decomposition

T (S) ⊗ C = H2,0(S) ⊕ H0,2(S),

we can define a canonical orientation on T (S). We denote

by T̃ (S) the oriented transcendental lattice of S, and by

[T̃ (S)] ∈ L̃d(S) the isomorphism class of the oriented tran-

scendental lattice.
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Theorem (Shioda and Inose). The map S 7→ [T̃ (S)] in-

duces a bijection from the set of isomorphism classes of com-

plex singular K3 surfaces to the set
⋃

d L̃d of isomorphism

classes of even, positive-definite oriented lattices of rank 2.

In fact, Shioda and Inose gave an explicit construction of a

complex singular K3 surface with a given oriented transcen-

dental lattice. Suppose that

T̃0 =

[
2a b

b 2c

]
with d := b2 − 4ac < 0

is given. We put

E′ := C/(Z + τ ′Z), where τ ′ = (−b +
√

d)/(2a), and

E := C/(Z + τZ) , where τ = (b +
√

d)/2.

Theorem (Shioda and Mitani). The oriented transcendental

lattice T̃ (E′ × E) of the abelian surface E′ × E is isomorphic

to T̃0.
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Shioda and Inose showed that, on the Kummer surface

Km(E′ × E), there are effective divisors C and Θ such that

(1) C = C1 + · · · + C8 and Θ = Θ1 + · · · + Θ8 are disjoint,

(2) C is an ADE-configuration of (−2)-curves of type E8,

(3) Θ is an ADE-configuration of (−2)-curves of type 8A1,

(4) there is [L] ∈ NS(Km(E′ × E)) such that 2[L] = [Θ].

We make the diagram

Y ← Ỹ → Km(E′ × E),

where Ỹ → Km(E′ × E) is the double covering branching

exactly along Θ, and Y ← Ỹ is the contraction of the (−1)-

curves on Ỹ (that is, the inverse images of Θ1, . . . , Θ8).

Theorem (Shioda and Inose). The surface Y is a singular

K3 surface, and the diagram

Y ←− Ỹ −→ Km(E′ × E) ←− Ẽ′ × E −→ E′ × E

induces an isomorphism

T̃ (Y ) ∼= T̃ (E′ × E) ( ∼= T̃0 )

of the oriented transcendental lattices.
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§3. Genera of lattices

Definition. Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z
are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

We have the following:

Theorem (Nikulin). Two even lattices of the same rank are

in the same genus if and only if they have the same signature

and their discriminant forms are isomorphic.
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Definition. Let Λ be an even lattice. Then Λ is canonically

embedded into

Λ∨ := Hom(Λ, Z)

as a subgroup of finite index, and we have a natural symmet-

ric bilinear form

Λ∨ × Λ∨ → Q
that extends the symmetric bilinear form on Λ. The finite

abelian group

DΛ := Λ∨/Λ,

together with the natural quadratic form

qΛ : DΛ → Q/2Z
is called the discriminant form of Λ.

Proposition. Suppose that an even lattice M is embedded

into an even unimodular lattice L primitively. Let N denote

the orthogonal complement of M in L. Then we have

(DM , qM) ∼= (DN , −qN)
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Proposition. Let X be a singular K3 surface defined over

a number field F . For σ, σ′ ∈ Emb(F, C), the lattices T (Xσ)

and T (Xσ′
) are in the same genus.

This follows from Nikulin’s theorem. We have

NS(X) ∼= NS(Xσ) ∼= NS(Xσ′
).

Since H2(Xσ, Z) is unimodular, the discriminant form of

T (Xσ) is isomorphic to (−1) times the discriminant form

of NS(Xσ):

(DT (Xσ), qT (Xσ)) ∼= (DNS(Xσ), −qNS(Xσ)).

The same holds for T (Xσ′
). Hence T (Xσ) and T (Xσ′

) have

the isomorphic discriminant forms.
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Theorem (S.- and Schütt). Let G ⊂ Ld be a genus of

even positive-definite lattices of rank 2, and let G̃ ⊂ L̃d be

the pull-back of G by the natural projection L̃d → Ld. Then

there exists a singular K3 surface X defined over a number

field F such that the set

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } ⊂ L̃d

coincides with the oriented genus G̃.

Let T̃0 be an element of the oriented genus G̃, and let Y be

a singular K3 surface such that T̃ (Y ) ∼= T̃0. We consider the

Shioda-Inose-Kummer diagram

Y ←− Ỹ −→ Km(E′ × E) ←− Ẽ′ × E −→ E′ × E,

which we assume to be defined over a number field F . Then,

for each σ ∈ Emb(F, C), the diagram

Y σ ←− Ỹ σ −→ Km(E′ × E)σ ←− ˜E′σ × Eσ −→ E′σ × Eσ

induces T̃ (Y σ) ∼= T̃ (E′σ×Eσ). The lattice T̃ (E′σ×Eσ) can be

calculated from T̃ (E′ × E) by the classical class field theory

of imaginary quadratic fields.
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§4. Non-homeomorphic conjugate varieties

We denote by Emb(C, C) the set of embeddings σ : C ↪→ C
of the complex number field C into itself.

Definition. For a complex variety X and σ ∈ Emb(C, C),

we define a complex variety Xσ by the following diagram of

the fiber product:

Xσ −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec C.

Two complex varieties X and X ′ are said to be conjugate if

there exists σ ∈ Emb(C, C) such that X ′ is isomorphic to Xσ

over C.

It is obvious from the definition that conjugate varieties are

homeomorphic in Zariski topology.

Problem. How about in the classical complex topology?
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We have the following:

Example (Serre (1964)). There exist conjugate smooth

projective varieties X and Xσ such that their topological

fundamental groups are not isomorphic:

π1(X) 6∼= π1(X
σ).

In particular, X and Xσ are not homotopically equivalent.

Grothendieck’s dessins d’enfant (1984).

Let f : C → P1 be a finite covering defined over Q branching

only at the three points 0, 1, ∞ ∈ P1. For σ ∈ Gal(Q/Q),

consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ are topologically distinct in general.

Belyi’s theorem asserts that the action of Gal(Q/Q) on the

set of topological types of the covering of P1 branching only

at 0, 1, ∞ is faithful.
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Other examples of non-homeomorphic conjugate varieties.

• Abelson: Topologically distinct conjugate varieties with

finite fundamental group.

Topology 13 (1974).

• Artal Bartolo, Carmona Ruber, Cogolludo Agust́ın: Ef-

fective invariants of braid monodromy.

Trans. Amer. Math. Soc. 359 (2007).

• S.-: On arithmetic Zariski pairs in degree 6.

arXiv:math/0611596

• S.-: Non-homeomorphic conjugate complex varieties.

arXiv:math/0701115

• Easton, Vakil: Absolute Galois acts faithfully on the

components of the moduli space of surfaces: A Belyi-

type theorem in higher dimension. arXiv:0704.3231

• Bauer, Catanese, Grunewald: The absolute Galois group

acts faithfully on the connected components of the mod-

uli space of surfaces of general type. arXiv:0706.1466

• F. Charles: Conjugate varieties with distinct real coho-

mology algebras. arXiv:0706.3674



13

Let V be an oriented topological manifold of real dimension

4. We put

H2(V ) := H2(V, Z)/torsion,

and let

ιV : H2(V ) × H2(V ) → Z
be the intersection pairing. We then put

J∞(V ) :=
⋂
K

Im(H2(V \ K) → H2(V )),

where K runs through the set of compact subsets of V , and

set

B̃V := H2(V )/J∞(V ) and BV := (B̃V )/torsion.

Since any topological cycle is compact, the intersection pair-

ing ιV induces a symmetric bilinear form

βV : BV × BV → Z.

It is obvious that the isomorphism class of (BV , βV ) is a topo-

logical invariant of V .
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Theorem. Let X be a complex smooth projective surface,

and let C1, . . . , Cn be irreducible curves on X. We put

V := X \
⋃

Ci.

Suppose that the classes [C1], . . . , [Cn] span NS(X)⊗Q. Then

(BV , βV ) is isomorphic to the transcendental lattice

T (X) := (NS(X) ↪→ H2(X))⊥/torsion.

Hence T (X) is a topological invariant of the open surface

V ⊂ X.
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Construction of examples.

Let T1 and T2 be even positive-definite lattices of rank 2 that

are in the same genus but not isomorphic. We have a singular

K3 surface X defined over a number field F , and embeddings

σ1, σ2 ∈ Emb(F, C) such that

T (Xσ1) ∼= T1 and T (Xσ2) ∼= T2.

Let C1, . . . , Cn be irreducible curves on X whose classes span

NS(X) ⊗ Q. Enlarging F , we can assume that

V := X \
⋃

Ci.

is defined over F . Then the conjugate open varieties

V σ1 and V σ2

are not homeomorphic.



16

§5. Maximizing sextic

Definition. (1) A complex plane curve C ⊂ P2 of degree 6 is

called a maximizing sextic if C has only simple singularities

and its total Milnor number is 19.

(2) Two complex projective plane curves C and C′ are said to

be conjugate if there exists σ ∈ Emb(C, C) such that Cσ ⊂ P2

is projectively equivalent to C′ ⊂ P2.

If C is a maximizing sextic, the minimal resolution XC → YC

of the double cover YC → P2 of P2 branching exactly along C

is a complex singular K3 surface. We put

T [C] := T (XC), and T̃ [C] := T̃ (XC).

Theorem. Let C be a maximizing sextic, and let T̃ ′ be

an oriented lattice such that its underlying (non-oriented)

lattice is in the same genus, but not isomorphic, with T [C].

Then there is a maximizing sextic C′ such that T̃ [C′] ∼= T̃ ′,

and that C and C′ are conjugate, but (P2, C) and (P2, C′) are

not homeomorphic.
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Definition. A pair of complex projective plane curves

C and C′ is called an arithmetic Zariski pair if they are

conjugate but (P2, C) and (P2, C′) are not homeomorphic.

Remark. The first example of an arithmetic Zariski pair

was discovered by Artal, Carmona and Cogolludo in degree

12 by means of completely different method.

Using Torelli theorem, we can make a complete list of the

ADE-types of maximizing sextics and their oriented tran-

scendental lattices. Thus we obtain the following complete

list of arithmetic Zariski pairs of maximizing sextics.

In the table below, L[2a, b, 2c] denotes the lattice of rank 2

given by the matrix [
2a b

b 2c

]
.
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1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]
2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]
3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]
4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]
5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]
6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]
7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]
8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]
9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]
10 D7 + A12 L[6, 2, 18], L[2, 0, 52]
11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]
12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]
13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]
14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]
15 A18 + A1 L[8, 2, 10], L[2, 0, 38]
16 A16 + A3 L[4, 0, 34], L[2, 0, 68]
17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]
18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]
19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]
20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]
21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]
22 A10 + A9 L[10, 0, 22], L[2, 0, 110]
23 A10 + A9 L[8, 3, 8], L[2, 1, 28]
24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]
25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]
26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]
27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]
28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]
29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]
30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]
31 A8 + A6 + A4 + A1 L[22, 4, 58], L[18, 0, 70]
32 A7 + A6 + A4 + A2 L[24, 0, 70], L[6, 0, 280]
33 A7 + A6 + A4 + 2A1 L[18, 4, 32], L[2, 0, 280]
34 A7 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6, 0, 120]
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Definition. We say that an oriented lattice T̃ of rank

2 is real if it is isomorphic to its reverse; that is, if T̃ is

represented by a 2 × 2-matrix M , then there exists P ∈
GL2(Z) with det P = −1 such that M = tPMP .

For a singular K3 surface X defined over C, we put

X := X ⊗C, C,

where : C →∼ C is the complex conjugate. Then T̃ (X) is

the reverse of T̃ (X). Therefore, if X is defined over R, then

T̃ (X) is real in the sense above.

Let C be a maximizing sextic. If T̃ [C] is non-real, then the

complex singular K3 surfaces XC and XC are not isomor-

phic (since T̃ [C] is not isomorphic to T̃ [C]), and hence C is

not projectively equivalent to C, but (P2, C) and (P2, C) are

obviously homeomorphic.



20

§6. Example by Artal, Carmona and Cogolludo

We consider the following cubic extension of Q:

K := Q[t]/(ϕ), where ϕ = 17t3 − 18t2 − 228t + 556.

The roots of ϕ = 0 are α, ᾱ, β, where

α = 2.590 · · · + 1.108 · · ·
√

−1, β = −4.121 · · · .

There are three corresponding embeddings

σα : K ↪→ C, σᾱ : K ↪→ C and σβ : K ↪→ C.

There exists a homogeneous polynomial

Φ(x0, x1, x2) ∈ K[x0, x1, x2]

of degree 6 with coefficients in K such that the plane curve

C = {Φ = 0}
has three simple singular points of type

A16 + A2 + A1

as its only singularities.
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Consider the conjugate complex plane curves

Cα = {Φσα = 0}, Cᾱ = {Φσᾱ = 0} and Cβ = {Φσβ = 0}.

They show that, if C′ is a maximizing sextic of type A16 +

A2 + A1, then C′ is projectively equivalent to Cα, Cᾱ or Cβ.

Using Torelli theorem, we see that their oriented transcen-

dental lattices are [
10 ±4

±4 22

]
(non-real)

and [
6 0

0 34

]
(real).

Therefore we have

T [Cα] ∼=

[
10 ±4

±4 22

]
and T [Cβ] ∼=

[
6 0

0 34

]
.

Hence (P2, Cα) and (P2, Cβ) are not homeomorphic.
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§7. Example by Arima and S.-

There are 4 connected components in the moduli space of

maximizing sextics of type

A10 + A9.

Two of them have irreducible members, and their oriented

transcendental lattices are[
10 0

0 22

]
and

[
2 0

0 110

]
(both are real).

The other two have reducible members (a line and an irre-

ducible quintic), and their oriented transcendental lattices

are [
8 3

3 8

]
and

[
2 1

1 28

]
(both are real).

We will consider these reducible members.
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The reducible members are defined over Q(
√

5). The defining

equation is

C± : z · (G(x, y, z) ±
√

5 · H(x, y, z)) = 0,

where

G(x, y, z) := −9 x4z − 14 x3yz + 58 x3z2 − 48 x2y2z −
−64 x2yz2 + 10 x2z3 + +108 xy3z −
−20 xy2z2 − 44 y5 + 10 y4z,

H(x, y, z) := 5 x4z + 10 x3yz − 30 x3z2 + 30 x2y2z +

+20 x2yz2 − 40 xy3z + 20 y5.

The singular points are

[0 : 0 : 1] (A10) and [1 : 0 : 0] (A9).

We have two possibilities:

T [C+] ∼=

[
8 3

3 8

]
and T [C−] ∼=

[
2 1

1 28

]
,

or

T [C+] ∼=

[
2 1

1 28

]
and T [C−] ∼=

[
8 3

3 8

]
.
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Problem. Which is the case?

Remark. This problem cannot be solved by any algebraic

methods.

More generally, we can raise the following:

Problem. How to calculate the transcendental lattice of XC

from the defining equation of a maximizing sextic C?

This task can be done by a Zariski-van Kampen method for

homology cycles.

The Zariski-van Kampen method is a method to calculate

π1(P2 \ C) for a projective plane curve C ⊂ P2. Tradittion-

ally, the invariant π1(P2 \ C) has been used to distinguish

embedding topologies of plane curves with the same type of

singularities.

Remark. We have π1(P2 \ C+) ∼= π1(P2 \ C−) ∼= Z.
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For simplicity, we put X± := XC±. Let D ⊂ X± be the total

transform of the union of the lines

{z = 0} ∪ {x = 0},

on which the two singular points of C± locate, and let X0
± be

the complement of D. Since the irreducible components of D

span NS(X±), the inclusion X0
± ↪→ X± induces a surjection

H2(X
0
±, Z) →→ T (X±).

We will describe the generators of H2(X
0
±, Z) and the inter-

section numbers among them.

We put

f±(y, z) := G(1, y, z) ±
√

5 · H(1, y, z),

and set

Q± := {f±(y, z) = 0}.

Then Q± is a smooth affine quintic curve, and it intersects

the line

L := {z = 0}
at the origin with the multiplicity 5. The open surface X0

± is

a double covering of A2 \ L branching along Q±.



26

Let

π± : X0
± → A2 \ L

be the double covering. We consider the projection

p : A2 → A1
z p(y, z) := z

and the composite

q± : X0
± → A2 \ L → A1

z.

There are four critical points of the finite covering

p|Q± : Q± → A1
z.

Three of them R±, S±, S± are simple critical values, while

the critical point over 0 is of multiplicity 5. Their positions

are

R+ = 0.42193..., S+ = 0.23780... + 0.24431... ·
√

−1,

and

R− = 0.12593..., S− = 27.542... + 45.819... ·
√

−1.

We choose a base point b on A1
z as a sufficiently small positive

real number (say b = 10−3), and define the loop λ and the

paths ρ±, σ±, σ̄± on the z-line A1
z as in the figure:
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on A1
z
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We put

A1
y := p−1(b), F± := q−1

± (b) = π−1
± (A1

y).

Then the morphism

π±|F± : F± → A1
y

is the double covering branching exactly at the five points

A1
y ∩ Q±. Hence F± is a genus 2 curve minus one point.

We choose a system of oriented simple closed curves

a1, . . . , a5 on F± in such a way that their images by the double

covering

π±|F± : F± → A1
y

are given in the figure and that the orientations are given so

that

aiai+1 = −ai+1ai = 1

holds for i = 1, . . . , 5, where a6 := a1. Then H1(F±, Z) is

generated by [a1], . . . , [a4], and we have

[a5] = −[a1] − [a2] − [a3] − [a4].
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on p−1(b) = A1
y



30

The monodromy along the loop λ around z = 0 is given by

ai 7→ ai+1.

Hence the open surface X0
± is homotopically equivalent to the

2-dimensional CW -complex obtained from F± by attaching

• four tubes

Ti := S1 × I (i = 1, . . . , 4)

with ∂Ti = ai+1 − ai and zipping up {0} × I together

appropriately,

and

• three thimbles

Θ(ρ±), Θ(σ±), Θ(σ̄±)

corresponding to the vanishing cycles on F± for the sim-

ple critical values R±, S± and S±.
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Hence the homology group H2(X
0
±, Z) is equal to the kernel

of the homomorphism
4⊕

i=1

Z[Ti] ⊕ Z[Θ(ρ±)] ⊕ Z[Θ(σ±)] ⊕ Z[Θ(σ̄±)] −→
4⊕

i=1

Z[ai]

given by [M ] 7→ [∂(M)]. Therefore the problem is reduced

to the calculation of the vanishing cycles ∂Θ(ρ±), ∂Θ(σ±)

and ∂Θ(σ̄±).
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When z moves from b to R± along the path ρ±, the branch

points p−1(z) ∩ Q± moves as follows:

Therefore, putting an orientation on the thimble, we have

[∂Θ(ρ+)] = [a1] − [a2] + [a3] − [a4],

while

[∂Θ(ρ−)] = [a2] + [a3].
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When z moves from b to S± along the path σ±, the branch

points p−1(z) ∩ Q± moves as follows:

Therefore, putting an orientation on the thimble, we have

[∂Θ(σ+)] = [a1] − [a2] − [a3],

while

[∂Θ(σ−)] = 2[a1] − [a2] − [a3] − [a4].
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Thus we can describe the generators of H2(X
0
±, Z) explicitly.

It is a free Z-module of rank 3. The intersection numbers

between them are calculated by perturbing these cycles:

By this calculation, we obtain the following:

Proposition.

T [C+] ∼=

[
2 1

1 28

]
, T [C−] ∼=

[
8 3

3 8

]
.


