Non-homeomorphic conjugate complex varieties

$$
\text { Sopot, } 2007
$$

Ichiro Shimada

(Hokkaido University, Sapporo, JAPAN)

- We work over the complex number field \mathbb{C}.
- The coefficients of the (co-)homology groups are in \mathbb{Z}.
- By a lattice, we mean a finitely generated free \mathbb{Z}-module Λ equipped with a non-degenerate symmetric bilinear form

$$
\Lambda \times \Lambda \rightarrow \mathbb{Z}
$$

§1. Conjugate varieties

An affine algebraic variety $X \subset \mathbb{C}^{N}$ is defined by a finite number of polynomial equations:

$$
X: f_{1}\left(x_{1}, \ldots, x_{N}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{N}\right)=0
$$

Let $c_{j, I} \in \mathbb{C}$ be the coefficients of the polynomial f_{j} :

$$
f_{j}\left(x_{1}, \ldots, x_{N}\right)=\sum_{I} c_{j, I} x^{I}, \quad \text { where } \quad x^{I}=x_{1}^{i_{1}} \cdots x_{N}^{i_{N}}
$$

We then denote by

$$
\boldsymbol{F}_{X}:=\mathbb{Q}\left(\ldots, c_{j, I}, \ldots\right) \subset \mathbb{C}
$$

the minimal sub-field of \mathbb{C} containing all the coefficients of the defining equations of \boldsymbol{X}.

There are many other embeddings

$$
\sigma: \boldsymbol{F}_{X} \hookrightarrow \mathbb{C}
$$

of the field \boldsymbol{F}_{X} into \mathbb{C}.

Example.
(1) If $\boldsymbol{F}_{X}=\mathbb{Q}(\sqrt{2}, t)$, where $t \in \mathbb{C}$ is transcendental over \mathbb{Q}, then the set of embeddings $\boldsymbol{F}_{X} \hookrightarrow \mathbb{C}$ is equal to
$\{\sqrt{2},-\sqrt{2}\} \times\{$ transcendental complex numbers $\}$.
(2) If all $c_{j, I}$ are algebraic over \mathbb{Q}, then the set of embeddings is finite, and the Galois group of the Galois closure of the algebraic extension F_{X} / \mathbb{Q} acts on the set transitively.

For an embedding $\sigma: \boldsymbol{F}_{X} \hookrightarrow \mathbb{C}$, we put

$$
f_{j}^{\sigma}\left(x_{1}, \ldots, x_{N}\right):=\sum_{I} c_{j, I}^{\sigma} x^{I}
$$

and denote by $X^{\sigma} \subset \mathbb{C}^{N}$ the affine algebraic variety defined by

$$
f_{1}^{\sigma}=\cdots=f_{m}^{\sigma}=0
$$

We can define X^{σ} for a projective or quasi-projective variety $X \subset \mathbb{P}^{N}$ in the same way.

Definition.

We say that two algebraic varieties X and Y are said to be conjugate if there exists an embedding $\sigma: \boldsymbol{F}_{X} \hookrightarrow \mathbb{C}$ such that Y is isomorphic to X^{σ}.

In the language of schemes, two varieties \boldsymbol{X} and \boldsymbol{Y} over Spec \mathbb{C} are conjugate if there exists a diagram

of the fiber product for some morphism $\sigma^{*}: \operatorname{Spec} \mathbb{C} \rightarrow \operatorname{Spec} \mathbb{C}$.

It is obvious that being conjugate is an equivalence relation.

$$
y^{2}=x^{3}+6 \sqrt{2} x+\sqrt{2} .
$$

$$
y^{2}=x^{3}-6 \sqrt{2} x-\sqrt{2} .
$$

§2. Topology of conjugate varieties

Conjugate algebraic varieties cannot be distinguished by any algebraic methods. In particular, they are homeomorphic in Zariski topology.

How about their complex topology?

The following is due to Serre, Grothendieck, Artin,

Theorem.
Let X and Y be conjugate non-singular projective varieties.
(1) They have the same betti numbers:

$$
B_{i}(X)=B_{i}(Y) \quad \text { for } \quad i=0, \ldots, 2 \operatorname{dim} X
$$

(2) The profinite completions of their fundamental groups are isomorphic: $\pi_{1}^{\wedge}(X) \cong \pi_{1}^{\wedge}(\boldsymbol{Y})$.

The following example is due to Serre (1964).

Example.
There exist conjugate non-singular projective varieties \boldsymbol{X} and Y such that their fundamental groups are not isomorphic: $\pi_{1}(X) \neq \pi_{1}(Y)$.

Other examples of non-homeomorphic conjugate varieties:

- Abelson (1974).
- E. Artal, J. Carmona, and J.-I. Cogolludo. (2003-).
- Bauer, Catanese, Grunewald. (2005-).

Grothendieck's "dessins d'enfant".
Let $f: C \rightarrow \mathbb{P}^{1}$ be a finite covering of a projective line branching only at the three points $0,1, \infty \in \mathbb{P}^{1}$. We have defining equations of f with coefficients in $\overline{\mathbb{Q}} \subset \mathbb{C}$. For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, consider the conjugate covering

$$
f^{\sigma}: C^{\sigma} \rightarrow \mathbb{P}^{1}
$$

Then f and f^{σ} have, in general, different topology.

§3. Main result

We introduce a new topological invariant of open algebraic varieties, which allows us to distinguish conjugate varieties topologically in some cases.

Combining this topological invariant with the following results, we obtain several explicit examples of non-homeomorphic conjugate varieties.

- Arithmetic theory of abelian and K3 surfaces due to S.and Schütt.
- Degtyarev's theorem on the connected components of plane curves of degree 6 with only simple singularities.
- Artal, Carmona and Cogolludo's calculation of defining equations of plane curves of degree 6 with prescribed simple singularities.

Our examples consist of the following:

- Zariski open subsets of abelian surfaces.
- Zariski open subsets of $K 3$ surfaces.
- Singular plane curves C of degree 6 with only simple singularities and of Milnor number 19. (In this example, the homeomorphism types of the pairs $\left(\mathbb{P}^{2}, C\right)$ are distinct.)

Example.
We consider the following cubic extension of \mathbb{Q} :

$$
K:=\mathbb{Q}[t] /(\varphi), \quad \text { where } \quad \varphi=17 t^{3}-18 t^{2}-228 t+556
$$

The roots of $\varphi=0$ are $\alpha, \bar{\alpha}, \beta$, where

$$
\alpha=2.590 \cdots+1.108 \cdots \sqrt{-1}, \quad \beta=-4.121 \cdots
$$

There are three corresponding embeddings

$$
\sigma_{\alpha}: K \hookrightarrow \mathbb{C}, \quad \sigma_{\bar{\alpha}}: K \hookrightarrow \mathbb{C} \quad \text { and } \quad \sigma_{\beta}: K \hookrightarrow \mathbb{C} .
$$

There exists a homogeneous polynomial

$$
\Phi\left(x_{0}, x_{1}, x_{2}\right) \in K\left[x_{0}, x_{1}, x_{2}\right]
$$

of degree 6 with coefficients in K with the following properties. We consider the conjugate plane curves

$$
C_{\alpha}=\left\{\Phi^{\sigma_{\alpha}}=0\right\} \quad \text { and } \quad C_{\beta}=\left\{\Phi^{\sigma_{\beta}}=0\right\} .
$$

Then each of them has three simple singular points of type

$$
A_{16}+A_{2}+A_{1}
$$

as its only singularities. In particular, there exist tubular neighborhoods $T_{\alpha} \subset \mathbb{P}^{2}$ of $C_{\alpha} \subset \mathbb{P}^{2}$ and $T_{\beta} \subset \mathbb{P}^{2}$ of $C_{\beta} \subset \mathbb{P}^{2}$ such that (T_{α}, C_{α}) is diffeomorphic to (T_{β}, C_{β}).

However, there are no homeomorphisms between the pairs ($\mathbb{P}^{2}, C_{\alpha}$) and ($\mathbb{P}^{2}, C_{\beta}$).

Namely, C_{α} and C_{β} form an arithmetic Zariski pair.
Let $X \rightarrow \mathbb{P}^{2}$ be the double covering of the plane branching exactly along the curve $C: \Phi=0$, and $U \subset X$ the pull-back of $\mathbb{P}^{2} \backslash C$. Then U is a variety defined over K. Consider the conjugate open varieties U^{α} and U^{β} corresponding the embeddings σ_{α} and σ_{β}. Then U^{α} and U^{β} are not homeomorphic.

§4. The topological invariant

Let U be an oriented topological manifold of dimension $4 n$. Let

$$
\iota_{U}: H_{2 n}(U) \times H_{2 n}(U) \rightarrow \mathbb{Z}
$$

be the intersection pairing.

Definition.
We put

$$
J_{\infty}(U):=\bigcap_{K} \operatorname{Im}\left(H_{2 n}(U \backslash K) \rightarrow H_{2 n}(U)\right),
$$

where K runs through the set of all compact subsets of U. We then put

$$
\widetilde{B}_{U}:=\boldsymbol{H}_{2 n}(\boldsymbol{U}) / J_{\infty}(\boldsymbol{U}) \quad \text { and } \quad B_{U}:=\left(\widetilde{B}_{U}\right) / \text { torsion. }
$$

Since any topological cycle is compact, the intersection pairing ι_{U} induces a symmetric bilinear form

$$
\beta_{U}: B_{U} \times B_{U} \rightarrow \mathbb{Z}
$$

It is obvious that, if U and U^{\prime} are homeomorphic, then there exists an isomorphism

$$
\left(B_{U}, \beta_{U}\right) \cong\left(B_{U^{\prime}}, \beta_{U^{\prime}}\right),
$$

and hence the isomorphism class of $\left(B_{U}, \beta_{U}\right)$ is a topological invariant of \boldsymbol{U}.

We study the invariant ($B_{U}, \boldsymbol{\beta}_{U}$) for the space

$$
U:=X \backslash Y
$$

where X is a non-singular projective variety of complex dimension $2 n$, and Y is a union of irreducible (possibly singular) subvarieties $Y_{1} \ldots, Y_{N}$ of complex dimension n :

$$
\boldsymbol{Y}=Y_{1} \cup \cdots \cup Y_{N} .
$$

We denote by

$$
\widetilde{\Sigma}_{(X, Y)}:=\left\langle\left[Y_{1}\right], \ldots,\left[Y_{N}\right]\right\rangle \subset \boldsymbol{H}_{2 n}(X)
$$

the submodule of $H_{2 n}(X)$ generated by the homology classes $\left[Y_{i}\right] \in H_{2 n}(X)$, and put

$$
\Sigma_{(X, Y)}:=\left(\widetilde{\Sigma}_{(X, Y)}\right) / \text { torsion } .
$$

We then put

$$
\begin{aligned}
& \widetilde{\Lambda}_{(X, Y)}:=\left\{x \in H_{2 n}(X) \mid \iota_{X}(x, y)=0 \text { for any } y \in \widetilde{\Sigma}_{(X, Y)}\right\}, \\
& \Lambda_{(X, Y)}:=\left(\widetilde{\Lambda}_{(X, Y)}\right) / \text { torsion } .
\end{aligned}
$$

Finally, we denote by

$$
\begin{aligned}
& \sigma_{(X, Y)}: \Sigma_{(X, Y)} \times \Sigma_{(X, Y)} \rightarrow \mathbb{Z} \quad \text { and } \\
& \lambda_{(X, Y)}: \Lambda_{(X, Y)} \times \Lambda_{(X, Y)} \rightarrow \mathbb{Z}
\end{aligned}
$$

the symmetric bilinear forms induced from the intersection pairing

$$
\iota_{X}: H_{2 n}(X) \times H_{2 n}(X) \rightarrow \mathbb{Z}
$$

Theorem.

Let X, Y and U be as above. Suppose that $\sigma_{(X, Y)}$ is nondegenerate. Then $\left(B_{U}, \beta_{U}\right)$ is isomorphic to $\left(\Lambda_{(X, Y)}, \lambda_{(X, Y)}\right)$.

Sketch of the proof.
Since \boldsymbol{X} is non-singular and complete, the intersection pairing ι_{X} on $H_{2 n}(X) /$ torsion is non-degenerate. Hence the assumption that $\sigma_{(X, Y)}$ is non-degenerate implies that $\lambda_{(X, Y)}$ is non-degenerate.

We consider the homomorphism

$$
j_{U}: H_{2 n}(U) \rightarrow H_{2 n}(X)
$$

induced by the inclusion. It is obvious that the image of j_{U} is contained in $\widetilde{\Lambda}_{(X, Y)}$. We first show that

$$
\operatorname{Im}\left(j_{U}\right)=\tilde{\Lambda}_{(X, Y)} .
$$

Let $[W] \in \widetilde{\Lambda}_{(X, Y)}$ be represented by a real $2 n$-dimensional topological cycle W. We can assume that $W \cap Y$ consists of a finite number of points in $Y \backslash \operatorname{Sing}(\boldsymbol{Y})$, and that the intersection of W with Y is transverse at each intersection point.

Let $P_{i, 1}, \ldots, P_{i, k(i)}$ (resp. $Q_{i, 1}, \ldots, Q_{i, l(i)}$) be the intersection points of W and Y_{i} with local intersection number 1 (resp. -1). Since $\iota_{X}\left([W],\left[Y_{i}\right]\right)=0$, we have

$$
k(i)=l(i)
$$

Modifying W by adding the tube

$$
\partial\left(D^{2 n} \times I\right)
$$

for each pair $\left(P_{i, j}, Q_{i, j}\right)$, we obtain a topological cycle W^{\prime} that is homologous to W in X and is disjoint from \boldsymbol{Y}. Hence $[W]=$ [$\left.\boldsymbol{W}^{\prime}\right]$ is represented by $\boldsymbol{W}^{\prime} \subset \boldsymbol{U}$. Thus

$$
\operatorname{Im}\left(j_{U}\right)=\widetilde{\Lambda}_{(X, Y)}
$$

holds.

Figure

Using Mayer-Vietris sequence, we can prove

$$
\operatorname{Ker}\left(j_{U}\right) \subseteq J_{\infty}(U)
$$

from the assumption that $\lambda_{(X, Y)}$ is non-degenerate. By the commutative diagram
$0 \longrightarrow \operatorname{Ker}\left(j_{U}\right) \longrightarrow \boldsymbol{H}_{2 n}(\boldsymbol{U}) \xrightarrow{j_{U}} \widetilde{\Lambda}_{(X, Y)} \longrightarrow 0$ $\downarrow \| \quad \downarrow^{\tilde{v}}$
$0 \longrightarrow J_{\infty}(U) \longrightarrow H_{2 n}(U) \longrightarrow \widetilde{B}_{U} \longrightarrow 0$,
we obtain the isomorphism $\left(\Lambda_{(X, Y)}, \lambda_{(X, Y)}\right) \cong\left(B_{U}, \beta_{U}\right)$.

§5. Transcendental lattices

Let X be a non-singular projective variety of dimension $2 n$. Then we have a natural isomorphism

$$
H_{2 n}(X) / \text { torsion } \cong H^{2 n}(X) / \text { torsion }
$$

that transforms ι_{X} to the cup-product $(,)_{X}$. Let

$$
S_{X} \subset H^{2 n}(X) / \text { torsion }
$$

be the submodule generated by the classes [Z] of irreducible subvarieties Z of X with codimension n; that is, S_{X} is the space of algebraic cycles in the middle dimension. We then denote by

$$
s_{X}: S_{X} \times S_{X} \rightarrow \mathbb{Z}
$$

the restriction of $(,)_{X}$ to S_{X}. We consider the following condition:
(N) The symmetric bilinear form s_{X} is non-degenerate.

Remark.
The condition (N) is satisfied for X if the Hodge conjecture

$$
S_{X} \otimes \mathbb{Q}=H^{2 n}(X, \mathbb{Q}) \cap H^{n, n}(X)
$$

is true for the middle cohomology group of \boldsymbol{X}. In particular, the condition (N) is satisfied if $\operatorname{dim} X=2$.

Proposition.

Let X and X^{σ} be conjugate non-singular projective varieties. Suppose that (N) holds for both of X and X^{σ}. Then the map $[Z] \mapsto\left[Z^{\sigma}\right]$ induces an isomorphism $\left(S_{X}, s_{X}\right) \cong\left(S_{X^{\sigma}}, s_{X^{\sigma}}\right)$.

Definition.

When (N) holds for X, we define the transcendental lattice T_{X} of \boldsymbol{X} to be the free \mathbb{Z}-module

$$
T_{X}:=\left\{x \in H^{2 n}(X) / \text { torsion } \mid(x, y)_{X}=0 \text { for any } y \in S_{X}\right\}
$$

Theorem.

Let X be a non-singular projective variety of dimension $2 n$. Suppose that (N) holds for X. Let Y_{1}, \ldots, Y_{N} be irreducible subvarieties of X with codimension n whose classes span $S_{X} \otimes \mathbb{Q}$ over \mathbb{Q}. We put

$$
\boldsymbol{Y}:=\bigcup_{i=1}^{N} Y_{i} \quad \text { and } \quad U:=X \backslash Y
$$

Then the transcendental lattice T_{X} of X is isomorphic to the topological invariant $\left(B_{U}, \beta_{U}\right)$ of U.

Corollary.

Let X and X^{σ} be conjugate non-singular projective varieties of dimension $2 n$. Suppose that (N) holds for both of X and X^{σ}. Let $\boldsymbol{Y} \subset X$ and $U \subset X$ be as above. If $T_{X^{\sigma}}$ is not isomorphic to T_{X}, then $U^{\sigma}=X^{\sigma} \backslash Y^{\sigma}$ is not homeomorphic to U.

$\S 6$. Genus theory of lattices

Definition.
Two lattices

$$
\lambda: \Lambda \times \Lambda \rightarrow \mathbb{Z} \quad \text { and } \quad \lambda^{\prime}: \Lambda^{\prime} \times \Lambda^{\prime} \rightarrow \mathbb{Z}
$$

are said to be in the same genus if

$$
\begin{aligned}
& \lambda \otimes \mathbb{Z}_{p}: \Lambda \otimes \mathbb{Z}_{p} \times \Lambda \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \quad \text { and } \\
& \lambda^{\prime} \otimes \mathbb{Z}_{p}: \Lambda^{\prime} \otimes \mathbb{Z}_{p} \times \Lambda^{\prime} \otimes \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}
\end{aligned}
$$

are isomorphic for any p including $p=\infty$, where $\mathbb{Z}_{\infty}=\mathbb{R}$.

Let X be a non-singular projective variety of dimension $2 n$. Recall that S_{X} is the submodule of $H^{2 n}(X) /$ torsion generated by algebraic cycles. We consider the following condition:
(P) The submodule S_{X} is primitive in $H^{2 n}(X) /$ torsion; that is, the quotient $\left(H^{2 n}(X) /\right.$ torsion $) / S_{X}$ is torsion-free.

Remark.
The condition (P) is satisfied for \boldsymbol{X} if the integral Hodge conjecture

$$
S_{X}=H^{2 n}(X, \mathbb{Z}) \cap H^{n, n}(X)
$$

is true for X. In particular, the condition (P) is satisfied if $\operatorname{dim} X=2$. There exists, however, a counter-example for (P) in higher-dimension. (Atiyah-Hirzebruch (1962).)

Theorem.

Let X and X^{σ} be conjugate non-singular projective varieties of dimension $2 n$. Suppose that (N) and (P) hold for both of X and X^{σ}. Then the transcendental lattices T_{X} and $T_{X^{\sigma}}$ are contained in the same genus.

Let X be a surface. Then T_{X} and $T_{X^{\sigma}}$ are contained in the same genus. Let Y_{1}, \ldots, Y_{N} be irreducible curves of X whose classes span $S_{X} \otimes \mathbb{Q}$. We put

$$
Y:=\bigcup_{i=1}^{N} Y_{i} \quad \text { and } \quad U:=X \backslash Y .
$$

If T_{X} and $T_{X^{\sigma}}$ are not isomorphic, then U and U^{σ} are not homeomorphic.

Therefore we will search for lattices that are not isomorphic but in the same genus.

Gauss gave a complete description of isomorphism classes of lattices of rank 2 (binary lattices) and their decomposition into genera.

Example.
Two binary lattices

$$
\left[\begin{array}{ll}
6 & 2 \\
2 & 8
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
2 & 0 \\
0 & 22
\end{array}\right]
$$

are not isomorphic, but in the same genus.
§7. Singular abelian surfaces and singular K3 surfaces

Let \boldsymbol{A} be an abelian surface; that is, a complex torus of dimension 2 that can be embedded into a projective space. Then $H^{2}(A)$ is a unimodular lattice of rank 6 with signature $(3,3)$.

Definition.

An abelian surface A is said to be singular if the rank of the transcendental lattice T_{A} is 2 (the possible minimum).

The transcendental lattice T_{A} of a singular abelian surface A is positive-definite. Moreover, by the Hodge decomposition

$$
T_{A} \otimes \mathbb{Z} \cong H^{2,0}(A) \oplus H^{0,2}(A)
$$

this lattice has a canonical orientation. We denote by \widetilde{T}_{A} the oriented transcendental lattice of \boldsymbol{A}.

Definition.
We denote by

$$
\mathcal{L}:=\left\{\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right] \left\lvert\, \begin{array}{l}
a, b, c \in \mathbb{Z}, a>0, c>0, \\
4 a c-b^{2}>0
\end{array}\right.\right\} / S L_{2}(\mathbb{Z})
$$

the set of isomorphism classes of even positive-definite oriented binary lattices. For a singular abelian surface A, we denote by

$$
\left[\widetilde{T}_{A}\right] \in \mathcal{L}
$$

the class of the oriented transcendental lattice of A.

The following theorem is due to Shioda and Mitani (1974):

Theorem.

The map $A \mapsto\left[\widetilde{T}_{A}\right]$ induces a bijection from the set of isomorphism classes of singular abelian surfaces \boldsymbol{A} to the set \mathcal{L}.

Shioda and Mitani have also given a method of explicit construction of a singular abelian surface with a prescribed oriented transcendental lattice.

Theorem.

Let

$$
M:=\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]
$$

be a matrix representing an element of \mathcal{L}. We put

$$
D:=b^{2}-4 a c<0 .
$$

Consider the elliptic curves

$$
\begin{array}{lll}
E_{1}:=\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{1}\right), & \text { where } \quad \tau_{1}:=(b+\sqrt{D}) / 2, \quad \text { and } \\
E_{2}:=\mathbb{C} /\left(\mathbb{Z}+\mathbb{Z} \tau_{2}\right), & \text { where } \quad \tau_{2}:=(-b+\sqrt{D}) /(2 a) .
\end{array}
$$

Then $A:=E_{1} \times E_{2}$ is a singular abelian surface such that $\left[\widetilde{T}_{A}\right]$ is equal to $[M]$.

Note that the elliptic curves E_{1} and \boldsymbol{E}_{2} have complex multiplications, and hence each of them is defined over a certain number field (a class field of $\mathbb{Q}(\sqrt{D})$).

Using the classical class field theory, M. Schütt and S.- proved the following:

Theorem.

Consider two oriented lattices $\widetilde{T}_{1} \in \mathcal{L}$ and $\widetilde{T}_{2} \in \mathcal{L}$. Suppose that their underlying (non-oriented) lattices T_{1} and T_{2} are in the same genus. Then the corresponding singular abelian surfaces A_{1} and A_{2} are conjugate.

Combining all the results so far, we obtain the following:

Corollary.
Consider two oriented lattices $\widetilde{T}_{1} \in \mathcal{L}$ and $\widetilde{T}_{2} \in \mathcal{L}$. Suppose that their underlying (non-oriented) lattices are not isomorphic but in the same genus. Let \boldsymbol{A} be a singular abelian surface such that $\widetilde{T}_{A} \cong \widetilde{T}_{1}$. We choose a divisor D of A such that the classes of the irreducible components of D span $S_{A} \otimes \mathbb{Q}$. We put

$$
U:=A \backslash D .
$$

Let A^{σ} be a singular abelian surface conjugate to A such that $\widetilde{T}_{A^{\sigma}} \cong \widetilde{T}_{2}$, and let U^{σ} be the Zariski open subset of A^{σ} corresponding to U. Then U and U^{σ} are not homeomorphic.

Let X be a $K 3$ surface; that is, a simply-connected surface with $K_{X} \cong \mathcal{O}_{X}$. Then $H^{2}(X)$ is a unimodular lattice of rank 22 with signature $(3,19)$.

Definition.
A $K 3$ surface X is said to be singular if the rank of the transcendental lattice T_{X} is 2 (the possible minimum).

We have the same theory for singular $K 3$ surfaces as for the singular abelian surfaces by Shioda-Inose (1977), and the same theorem by S.- and Schütt.

Corollary.
If there exist two even positive-definite lattices T_{1} and T_{2} of rank 2 that are not isomorphic but in the same genus, then there exist non-homeomorphic conjugate varieties U_{1} and U_{2}, where U_{i} is a Zariski open subset of a singular $K 3$ surface X_{i} with the transcendental lattice isomorphic to T_{i}.
§8. Arithmetic Zariski pairs

We apply this corollary to the construction of examples of arithmetic Zariski pairs of maximizing sextics.

Definition.
A pair $\left[C, C^{\prime}\right]$ of plane curves is said to be an arithmetic Zariski pair if the following hold:
(i) Suppose that $C=\{\Phi=0\}$. Then there exists an embedding $\sigma: F_{C} \hookrightarrow \mathbb{C}$ such that C^{\prime} is isomorphic (as a plane curve) to $C^{\sigma}:=\left\{\Phi^{\sigma}=0\right\}$.
(ii) There exist tubular neighborhoods $T \subset \mathbb{P}^{2}$ of C and $T^{\prime} \subset \mathbb{P}^{2}$ of C^{\prime} such that (T, C) and (T^{\prime}, C^{\prime}) are diffeomorphic.
(iii) $\left(\mathbb{P}^{2}, C\right)$ and $\left(\mathbb{P}^{2}, C^{\prime}\right)$ are not homeomorphic.

Definition.

A plane curve C of degree 6 is called a maximizing sextic if C has only simple singularities and the total Milnor number of C attains the possible maximum 19.

Remark.
If C is a maximizing sextic, the minimal resolution $X_{C} \rightarrow Y_{C}$ of the double covering $Y_{C} \rightarrow \mathbb{P}^{2}$ branching exactly along C is a singular $K 3$ surface. We denote by $T[C]$ the transcendental lattice of X_{C}.

Remark.
If C is a maximizing sextic, then its conjugate C^{σ} is also a maximizing sextic and and $\left[C, C^{\sigma}\right]$ satisfies the condition (ii) in the definition of arithmetic Zariski pairs, because simple singularities have no moduli.

We obtain the following examples of arithmetic Zariski pairs of maximizing sextics.

We put

$$
L[2 a, b, 2 c]:=\left[\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right]
$$

No.	the type of Sing (C)	$T[C] \quad$ and	$T\left[C^{\prime}\right]$
1	$E_{8}+A_{10}+A_{1}$	$L[6,2,8]$,	$L[2,0,22]$
2	$E_{8}+A_{6}+A_{4}+A_{1}$	$L[8,2,18]$,	$L[2,0,70]$
3	$E_{6}+D_{5}+A_{6}+A_{2}$	$L[12,0,42]$,	$L[6,0,84]$
4	$E_{6}+A_{10}+A_{3}$	$L[12,0,22]$,	$L[4,0,66]$
5	$E_{6}+A_{10}+A_{2}+A_{1}$	$L[18,6,24]$,	$L[6,0,66]$
6	$E_{6}+A_{7}+A_{4}+A_{2}$	$L[24,0,30]$,	$L[6,0,120]$
7	$E_{6}+A_{6}+A_{4}+A_{2}+A_{1}$	$L[30,0,42]$,	$L[18,6,72]$
8	$D_{8}+A_{10}+A_{1}$	$L[6,2,8]$,	$L[2,0,22]$
9	$D_{8}+A_{6}+A_{4}+A_{1}$	$L[8,2,18]$,	$L[2,0,70]$
10	$D_{7}+A_{12}$	$L[6,2,18]$,	$L[2,0,52]$
11	$D_{7}+A_{8}+A_{4}$	$L[18,0,20]$,	$L[2,0,180]$
12	$D_{5}+A_{10}+A_{4}$	$L[20,0,22]$,	$L[12,4,38]$
13	$D_{5}+A_{6}+A_{5}+A_{2}+A_{1}$	$L[12,0,42]$,	$L[6,0,84]$
14	$D_{5}+A_{6}+2 A_{4}$	$L[20,0,70]$,	$L[10,0,140]$
15	$A_{18}+A_{1}$	$L[8,2,10]$,	$L[2,0,38]$
16	$A_{16}+A_{3}$	$L[4,0,34]$,	$L[2,0,68]$
17	$A_{16}+A_{2}+A_{1}$	$L[10,4,22]$,	$L[6,0,34]$
18	$A_{13}+A_{4}+2 A_{1}$	$L[8,2,18]$,	$L[2,0,70]$
19	$A_{12}+A_{6}+A_{1}$	$L[8,2,46]$,	$L[2,0,182]$
20	$A_{12}+A_{5}+2 A_{1}$	$L[12,6,16]$,	$L[4,2,40]$
21	$A_{12}+A_{4}+A_{2}+A_{1}$	$L[24,6,34]$,	$L[6,0,130]$
22	$A_{10}+A_{9}$	$L[10,0,22]$,	$L[2,0,110]$
23	$A_{10}+A_{9}$	$L[8,3,8]$,	$L[2,1,28]$
24	$A_{10}+A_{8}+A_{1}$	$L[18,0,22]$,	$L[10,2,40]$
25	$A_{10}+A_{7}+A_{2}$	$L[22,0,24]$,	$L[6,0,88]$
26	$A_{10}+A_{7}+2 A_{1}$	$L[10,2,18]$,	$L[2,0,88]$
27	$A_{10}+A_{6}+A_{2}+A_{1}$	$L[22,0,42]$,	$L[16,2,58]$
28	$A_{10}+A_{5}+A_{3}+A_{1}$	$L[12,0,22]$,	$L[4,0,66]$
29	$A_{10}+2 A_{4}+A_{1}$	$L[30,10,40]$,	$L[10,0,110]$
30	$A_{10}+A_{4}+2 A_{2}+A_{1}$	$L[30,0,66]$,	$L[6,0,330]$
31	$A_{8}+A_{6}+A_{4}+A_{1}$	$L[22,4,58]$,	$L[18,0,70]$
32	$A_{7}+A_{6}+A_{4}+A_{2}$	$L[24,0,70]$,	$L[6,0,280]$
33	$A_{7}+A_{6}+A_{4}+2 A_{1}$	$L[18,4,32]$,	$L[2,0,280]$
34	$A_{7}+A_{5}+A_{4}+A_{2}+A_{1}$	$L[24,0,30]$,	$L[6,0,120]$

