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§1. Introduction

This work is motivated by the conjecture in the paper

[ADKY]

D. Auroux, S. K. Donaldson, L. Katzarkov, and M. Yotov.

Fundamental groups of complements of plane curves and symplectic

invariants.

Topology, 43(6): 1285-1318, 2004,

on the fundamental group

π1(P2 \ B),

where B is the branch curve of a general projection S → P2 from a

smooth projective surface

S ⊂ PN .

By the previous work of Moishezon-Teicher-Robb and by their own new

examples, they conjectured in [ADKY] that π1(P2 \ B) is “small”.
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Let Gr2(PN) be the Grassmannian variety of linear subspaces in PN

with codimension 2. We put

U0(S, PN) := { L ∈ Gr2(PN) | L ∩ S is smooth of dimension 0 },

which is a Zariski open subset of the Grassmannian Gr2(PN).

It is easy to see that there exists a natural inclusion

P2 \ B ↪→ U0(S, PN),

which induces a surjective homomorphism

π1(P2 \ B) →→ π1(U0(S, PN)).

Hence, if the conjecture is true, the fundamental group

π1(U0(S, PN))

should be “very small”.

In this talk, we describe this fundamental group π1(U0(S, PN)) by means

of Zariski-van Kampen monodromy associated with a Lefschetz pencil

on S.
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§2. Zariski-van Kampen theorem

We formulate and prove a theorem of Zariski-van Kampen type on the

fundamental groups of algebraic fiber spaces.

Let X and Y be smooth quasi-projective varieties, and let

f : X → Y

be a dominant morphism.

For simplicity, we assume the following:

The general fiber of f is connected.

For a point y ∈ Y , we put

Fy := f−1(y).

We then choose general points

b ∈ Y and b̃ ∈ Fb ⊂ X.

Let

ι : Fb ↪→ X

denote the inclusion.
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We denote by

Sing(f) ⊂ X

the Zariski closed subset consisting of the critical points of f .

The following is Nori’s lemma:

Proposition.

If there exists a Zariski closed subset Ξ ⊂ Y of codimension ≥ 2 such

that

Fy \ (Fy ∩ Sing(f)) 6= ∅ for all y /∈ Ξ,

then we have an exact sequence

π1(Fb, b̃)
ι∗−→ π1(X, b̃)

f∗−→ π1(Y, b) → 1.

We will investigate

Ker( π1(Fb, b̃)
ι∗−→ π1(X, b̃) ).
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We fix, once and for all, a hypersurface Σ of Y with the following

properties. We put

Y ◦ := Y \ Σ, X◦ := f−1(Y ◦),

and let

f◦ : X◦ → Y ◦

denote the restriction of f to X◦.

The required property is as follows:

The morphism f◦ is smooth, and is locally trivial (in the category of

topological spaces and continuous maps).

The existence of such a hypersurface Σ follows from Hironaka’s resolu-

tion of singularities, for example.

We can assume that b ∈ Y ◦.
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Let I denote the closed interval [0, 1] ⊂ R. Let

α̃ : I → X◦

be a loop with the base point b̃ ∈ Fb ⊂ X◦.

Then the family of pointed spaces

(Ff(α̃(t)), α̃(t))

is trivial over I, and hence we obtain an automorphism

µ̃([α̃]) : π1(Fb, b̃) →∼ π1(Fb, b̃), g 7→ gµ̃([α̃]),

which depends only on the homotopy class of the loop α̃ in X◦.

We thus obtain a homomorphism

µ̃ : π1(X
◦, b̃) → Aut(π1(Fb, b̃)),

which is called the monodromy on π1(Fb).

Our main purpose is to describe the kernel of

ι∗ : π1(Fb, b̃) → π1(X, b̃)

in terms of the monodromy µ̃.
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Definition.

Let G be a group, and let S be a subset of G. We denote by

〈〈S〉〉G C G

the smallest normal subgroup of G containing S.

Let Γ be a subgroup of Aut(G). We put

R(G, Γ) := { g−1gγ | g ∈ G, γ ∈ Γ } ⊂ G.

We then put

G//Γ := G/ 〈〈R(G, Γ)〉〉G,

and call G//Γ the Zariski-van Kampen quotient of G by Γ

Definition.

An element

g−1gµ̃([α̃]) (g ∈ π1(Fb, b̃), [α̃] ∈ π1(X
◦, b̃))

of π1(Fb, b̃) is called a monodromy relation.
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We consider the following conditions.

(C1) Sing(f) is of codimension ≥ 2 in X.

(C2) There exists a Zariski closed subset

Ξ ⊂ Y

with codimension ≥ 2 such that Fy is non-empty and irreducible

for any y ∈ Y \ Ξ.

(C3) There exist a subspace Z ⊂ Y and a continuous section

sZ : Z → f−1(Z)

of f over Z such that Z 3 b, that Z ↪→ Y induces a surjective

homomorphism

π2(Z, b) →→ π2(Y, b),

and that sZ(Z) ∩ Sing(f) = ∅ and sZ(b) = b̃.
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Our generalized Zariski-van Kampen theorem is as follows:

Theorem.

We put

K̃ := Ker(π1(X
◦, b̃) → π1(X, b̃)),

where π1(X
◦, b̃) → π1(X, b̃) is induced by the inclusion. Under the

above conditions (C1)-(C3), the kernel of

ι∗ : π1(Fb, b̃) → π1(X, b̃)

is equal to the normal subgroup

〈〈R(π1(Fb, b̃), µ̃(K̃))〉〉 = 〈〈{ g−1gµ̃([α̃]) | g ∈ π1(Fb, b̃), [α̃] ∈ K̃ } 〉〉

normally generated by the monodromy relations coming from the ele-

ments of K̃.
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Theorem.

Assume the following:

(C1) Sing(f) is of codimension ≥ 2 in X.

(C2) There exists a Zariski closed subset Ξ ⊂ Y with codimension ≥ 2

such that Fy is non-empty and irreducible for any y ∈ Y \ Ξ.

(C4) There exist an irreducible smooth curve C ⊂ Y passing through b

and a continuous section

sC : C → f−1(C)

of f over C with the following properties:

(i) π1(C
◦) →→ π1(Y

◦), where C◦ := C ∩ Y ◦.
(ii) π2(C) →→ π2(Y ).

(iii) C intersects each irreducible component of Σ transversely at least

at one point.

(iv) sC(C) ∩ Sing(f) = ∅ and sC(b) = b̃.

We put

KC := Ker(π1(C
◦, b) → π1(C, b)).

By the section sC, we have a monodromy action

µC : π1(C
◦, b) → Aut(π1(Fb, b̃)).

Then we have

Ker(ι∗) = 〈〈R(π1(Fb), µC(KC))〉〉.
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Remark.

The classical Zariski-van Kampen theorem deals with the situation

where there exists a continuous section

s : Y → X

of f so that we have a monodromy

µ := µ̃ ◦ s∗ : π1(Y
◦, b) −→ Aut(π1(Fb, b̃)).

The main difference from the classical Zariski-van Kampen theorem is

that we assume the existence of a section sZ of f only over a subspace

Z ⊂ Y such that π2(Z) →→ π2(Y ).

12



The necessity of the existence of such a section is shown by the following

example.

Example.

Let L → P1 be the total space of a line bundle of degree d > 0 on

P1, and let L× be the complement of the zero section with the natural

projection

f : X := L× → Y := P1,

so that π1(Fb) ∼= Z. Then we have Σ = ∅, X◦ = X and hence K̃ =

Ker(π1(X
◦) → π1(X)) is trivial. In particular, we have

R(π1(Fb), µ̃(K̃)) = {1}.

On the other hand, the kernel of

ι∗ : π1(Fb) ∼= Z → π1(X) ∼= Z/dZ
is non-trivial, and equal to the image of the boundary homomorphism

π2(Y ) ∼= Z → π1(Fb) ∼= Z.

Remark.

The condition (C3) or (C4-(ii)) is vacuous if π2(Y ) = 0 (for example, if

Y is an abelian variety).
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§2. Grassmannian dual varieties

A Zariski closed subset of a projective space is said to be non-degenerate

if it is not contained in any hyperplane.

We denote by Grc(PN) the Grassmannian variety of linear subspaces of

the projective space PN with codimension c.

Definition.

Let W be a closed subscheme of PN such that every irreducible compo-

nent is of dimension n. For a positive integer c ≤ n, the Grassmannian

dual variety of W in Grc(PN) is the locus{
L ∈ Grc(PN) | W ∩ L fails to be smooth of dimension n − c

}
.

For a non-negative integer k ≤ n, we denote by

Uk(W, PN) ⊂ Grn−k(PN)

the complement of the Grassmannian dual variety of W in Grn−k(PN);

that is, Uk(W, PN) is

{
L ∈ Grn−k(PN)

∣∣∣ L intersects W along a smooth

scheme of dimension k

}
.
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Remark.

When n − k = 1, the variety Un−1(W, PN) is the complement of the

usual dual variety

{
H ∈ (PN)∨

∣∣∣∣
H fails to intersect W along a

smooth scheme of dimension n−1

}
.

of W in Gr1(PN) = (PN)∨.
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Let

X ⊂ PN

be a smooth non-degenerate projective variety of dimension n ≥ 2. We

choose a general line

Λ ⊂ (PN)∨,

and a general point

0 ∈ Λ.

Let Ht (t ∈ Λ) denote the pencil of hyperplanes corresponding to Λ,

and let

A ∼= PN−2

denote the axis of the pencil. We then put

Yt := X ∩ Ht and ZΛ := X ∩ A.

Then ZΛ is smooth, and every irreducible component of ZΛ is of dimen-

sion n − 2. (In fact, ZΛ is irreducible if n > 2.)

We have natural inclusions

Grc−2(A) ↪→ Grc−1(Ht) ↪→ Grc(PN).

Hence, for k = 0, . . . , n − 2, we have natural inclusions

Uk(ZΛ, A) ↪→ Uk(Yt, Ht) ↪→ Uk(X, PN).

Indeed, we have

Uk(ZΛ, A) = { L ∈ Uk(X, PN) | L ⊂ A },

Uk(Yt, Ht) = { L ∈ Uk(X, PN) | L ⊂ Ht }.
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Let k be an integer such that 0 ≤ k ≤ n − 2. Then Uk(ZΛ, A) is

non-empty. We choose a base point

Lo ∈ Uk(ZΛ, A),

which serves also as a base point of Uk(X, PN) and of Uk(Yt, Ht) by the

natural inclusions.

We then consider the family

f : Uk(Y, Λ) → Λ

of the varieties Uk(Yt, Ht), where

Uk(Y, Λ) := { (L, t) ∈ Uk(X, PN) × Λ | L ⊂ Ht } =
⊔

t∈Λ

Uk(Yt, Ht),

and f is the natural projection.

The point Lo yields a holomorphic section

so : Λ → Uk(Y, Λ)

of f . In fact, we have

Lo ∈ Uk(ZΛ, A) ⊂ Uk(Yt, Ht)

for all t ∈ Λ.
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There exists a proper Zariski closed subset

ΣΛ ⊂ Λ

such that f is locally trivial (in the category of topological spaces and

continuous maps) over Λ \ ΣΛ. By the section so, we have the mon-

odromy action

π1(Λ \ ΣΛ, 0) → Aut(π1(Uk(Y0, H0), Lo)).

We have the following theorem of Lefschetz type.

Theorem.

Consider the homomorphism

ι∗ : π1(Uk(Y0, H0), Lo) → π1(Uk(X, PN), Lo)

induced by the inclusion

ι : Uk(Y0, H0) ↪→ Uk(X, PN).

(1) If k < n − 2, then ι∗ is an isomorphism.

(2) If k = n − 2, then ι∗ is surjective and induces an isomorphism

π1(Uk(Y0, H0))//π1(Λ \ ΣΛ) ∼= π1(Uk(X, PN)).
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Compare this theorem with the following classical hyperplane section

theorem of Lefschetz on homotopy groups:

Theorem.

Let b be a point of Y0, and let

jk : πk(Y0, b) → πk(X, b)

be the homomorphism of the kth homotopy groups induced by the

inclusion.

(1) If k < n − 1, then jk is an isomorphism.

(2) If k = n − 1, then jk is surjective.

Remark.

The description of Zariski-van Kampen type of the kernel of jn−1 is also

given by Chéniot-Libgober (2003) and Chéniot- Eyral (2006).
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Sketch of the proof.

We put

Uk(Y) := { (L, H) ∈ Uk(X, PN) × (PN)∨ | L ⊂ H },

and consider the diagram

Uk(Y) → Uk(X, PN)

↓
(PN)∨

of the natural projections. The morphism Uk(Y) → Uk(X, PN) is locally

trivial (in the holomorphic category) with a fiber being a linear subspace

of (PN)∨. Hence we obtain

π1(Uk(Y)) ∼= π1(Uk(X, PN)).

By definition, we have

Uk(Y0, H0) ↪→ Uk(Y, Λ) ↪→ Uk(Y)

↓ ¤ ↓ ¤ ↓
H0 ∈ Λ ↪→ (PN)∨,

and we have a section for Uk(Y, Λ) → Λ. Moreover we have

π2(Λ) ∼= π2((PN)∨).
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By the generalized Zariski-van Kampen theorem, we obtain

π1(Uk(Y0, H0))//π1(Λ \ ΣΛ) ∼= π1(Uk(Y)).

If k < n − 2, then we have a surjection

π1(Uk(ZΛ, A)) →→ π1(Uk(Y0, H0)).

Because π1(Λ \ ΣΛ) acts on π1(Uk(ZΛ, A)) trivially, it acts on

π1(Uk(Y0, H0)) trivially.

21



§3. Simple braid groups

We study the case where k = 0.

Let X ⊂ PN be a smooth non-degenerate projective variety of dimen-

sion n and degree d. Then we have

U0(X, PN) =
{

L ∈ Grn(PN) | L intersects X at distinct d points
}

.

By the previous theorem of Lefschetz type, it is enough to consider the

case where dim X = 2 in order to study π1(U0(X, PN)).
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Hence, from now on, we assume

dim X = 2,

and study the monodromy

π1(Λ \ ΣΛ) → Aut(π1(U0(Y0, H0)))

associated with a Lefschetz pencil on X corresponding to a general line

Λ ⊂ (PN)∨. In this case,

Y0 = X ∩ H0

is a compact Riemann surface embedded in H0
∼= PN−1 as a non-

degenerate curve of degree d.

Note that

U0(Y0, H0) =

{
L ∈ Gr1(H0)

∣∣∣∣
L intersects the curve Y0 at

distinct d points

}

is the complement of the dual hypersurface

(Y0)
∨ ⊂ H∨

0
∼= (PN−1)∨

of Y0.
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First we define the simple braid group SBd
g of d strings on a compact

Riemann surface C of genus g > 0.

We denote by

Divd(C) := (C × · · · × C)/Sd

the variety of effective divisors of degree d on C, and by

rDivd(C) := Divd(C) \ the big diagonal ⊂ Divd(C)

the Zariski open subset consisting of reduced divisors (that is, rDivd(C)

is the configuration space of distinct d points on C). We fix a base point

D0 = p1 + · · · + pd ∈ rDivd(C).

Definition.

The braid group

Bd
g = B(C, D0)

is defined to be the fundamental group π1(rDivd(C), D0).

The simple braid group

SBd
g = SB(C, D0)

is defined to be the kernel of the homomorphism

B(C, D0) = π1(rDivd(C), D0) → π1(Divd(C), D0)

induced by the inclusion

rDivd(C) ↪→ Divd(C).
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A braid on C is called simple if it interchanges two points pi and pj

of D0 around a simple path connecting pi and pj, and does not move

other points.

It is easy to see that SBd
g is the subgroup of Bd

g generated by simple

braids, whence the name.

Figure
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Definition.

Suppose that C is embedded in PM as a non-degenerate smooth curve.

We say that C ⊂ PM is Plücker general if the dual curve

ρ(C)∨ ⊂ (P2)∨

of the image of a general projection

ρ : C → P2

has only ordinary nodes and ordinary cusps as its singularities.

Our second main result is as follows:

Theorem.

Let C ⊂ PM be a smooth non-degenerate projective curve of degree d

and genus g > 0. Suppose that

d ≥ g + 4,

and that C is Plücker general in PM . Let D0 = C ∩ H0 be a general

hyperplane section of C. Then

π1(U0(C, PM), D0) = π1((PM)∨ \ C∨, H0)

is canonically isomorphic to

SB(C, D0).
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For the proof, we use the following.

• We apply the generalized Zariski-van Kampen theorem to the nat-

ural morphism

Divd(C) → Picd(C),

where Picd(C) is the Picard variety. Note that

π2(Picd(C)) = 0.

Then we can show that, under the assumption d ≥ g + 4,

π1(Divd(C)) ∼= π1(Picd(C)) = H1(C,Z).

• We then apply the generalized Zariski-van Kampen theorem to the

natural morphism

rDivd(C) → Picd(C).

If L is a very ample line bundle of degree d on C that embeds C

into Pm, then the fiber of rDivd(C) → Picd(C) over [L] ∈ Picd(C)

is canonically isomorphic to

(Pm)∨ \ (CL)∨ = U0(CL, Pm),

where CL ⊂ Pm is the image of C by the embedding by L. In

particular, π1(U0(CL, Pm)) is isomorphic to

SBd
g = Ker(π1(rDivd(C)) → π1(Picd(C))),

if [L] ∈ Picd(C) is a general point.
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• Finally, we use Harris’ result on Severi problem, which asserts that

the moduli of irreducible nodal plane curves of degree d and genus g

is irreducible. By the assumption of Plücker generality, we conclude

that

π1(U0(C, PM)) ∼= π1(U0(CL, Pm)),

where [L] ∈ Picd(C) is a general point.
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Let

X ⊂ PN

be a smooth non-degenerate projective surface of degree d, and let

{Yt}t∈Λ

be a general pencil of hyperplane sections of X parameterized by a line

Λ ⊂ (PN)∨.

Let

ϕ : YΛ := { (x, t) ∈ X × Λ | x ∈ Ht } → Λ

be the fibration of the pencil. We denote by

Σ′
Λ ⊂ Λ

the set of critical values of ϕ. Then ϕ is locally trivial over Λ \ Σ′
Λ.

Let 0 ∈ Λ be a general point of Λ. The corresponding member Y0 is a

compact Riemann surface of genus

g := (d + H0 · KX)/2 + 1.

Consider the base locus

ZΛ := X ∩ A

of the pencil, where A ∼= PN−2 is the axis of the pencil {Ht}.

Note that

U0(ZΛ, A) = {A} and ZΛ ∈ rDivd(Y0),

and each point of ZΛ yields a holomorphic section of

ϕ : YΛ → Λ.
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Let

Md
g = M(Y0, ZΛ)

be the group of orientation-preserving diffeomorphisms γ of Y0 acting

from right such that

pi
γ = pi for each point pi of ZΛ.

We put

Γ d
g = Γ (Y0, ZΛ) := π0(M(Y0, ZΛ))

the group of isotopy classes of elements of Md
g = M(Y0, ZΛ). Then

Γ d
g = Γ (Y0, ZΛ) acts on the simple braid group

SBd
g = SB(Y0, ZΛ)

in a natural way.

By the monodromy action, we obtain a homomorphism

π1(Λ \ Σ′
Λ, 0) → Γ d

g = Γ (Y0, ZΛ) = π0(M(Y0, ZΛ)).

We denote by

ΓΛ ⊂ Γ d
g = Γ (Y0, ZΛ)

the image of the this monodromy homomorphism.
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Combining the results above, we obtain the following:

Corollary.

Let X, {Yt}t∈Λ, ZΛ = X ∩ A and ΓΛ be as above. Suppose that

g > 0, d ≥ g + 4,

and that a general hyperplane section of X is Plücker general. Then

we have a natural isomorphism

π1(U0(X, PN), A) ∼= SB(Y0, ZΛ)//ΓΛ.

Remark.

Let L be an ample line bundle of a smooth projective surface S, and let

Xm ⊂ PN(m) be the image of S by the embedding given by the complete

linear system |L⊗m|. If m is sufficiently large, then Xm ⊂ PN(m) satisfies

d ≥ g + 4.
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According to this corollary, the conjecture that π1(U0(X, PN)) is “very

small” is rephrased as the conjecture that ΓΛ ⊂ Γ d
g is “large”. As for

the largeness of ΓΛ, we have the following result due to I. Smith (2001).

Theorem.

The vanishing cycles of the Lefschetz fibration YΛ → Λ fill up the fiber

Y0; that is, their complement is a bunch of discs. Moreover distinct

points of ZΛ are on distinct discs.
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