Fundamental groups of complements of dual varieties in Grassmannian

Hakata, 2007 September

Ichiro Shimada (Hokkaido University, Sapporo, JAPAN)

§1. Introduction

This work is motivated by the conjecture in the paper

[ADKY] D. Auroux, S. K. Donaldson, L. Katzarkov, and M. Yotov. Fundamental groups of complements of plane curves and symplectic invariants.

Topology, 43(6): 1285-1318, 2004,

on the fundamental group

$$\pi_1(\mathbb{P}^2\setminus B),$$

where B is the branch curve of a general projection $S \to \mathbb{P}^2$ from a smooth projective surface

$$S\subset \mathbb{P}^N.$$

By the previous work of Moishezon-Teicher-Robb and by their own new examples, they conjectured in [ADKY] that $\pi_1(\mathbb{P}^2 \setminus B)$ is "small".

Let $\operatorname{Gr}^2(\mathbb{P}^N)$ be the Grassmannian variety of linear subspaces in \mathbb{P}^N with codimension 2. We put

 $U_0(S, \mathbb{P}^N) := \{ \ L \in \mathrm{Gr}^2(\mathbb{P}^N) \ | \ L \cap S \ \mathrm{is} \ \mathrm{smooth} \ \mathrm{of} \ \mathrm{dimension} \ 0 \ \},$ which is a Zariski open subset of the Grassmannian $\mathrm{Gr}^2(\mathbb{P}^N)$.

It is easy to see that there exists a natural inclusion

$$\mathbb{P}^2\setminus B\ \hookrightarrow\ U_0(S,\mathbb{P}^N),$$

which induces a surjective homomorphism

$$\pi_1(\mathbb{P}^2\setminus B) woheadrightarrow \pi_1(U_0(S,\mathbb{P}^N)).$$

Hence, if the conjecture is true, the fundamental group

 $\pi_1(U_0(S,\mathbb{P}^N))$

should be "very small".

In this talk, we describe this fundamental group $\pi_1(U_0(S, \mathbb{P}^N))$ by means of *Zariski-van Kampen monodromy* associated with a Lefschetz pencil on S.

§2. Zariski-van Kampen theorem

We formulate and prove a theorem of Zariski-van Kampen type on the fundamental groups of algebraic fiber spaces.

Let X and Y be smooth quasi-projective varieties, and let

$$f \,:\, X \, o\, Y$$

be a dominant morphism.

For simplicity, we assume the following:

The general fiber of f is connected.

For a point $y \in Y$, we put

$$F_y := f^{-1}(y).$$

We then choose general points

$$b\in Y \quad ext{and} \quad ilde{b}\in F_b\subset X.$$

Let

 $\iota:F_b \hookrightarrow X$

denote the inclusion.

We denote by

$\operatorname{Sing}(f)\subset X$

the Zariski closed subset consisting of the critical points of f.

The following is Nori's lemma:

Proposition. If there exists a Zariski closed subset $\Xi \subset Y$ of codimension ≥ 2 such that

$$F_y \setminus (F_y \cap \operatorname{Sing}(f))
eq \emptyset \quad ext{for all} \quad y \notin \Xi,$$

then we have an exact sequence

$$\pi_1(F_b, ilde b) \stackrel{\iota_*}{\longrightarrow} \pi_1(X, ilde b) \stackrel{f_*}{\longrightarrow} \pi_1(Y,b) o 1.$$

We will investigate

$$\operatorname{Ker}(\,\pi_1(F_b, ilde b)\,\stackrel{\iota_*}{\longrightarrow}\,\pi_1(X, ilde b)\,).$$

We fix, once and for all, a hypersurface Σ of Y with the following properties. We put

$$Y^\circ:=Y\setminus \Sigma, \quad X^\circ:=f^{-1}(Y^\circ),$$

and let

$$f^\circ:X^\circ o Y^\circ$$

denote the restriction of f to X° .

The required property is as follows:

The morphism f° is smooth, and is locally trivial (in the category of topological spaces and continuous maps).

The existence of such a hypersurface Σ follows from Hironaka's resolution of singularities, for example.

We can assume that $b \in Y^{\circ}$.

Let I denote the closed interval $[0,1] \subset \mathbb{R}$. Let

 $ilde{lpha}\,:\,I\, o\,X^\circ$ be a loop with the base point $ilde{b}\in F_b\subset X^\circ.$

Then the family of pointed spaces

 $(F_{f(ilde{lpha}(t))}, ilde{lpha}(t))$

is trivial over I, and hence we obtain an automorphism

$$ilde{\mu}([ilde{lpha}]): \pi_1(F_b, ilde{b}) \, \simeq \pi_1(F_b, ilde{b}), \qquad g \mapsto g^{ ilde{\mu}([ilde{lpha}])},$$

which depends only on the homotopy class of the loop $\tilde{\alpha}$ in X° . We thus obtain a homomorphism

$$ilde{\mu}\,:\,\pi_1(X^\circ, ilde{b})\,
ightarrow\,\operatorname{Aut}(\pi_1(F_b, ilde{b})),$$

which is called the monodromy on $\pi_1(F_b)$.

Our main purpose is to describe the kernel of

$$\iota_*\,:\,\pi_1(F_b, ilde b)\, o\,\pi_1(X, ilde b)$$

in terms of the monodromy $\tilde{\mu}$.

Definition.

Let G be a group, and let S be a subset of G. We denote by

 $\langle\!\langle S
angle\!
angle_G \,\, \lhd \,\, G$

the smallest *normal* subgroup of G containing S.

Let Γ be a subgroup of Aut(G). We put

$$R(G,\Gamma):=\{ \ g^{-1}g^\gamma \ \mid \ g\in G, \gamma\in \Gamma \ \} \ \subset \ G.$$

We then put

$$G//\Gamma := G/\left\langle \left\langle R(G,\Gamma) \right
angle
ight
angle_G,$$

and call $G//\Gamma$ the Zariski-van Kampen quotient of G by Γ

Definition. An element

$$g^{-1}g^{ ilde{\mu}([ilde{lpha}])} \qquad (g\in\pi_1(F_b, ilde{b}), \; [ilde{lpha}]\in\pi_1(X^\circ, ilde{b}))$$

of $\pi_1(F_b, \tilde{b})$ is called a monodromy relation.

We consider the following conditions.

(C1) $\operatorname{Sing}(f)$ is of codimension ≥ 2 in X.

(C2) There exists a Zariski closed subset

 $\Xi \subset Y$

with codimension ≥ 2 such that F_y is non-empty and irreducible for any $y \in Y \setminus \Xi$.

(C3) There exist a subspace $Z \subset Y$ and a continuous section

$$s_Z\,:\,Z\,
ightarrow\,f^{-1}(Z)$$

of f over Z such that $Z \ni b$, that $Z \hookrightarrow Y$ induces a surjective homomorphism

$$\pi_2(Z,b) \longrightarrow \pi_2(Y,b),$$

and that $s_Z(Z) \cap \operatorname{Sing}(f) = \emptyset$ and $s_Z(b) = \tilde{b}$.

Our generalized Zariski-van Kampen theorem is as follows:

Theorem. We put

$$ilde{K} \ := \ \operatorname{Ker}(\pi_1(X^\circ, ilde{b}) o \pi_1(X, ilde{b})),$$

where $\pi_1(X^{\circ}, \tilde{b}) \to \pi_1(X, \tilde{b})$ is induced by the inclusion. Under the above conditions (C1)-(C3), the kernel of

$$\iota_*\,:\,\pi_1(F_b, ilde b)\,\,
ightarrow\,\pi_1(X, ilde b)$$

is equal to the normal subgroup

$$\langle\!\langle R(\pi_1(F_b, ilde{b}), ilde{\mu}(ilde{K}))
angle\!
angle=\,\langle\!\langle\{\;g^{-1}g^{ ilde{\mu}([ilde{lpha}])}\;\mid\;g\in\pi_1(F_b, ilde{b}),\;[ilde{lpha}]\in ilde{K}\;\}\;
angle
angle$$

normally generated by the monodromy relations coming from the elements of \tilde{K} .

Theorem.

Assume the following:

(C1) $\operatorname{Sing}(f)$ is of codimension ≥ 2 in X.

- (C2) There exists a Zariski closed subset $\Xi \subset Y$ with codimension ≥ 2 such that F_y is non-empty and irreducible for any $y \in Y \setminus \Xi$.
- (C4) There exist an irreducible smooth curve $C \subset Y$ passing through b and a continuous section

$$s_C: C o f^{-1}(C)$$

of f over C with the following properties:

(i) $\pi_1(C^\circ) \longrightarrow \pi_1(Y^\circ)$, where $C^\circ := C \cap Y^\circ$.

(ii)
$$\pi_2(C) \longrightarrow \pi_2(Y)$$
.

(iii) C intersects each irreducible component of Σ transversely at least at one point.

(iv) $s_C(C) \cap \operatorname{Sing}(f) = \emptyset$ and $s_C(b) = \tilde{b}$.

We put

$$K_C := \operatorname{Ker}(\pi_1(C^\circ, b) \to \pi_1(C, b)).$$

By the section s_C , we have a monodromy action

$$\mu_C \,:\, \pi_1(C^\circ,b)\,
ightarrow\, {
m Aut}(\pi_1(F_b, ilde b)).$$

Then we have

$$\mathrm{Ker}(\iota_*) \;=\; \langle \langle R(\pi_1(F_b), \mu_C(K_C))
angle
angle .$$

Remark.

The classical Zariski-van Kampen theorem deals with the situation where there exists a continuous section

$$s\,:\,Y\,\,\rightarrow\,\,X$$

of f so that we have a monodromy

$$\mu:= ilde{\mu}\circ s_*\;:\;\pi_1(Y^\circ,b)\;\longrightarrow\;\operatorname{Aut}(\pi_1(F_b, ilde{b})).$$

The main difference from the classical Zariski-van Kampen theorem is that we assume the existence of a section s_Z of f only over a subspace $Z \subset Y$ such that $\pi_2(Z) \longrightarrow \pi_2(Y)$. The necessity of the existence of such a section is shown by the following example.

Example.

Let $L \to \mathbb{P}^1$ be the total space of a line bundle of degree d > 0 on \mathbb{P}^1 , and let L^{\times} be the complement of the zero section with the natural projection

$$f ~:~ X:=L^{ imes} ~
ightarrow ~Y:=\mathbb{P}^1,$$

so that $\pi_1(F_b) \cong \mathbb{Z}$. Then we have $\Sigma = \emptyset$, $X^\circ = X$ and hence $\tilde{K} = \text{Ker}(\pi_1(X^\circ) \to \pi_1(X))$ is trivial. In particular, we have

$$R(\pi_1(F_b), ilde{\mu}(ilde{K}))=\{1\}.$$

On the other hand, the kernel of

$$\iota_* \; : \; \pi_1(F_b) \cong \mathbb{Z} \; o \; \pi_1(X) \cong \mathbb{Z}/d\mathbb{Z}$$

is non-trivial, and equal to the image of the boundary homomorphism

$$\pi_2(Y)\cong \mathbb{Z} \ o \ \pi_1(F_b)\cong \mathbb{Z}.$$

Remark.

The condition (C3) or (C4-(ii)) is vacuous if $\pi_2(Y) = 0$ (for example, if Y is an abelian variety).

§2. Grassmannian dual varieties

A Zariski closed subset of a projective space is said to be *non-degenerate* if it is not contained in any hyperplane.

We denote by $\operatorname{Gr}^{c}(\mathbb{P}^{N})$ the Grassmannian variety of linear subspaces of the projective space \mathbb{P}^{N} with codimension c.

Definition.

Let W be a closed subscheme of \mathbb{P}^N such that every irreducible component is of dimension n. For a positive integer $c \leq n$, the Grassmannian dual variety of W in $\operatorname{Gr}^c(\mathbb{P}^N)$ is the locus

 $\left\{ egin{array}{ccc} L\in {
m Gr}^c({\mathbb P}^N) & | & W\cap L \ fails \ {
m to \ be \ smooth \ of \ dimension \ }n-c \end{array}
ight\}$

For a non-negative integer $k \leq n$, we denote by

$$U_k(W,\mathbb{P}^N)\ \subset\ \mathrm{Gr}^{n-k}(\mathbb{P}^N)$$

the complement of the Grassmannian dual variety of W in $\operatorname{Gr}^{n-k}(\mathbb{P}^N)$; that is, $U_k(W, \mathbb{P}^N)$ is

$\left\{ egin{array}{c} L\in { m Gr}^{n-k}({\mathbb P}^N) \end{array} ight. ight.$	L intersects W along a smooth	
	scheme of dimension k	

Remark.

When n - k = 1, the variety $U_{n-1}(W, \mathbb{P}^N)$ is the complement of the usual dual variety

$\left\{ egin{array}{c} H\in (\mathbb{P}^N)^ee \end{array} ight.$	H fails to intersect W along a	
	smooth scheme of dimension $n-1$	

of W in $\mathrm{Gr}^1(\mathbb{P}^N)=(\mathbb{P}^N)^{ee}.$

Let

 $X \, \subset \, \mathbb{P}^N$

be a smooth non-degenerate projective variety of dimension $n \ge 2$. We choose a general line

$$\Lambda \ \subset \ (\mathbb{P}^N)^{ee},$$

and a general point

 $0 \in \Lambda$.

Let H_t $(t \in \Lambda)$ denote the pencil of hyperplanes corresponding to Λ , and let

$$A~\cong~\mathbb{P}^{N-2}$$

denote the axis of the pencil. We then put

$$Y_t := X \cap H_t$$
 and $Z_\Lambda := X \cap A.$

Then Z_{Λ} is smooth, and every irreducible component of Z_{Λ} is of dimension n-2. (In fact, Z_{Λ} is irreducible if n > 2.)

We have natural inclusions

$$\mathrm{Gr}^{c-2}(A) \ \hookrightarrow \ \mathrm{Gr}^{c-1}(H_t) \ \hookrightarrow \ \mathrm{Gr}^c(\mathbb{P}^N).$$

Hence, for $k = 0, \ldots, n - 2$, we have natural inclusions

$$U_k(Z_\Lambda,A) \ \hookrightarrow \ U_k(Y_t,H_t) \ \hookrightarrow \ U_k(X,\mathbb{P}^N).$$

Indeed, we have

$$egin{array}{rll} U_k(Z_\Lambda,A) \ = \ \{ \ L\in U_k(X,\mathbb{P}^N) \ \mid \ L\subset A \ \}, \ U_k(Y_t,H_t) \ = \ \{ \ L\in U_k(X,\mathbb{P}^N) \ \mid \ L\subset H_t \ \}. \end{array}$$

Let k be an integer such that $0 \le k \le n-2$. Then $U_k(Z_\Lambda, A)$ is non-empty. We choose a base point

$$L_o \in U_k(Z_\Lambda, A),$$

which serves also as a base point of $U_k(X, \mathbb{P}^N)$ and of $U_k(Y_t, H_t)$ by the natural inclusions.

We then consider the family

$$f \, : \, \mathcal{U}_k(\mathcal{Y}, \Lambda) \, o \, \Lambda$$

of the varieties $U_k(Y_t, H_t)$, where

$$\mathcal{U}_k(\mathcal{Y},\Lambda) \; := \; \{ \; (L,t) \in U_k(X,\mathbb{P}^N) imes \Lambda \; \mid \; L \subset H_t \; \} \; = \; igsqcup_{t \in \Lambda} \; U_k(Y_t,H_t),$$

and f is the natural projection.

The point L_o yields a holomorphic section

$$s_o\,:\,\Lambda\,
ightarrow\,\mathcal{U}_k(\mathcal{Y},\Lambda)$$

of f. In fact, we have

$$L_o \;\in\; U_k(Z_\Lambda,A) \;\subset\; U_k(Y_t,H_t)$$

for all $t \in \Lambda$.

There exists a proper Zariski closed subset

 $\Sigma_\Lambda \ \subset \ \Lambda$

such that f is locally trivial (in the category of topological spaces and continuous maps) over $\Lambda \setminus \Sigma_{\Lambda}$. By the section s_o , we have the monodromy action

$$\pi_1(\Lambda \setminus \Sigma_\Lambda, 0) \ o \ \operatorname{Aut}(\pi_1(U_k(Y_0, H_0), L_o)).$$

We have the following theorem of Lefschetz type.

Theorem.

Consider the homomorphism

$$\iota_*\,:\,\pi_1(U_k(Y_0,H_0),L_o)\,\,
ightarrow\,\pi_1(U_k(X,\mathbb{P}^N),L_o)$$

induced by the inclusion

$$\iota \ : \ U_k(Y_0,H_0) \ \hookrightarrow \ U_k(X,\mathbb{P}^N).$$

(1) If k < n - 2, then ι_* is an isomorphism. (2) If k = n - 2, then ι_* is surjective and induces an isomorphism $\pi_1(U_k(Y_0, H_0)) / / \pi_1(\Lambda \setminus \Sigma_\Lambda) \cong \pi_1(U_k(X, \mathbb{P}^N)).$ Compare this theorem with the following classical hyperplane section theorem of Lefschetz on homotopy groups:

Theorem. Let b be a point of Y_0 , and let $j_k : \pi_k(Y_0, b) \to \pi_k(X, b)$ be the homomorphism of the kth homotopy groups induced by the inclusion. (1) If k < n - 1, then j_k is an isomorphism. (2) If k = n - 1, then j_k is surjective.

Remark.

The description of Zariski-van Kampen type of the kernel of j_{n-1} is also given by Chéniot-Libgober (2003) and Chéniot-Eyral (2006).

Sketch of the proof.

We put

$$\mathcal{U}_k(\mathcal{Y}) \; := \; \{ \; (L,H) \in U_k(X,\mathbb{P}^N) imes (\mathbb{P}^N)^{ee} \; \mid \; L \subset H \; \},$$

and consider the diagram

$$egin{array}{rcl} \mathcal{U}_k(\mathcal{Y}) &
ightarrow U_k(X,\mathbb{P}^N) \ &\downarrow \ (\mathbb{P}^N)^ee \end{array}$$

of the natural projections. The morphism $\mathcal{U}_k(\mathcal{Y}) \to U_k(X, \mathbb{P}^N)$ is locally trivial (in the holomorphic category) with a fiber being a linear subspace of $(\mathbb{P}^N)^{\vee}$. Hence we obtain

$$\pi_1(\mathcal{U}_k(\mathcal{Y})) \;\cong\; \pi_1(U_k(X,\mathbb{P}^N)).$$

By definition, we have

$$egin{array}{rcl} U_k(Y_0,H_0)&\hookrightarrow&\mathcal{U}_k(\mathcal{Y},\Lambda)&\hookrightarrow&\mathcal{U}_k(\mathcal{Y})\ &&\downarrow&\square&\downarrow&\square&\downarrow\ H_0&\in&\Lambda&\hookrightarrow&(\mathbb{P}^N)^ee, \end{array}$$

and we have a section for $\mathcal{U}_k(\mathcal{Y}, \Lambda) \to \Lambda$. Moreover we have $\pi_2(\Lambda) \cong \pi_2((\mathbb{P}^N)^{\vee}).$ By the generalized Zariski-van Kampen theorem, we obtain $\pi_1(U_k(Y_0, H_0))//\pi_1(\Lambda \setminus \Sigma_\Lambda) \cong \pi_1(\mathcal{U}_k(\mathcal{Y})).$

If k < n - 2, then we have a surjection

$$\pi_1(U_k(Z_\Lambda,A)) \ \longrightarrow \ \pi_1(U_k(Y_0,H_0)).$$

Because $\pi_1(\Lambda \setminus \Sigma_\Lambda)$ acts on $\pi_1(U_k(Z_\Lambda, A))$ trivially, it acts on $\pi_1(U_k(Y_0, H_0))$ trivially.

§3. Simple braid groups

We study the case where k = 0.

Let $X \subset \mathbb{P}^N$ be a smooth non-degenerate projective variety of dimension n and degree d. Then we have

 $U_0(X,\mathbb{P}^N)=\left\{ egin{array}{cc} L\in \mathrm{Gr}^n(\mathbb{P}^N) & | & L ext{ intersects }X ext{ at distinct }d ext{ points } \end{array}
ight\}.$

By the previous theorem of Lefschetz type, it is enough to consider the case where dim X = 2 in order to study $\pi_1(U_0(X, \mathbb{P}^N))$.

Hence, from now on, we assume

$$\dim X = 2,$$

and study the monodromy

$$\pi_1(\Lambda \setminus \Sigma_\Lambda) \ o \ \operatorname{Aut}(\pi_1(U_0(Y_0,H_0)))$$

associated with a Lefschetz pencil on X corresponding to a general line $\Lambda \subset (\mathbb{P}^N)^{\vee}$. In this case,

$$Y_0 = X \cap H_0$$

is a compact Riemann surface embedded in $H_0 \cong \mathbb{P}^{N-1}$ as a nondegenerate curve of degree d.

Note that

$$U_0(Y_0,H_0) = \left\{ egin{array}{c} L \in \mathrm{Gr}^1(H_0) \end{array} ight| egin{array}{c} L ext{ intersects the curve } Y_0 ext{ at distinct } d ext{ points} \end{array}
ight.$$

is the complement of the dual hypersurface

$$(Y_0)^ee\,\,\subset\,\,H_0^ee\cong\,(\mathbb{P}^{N-1})^ee$$

of Y_0 .

First we define the simple braid group SB_g^d of d strings on a compact Riemann surface C of genus g > 0.

We denote by

$$\operatorname{Div}^d(C) := (C imes \cdots imes C)/S_d$$

the variety of effective divisors of degree d on C, and by

$$\mathrm{rDiv}^d(C):=\mathrm{Div}^d(C)\setminus\mathrm{the}\ \mathrm{big}\ \mathrm{diagonal}\ \subset\ \mathrm{Div}^d(C)$$

the Zariski open subset consisting of reduced divisors (that is, $r\text{Div}^d(C)$ is the configuration space of distinct d points on C). We fix a base point

$$D_0=p_1+\dots+p_d\ \in\ \mathrm{rDiv}^d(C).$$

Definition. The *braid group*

$$B_g^d = B(C, D_0)$$

is defined to be the fundamental group $\pi_1(\mathrm{rDiv}^d(C), D_0)$.

The simple braid group

$$SB_g^d = SB(C, D_0)$$

is defined to be the kernel of the homomorphism

$$B(C,D_0)=\pi_1(\mathrm{rDiv}^d(C),D_0) \ o \ \pi_1(\mathrm{Div}^d(C),D_0)$$

induced by the inclusion

$$\mathrm{rDiv}^d(C) \ \hookrightarrow \ \mathrm{Div}^d(C).$$

A braid on C is called *simple* if it interchanges two points p_i and p_j of D_0 around a simple path connecting p_i and p_j , and does not move other points.

It is easy to see that SB_g^d is the subgroup of B_g^d generated by simple braids, whence the name.

Figure

Definition.

Suppose that C is embedded in \mathbb{P}^M as a non-degenerate smooth curve. We say that $C \subset \mathbb{P}^M$ is *Plücker general* if the dual curve

$$ho(C)^ee\,\subset\,(\mathbb{P}^2)^ee$$

of the image of a general projection

$$ho\,:\,C\,
ightarrow\,\mathbb{P}^2$$

has only ordinary nodes and ordinary cusps as its singularities.

Our second main result is as follows:

Theorem.

Let $C \subset \mathbb{P}^M$ be a smooth non-degenerate projective curve of degree dand genus g > 0. Suppose that

$$d\geq g+4,$$

and that C is Plücker general in \mathbb{P}^M . Let $D_0 = C \cap H_0$ be a general hyperplane section of C. Then

$$\pi_1(U_0(C,\mathbb{P}^M),D_0) ~=~ \pi_1((\mathbb{P}^M)^{ee}\setminus C^{ee},H_0)$$

is canonically isomorphic to

 $SB(C, D_0).$

For the proof, we use the following.

• We apply the generalized Zariski-van Kampen theorem to the natural morphism

 $\operatorname{Div}^d(C) \ o \ \operatorname{Pic}^d(C),$

where $\operatorname{Pic}^{d}(C)$ is the Picard variety. Note that

$$\pi_2(\operatorname{Pic}^d(C))=0.$$

Then we can show that, under the assumption $d \ge g + 4$,

$$\pi_1(\operatorname{Div}^d(C)) ~\cong~ \pi_1(\operatorname{Pic}^d(C)) ~=~ H_1(C,\mathbb{Z}).$$

• We then apply the generalized Zariski-van Kampen theorem to the natural morphism

$$\mathrm{rDiv}^d(C) \rightarrow \mathrm{Pic}^d(C).$$

If L is a very ample line bundle of degree d on C that embeds C into \mathbb{P}^m , then the fiber of $\mathrm{rDiv}^d(C) \to \mathrm{Pic}^d(C)$ over $[L] \in \mathrm{Pic}^d(C)$ is canonically isomorphic to

$$(\mathbb{P}^m)^{ee} \setminus (C_L)^{ee} \ = \ U_0(C_L,\mathbb{P}^m),$$

where $C_L \subset \mathbb{P}^m$ is the image of C by the embedding by L. In particular, $\pi_1(U_0(C_L, \mathbb{P}^m))$ is isomorphic to

 $SB^d_g \ = \ \operatorname{Ker}(\pi_1(\operatorname{rDiv}^d(C)) o \pi_1(\operatorname{Pic}^d(C))),$

if $[L] \in \operatorname{Pic}^{d}(C)$ is a general point.

• Finally, we use Harris' result on Severi problem, which asserts that the moduli of irreducible nodal plane curves of degree d and genus g is irreducible. By the assumption of Plücker generality, we conclude that

 $\pi_1(U_0(C,\mathbb{P}^M)) \cong \pi_1(U_0(C_L,\mathbb{P}^m)),$ where $[L] \in \operatorname{Pic}^d(C)$ is a general point. Let

$$X \subset \mathbb{P}^N$$

be a smooth non-degenerate projective surface of degree d, and let

 $\{Y_t\}_{t\in\Lambda}$

be a general pencil of hyperplane sections of X parameterized by a line

$$\Lambda \ \subset \ (\mathbb{P}^N)^{ee}.$$

Let

$$arphi \,:\, \mathcal{Y}_\Lambda := \{ \; (x,t) \in X imes \Lambda \; \mid \; x \in H_t \; \} \; o \; \Lambda$$

be the fibration of the pencil. We denote by

$$\Sigma'_{\Lambda} \subset \Lambda$$

the set of critical values of φ . Then φ is locally trivial over $\Lambda \setminus \Sigma'_{\Lambda}$. Let $0 \in \Lambda$ be a general point of Λ . The corresponding member Y_0 is a compact Riemann surface of genus

$$g:=(d+H_0\cdot K_X)/2+1.$$

Consider the base locus

$$Z_\Lambda:=X\cap A$$

of the pencil, where $A \cong \mathbb{P}^{N-2}$ is the axis of the pencil $\{H_t\}$. Note that

$$U_0(Z_\Lambda,A)=\{A\} \hspace{1em} ext{and}\hspace{1em} Z_\Lambda \hspace{1em}\in\hspace{1em} ext{rDiv}^d(Y_0),$$

and each point of Z_{Λ} yields a holomorphic section of

$$arphi\,:\,\mathcal{Y}_\Lambda\,
ightarrow\,\Lambda.$$

Let

$$\mathcal{M}_g^d = \mathcal{M}(Y_0, Z_\Lambda)$$

be the group of orientation-preserving diffeomorphisms γ of Y_0 acting from right such that

$$p_i{}^\gamma = p_i \quad ext{for each point } p_i ext{ of } Z_\Lambda.$$

We put

$$arGamma_g^d = arGamma(Y_0, Z_\Lambda) := \pi_0(\mathcal{M}(Y_0, Z_\Lambda))$$

the group of isotopy classes of elements of $\mathcal{M}_g^d = \mathcal{M}(Y_0, Z_\Lambda)$. Then $\Gamma_g^d = \Gamma(Y_0, Z_\Lambda)$ acts on the simple braid group

$$SB_g^d=SB(Y_0,Z_\Lambda)$$

in a natural way.

By the monodromy action, we obtain a homomorphism

$$\pi_1(\Lambda \setminus \Sigma'_\Lambda, 0) \ o \ arGamma_g^d = arGamma(Y_0, Z_\Lambda) = \pi_0(\mathcal{M}(Y_0, Z_\Lambda)).$$

We denote by

$$\Gamma_{\Lambda} \ \subset \ arGamma_g^d = arGamma(Y_0, Z_{\Lambda})$$

the image of the this monodromy homomorphism.

Combining the results above, we obtain the following:

Corollary. Let $X, \{Y_t\}_{t \in \Lambda}, Z_{\Lambda} = X \cap A$ and Γ_{Λ} be as above. Suppose that

 $g>0, \quad d\geq g+4,$

and that a general hyperplane section of X is Plücker general. Then we have a natural isomorphism

$$\pi_1(U_0(X,\mathbb{P}^N),A) ~\cong~ SB(Y_0,Z_\Lambda)/\!/\Gamma_\Lambda.$$

Remark.

Let L be an ample line bundle of a smooth projective surface S, and let $X_m \subset \mathbb{P}^{N(m)}$ be the image of S by the embedding given by the complete linear system $|L^{\otimes m}|$. If m is sufficiently large, then $X_m \subset \mathbb{P}^{N(m)}$ satisfies $d \geq g + 4$.

According to this corollary, the conjecture that $\pi_1(U_0(X, \mathbb{P}^N))$ is "very small" is rephrased as the conjecture that $\Gamma_{\Lambda} \subset \Gamma_g^d$ is "large". As for the largeness of Γ_{Λ} , we have the following result due to I. Smith (2001).

Theorem.

The vanishing cycles of the Lefschetz fibration $\mathcal{Y}_{\Lambda} \to \Lambda$ fill up the fiber Y_0 ; that is, their complement is a bunch of discs. Moreover distinct points of Z_{Λ} are on distinct discs.