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• By a lattice, we mean a finitely generated free Z-module Λ

equipped with a non-degenerate symmetric bilinear form

Λ × Λ → Z.

• A lattice Λ is said to be even if (v, v) ∈ 2Z for any v ∈ Λ.

• Let Λ and Λ′ be lattices. A homomorphism Λ → Λ′ of Z-

modules is called an isometry if it preserves the symmetric

bilinear forms. By definition, an isometry is injective.

• Let Λ ↪→ Λ′ be an isometry. We denote by

(Λ ↪→ Λ′)⊥

the orthogonal complement of Λ in Λ′.
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§1. (Super)singular K3 surfaces

For a K3 surface X defined over a field k, we denote by NS(X)

the Néron-Severi lattice of

X ⊗ k̄,

where k̄ is the algebraic closure of k; that is, NS(X) is the

lattice of numerical equivalence classes of divisors on X ⊗ k̄

with the intersection pairing.

Definition.

A K3 surface X defined over a field of characteristic 0 is said

to be singular if

rank(NS(X)) = 20.

A K3 surface X defined over a field of characteristic p > 0 is

said to be supersingular if

rank(NS(X)) = 22.

If X is singular or supersingular, then

d(X) := disc(NS(X)).

is a negative integer.
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Shioda and Inose showed that every singular K3 surface is de-

fined over a number field.

Let X be a singular K3 surface defined over a number field F .

We denote by ZF the integer ring of F , and by

πF : Spec ZF → Spec Z
the natural projection. We also denote by

Emb(F, C)

the set of embeddings of F into C.

We consider a smooth family

X → U

of K3 surfaces over a non-empty Zariski open subset U of

Spec ZF such that

the generic fiber Xη is isomorphic to X.

For a close point p of U , we denote by Xp the reduction of X
at p. For a prime integer p, we put

Sp(X ) := { p ∈ π−1
F (p) ∩ U | Xp is supersingular }.
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We investigate the following lattices of rank 2;

• the transcendental lattice

T (Xσ) := (NS(X) ↪→ H2(Xσ, Z))⊥

for each σ ∈ Emb(F, C), where Xσ is the complex K3

surface X ⊗F,σ C, and

• the supersingular reduction lattice

L(X , p) := (NS(X) ↪→ NS(Xp))
⊥

for each p ∈ Sp(X ), where NS(X) ↪→ NS(Xp) is the spe-

cialization isometry.

Remark.

The supersingular reduction lattices and their relation with

transcendental lattices was first considered in the paper

T. Shioda: The elliptic K3 surfaces with a maximal singular

fibre. C. R. Math. Acad. Sci. Paris 337 (2003), 461–466,

for certain elliptic K3 surfaces.
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§2. Genera of lattices

Definition.

Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z
are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

We have the following:

Theorem (Nikulin).

Two even lattices of the same rank are in the same genus if

and only if they have the same signature and their discriminant

forms are isomorphic.
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Definition.

Let Λ be an even lattice. Then Λ is canonically embedded into

Λ∨ := Hom(Λ, Z)

as a subgroup of finite index, and we have a natural symmetric

bilinear form

Λ∨ × Λ∨ → Q
that extends the symmetric bilinear form on Λ. The finite

abelian group

DΛ := Λ∨/Λ,

together with the natural quadratic form

qΛ : DΛ → Q/2Z
is called the discriminant form of Λ.
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§3. Transcendental lattices

Let X be a singular K3 surface defined over a number field F .

For an embedding σ : F ↪→ C, the transcendental lattice

T (Xσ) := (NS(X) ↪→ H2(Xσ, Z))⊥

of the complex singular K3 surface

Xσ := X ⊗F,σ C
is an even positive-definite lattice of rank 2.

Proposition.

For σ, σ′ ∈ Emb(F, C), the lattices T (Xσ) and T (Xσ′
) are in

the same genus.

This follows from Nikulin’s theorem. We have

NS(X) ∼= NS(Xσ) ∼= NS(Xσ′
).

Since H2(Xσ, Z) is unimodular, the discriminant form of T (Xσ)

is isomorphic to (−1) times the discriminant form of NS(Xσ):

(DT (Xσ), qT (Xσ)) ∼= (DNS(Xσ), −qNS(Xσ)).

The same holds for T (Xσ′
). Hence T (Xσ) and T (Xσ′

) have the

isomorphic discriminant forms.
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For a negative integer d, we put

Md :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

b2 − 4ac = d

}
,

on which GL2(Z) acts by M 7→ tgMg, where M ∈ Md and

g ∈ GL2(Z).

We then denote by

Ld := Md/ GL2(Z) (resp. L̃d := Md/ SL2(Z) )

the set of isomorphism classes of even, positive-definite lattices

(resp. oriented lattices) of rank 2 with discriminant −d.

Let S be a complex singular K3 surface. By the Hodge decom-

position

T (S) ⊗ C = H2,0(S) ⊕ H0,2(S),

we can define a canonical orientation on T (S). We denote by

T̃ (S)

the oriented transcendental lattice of S, and by [T̃ (S)] ∈ L̃d(S)

the isomorphism class of the oriented transcendental lattice.
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Theorem (Shioda and Inose).

The map S 7→ [T̃ (S)] induces a bijection from the set of iso-

morphism classes of complex singular K3 surfaces to the set⋃
d

L̃d

of isomorphism classes of even, positive-definite oriented lat-

tices of rank 2.

We have proved the following existence theorem:

Theorem (S.- and Schütt).

Let G ⊂ Ld be a genus of even positive-definite lattices of rank

2, and let

G̃ ⊂ L̃d

be the pull-back of G by the natural projection L̃d → Ld. Then

there exists a singular K3 surface X defined over a number

field F such that the set

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } ⊂ L̃d

coincides with the oriented genus G̃.
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Corollary.

Let S and S′ be complex singular K3 surfaces. If T (S) and

T (S′) are in the same genus, then there exists an embedding

σ : C ↪→ C of the field C into itself such that S ×C,σ C is

isomorphic to S′ as a complex surface.

Proof. Let G̃S ⊂ L̃d(S) be the oriented genus containing

[T̃ (S)] ∈ L̃d(S), and let X be the singular K3 surface defined

over a number field F such that

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } = G̃S.

By the theorem of Shioda-Inose, there exists τ ∈ Emb(F, C)

and τ ′ ∈ Emb(F, C) such that

Xτ ∼= S, Xτ ′ ∼= S′.

There exists σ : C ↪→ C such that σ ◦ τ = τ ′. ¤

Corollary.

Let S and S′ be complex singular K3 surfaces. If NS(S) and

NS(S′) are in the same genus, then NS(S) and NS(S′) are iso-

morphic.
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Corollary.

Let S be a complex singular K3 surface. If S is defined over a

number field L, then

[L : Q] ≥ |G̃S|,
where G̃S ⊂ L̃d(S) is the oriented genus containing [T̃ (S)].

Proof. Let X be the singular K3 surface defined over a number

field F such that {[T̃ (Xσ)] | σ ∈ Emb(F, C)} = G̃S. Then

Xσ0 ∼= S for some σ0 ∈ Emb(F, C).

Let Y be a K3 surface defined over L such that

Y τ0 ∼= S for some τ0 ∈ Emb(L, C).

Then there exists a number field M ⊂ C containing both of

σ0(F ) and τ0(L) such that

X ⊗ M ∼= Y ⊗ M over M .

Therefore, for each σ ∈ Emb(F, C), there exists τ ∈ Emb(L, C)

such that Xσ ∼= Y τ over C. Since there exist exactly |G̃S|
isomorphism classes of complex K3 surfaces among Xσ, we

have | Emb(L, C)| ≥ |G̃S|. ¤
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§4. The set Sp(X )

We fix a smooth family X → U of K3 surfaces over an open

subset U ⊂ Spec ZF such that the generic fiber Xη is singular,

and investigate the set

Sp(X ) := { p ∈ π−1
F (p) ∩ U | Xp is supersingular }).

For a supersingular K3 surface Y in characteristic p, there is a

positive integer σ(Y ) ≤ 10, which is called the Artin invariant

of Y , such that

d(Y )(:= disc(NS(Y ))) = −p2σ(Y ).

Theorem.

Suppose that p does not divide 2d(Xη) = 2 disc(NS(Xη)). Let

χp : F×
p → {±1} be the Legendre character.

(1) If p ∈ Sp(X ), then the Artin invariant of Xp is 1.

(2) There exists a finite set N of prime integers containing the

prime divisors of 2d(Xη) such that

p /∈ N ⇒ Sp(X ) =

{
∅ if χp(d(Xη)) = 1,

π−1
F (p) if χp(d(Xη)) = −1.
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§5. Supersingular reduction lattices

For simplicity, we assume that p 6= 2.

Theorem (Rudakov-Shafarevich).

Let p be an odd prime, and let σ be a positive integer ≤ 10.

Then there exists a lattice Λp,σ with the following properties,

and it is unique up to isomorphism:

(i) even, rank 22,

(ii) of signature (1, 21), and

(iii) the discriminant group is isomorphic to (Z/pZ)2σ.

We call Λp,σ the Rudakov-Shafarevich lattice.

Theorem (Artin-Rudakov-Shafarevich).

Let X be a supersingular K3 surface in odd characteristic p

with the Artin invariant σ. Then NS(X) is isomorphic to Λp,σ.
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Let X → U be a smooth family of K3 surfaces over an open

subset U ⊂ Spec ZF such that the generic fiber Xη is singular.

Recall that the supersingular reduction lattice L(X , p) of X at

p ∈ Sp(X ) is defined by

L(X , p) := (NS(Xη) ↪→ NS(Xp))
⊥.

Suppose that

p 6 | 2d(Xη).

Then Xp is a supersingular K3 surface with Artin invariant 1,

and hence

NS(Xp) ∼= Λp,1.

Proposition.

The image of the specialization isometry

NS(Xη) ↪→ NS(Xp)

is primitive, that is, the cokernel is torsion-free.

Corollary.

The supersingular reduction lattice L(X , p) is an even,

negative-definite lattice of rank 2 with discriminant −p2d(Xη).
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Corollary.

For p, p′ ∈ Sp(X ), the lattices L(X , p) and L(X , p′) are contained

in the same genus.

The genus containing the lattices

L(X , p) (p ∈ Sp(X ))

is the genus of even, negative-definite lattices of rank 2 whose

discriminant forms are isomorphic to

(DNS, −qNS) ⊕ (Dp,1, qp,1) ∼= (DT , qT ) ⊕ (Dp,1, qp,1)

where NS = NS(Xη), T = T (Xσ
η ) for any σ ∈ Emb(F, C), and

(Dp,1, qp,1) is the discriminant form of the Rudakov-Shafarevich

lattice Λp,1.

Definition.

For and [T ] ∈ Ld and a prime integer p6 | 2d, we denote by

G(p, T ) ⊂ −Lp2d

the genus consisting of even, negative-definite lattices of rank

2 whose discriminant form is isomorphic to

(DT , qT ) ⊕ (Dp,1, qp,1).
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Problem.

For a given T , does there exist a smooth family

X → U

of K3 surfaces over an open subset U ⊂ Spec ZF with the

following properties?

(i) (DNS(Xη), qNS(Xη)) ∼= (DT , −qT ), and

(ii) except for a finite number of primes, if χp(d) = −1, then

the set of isomorphism classes of supersingular reduction

lattices

L(X , p) (p ∈ Sp(X ) = π−1
F (p))

coincides with the genus G(p, T ).

Theorem (S.-).

Yes, if

• d is odd,

• d is a fundamental discriminant, and

• T is primitive.
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Definition.

A negative integer d is called a fundamental discriminant if it

is the discriminant of an imaginary quadratic field.

Definition.

An even positive-definite lattice of rank 2 is primitive if it is

expressed by a matrix[
2a b

b 2c

]
with gcd(a, b, c) = 1.

Remark.

S.- proved the theorem on transcendental lattices under the

assumption that

• d is a fundamental discriminant, and

• T is primitive.

Then Schütt succeeded in removing these assumptions.
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§6. The theory of Shioda, Mitani and Inose

We give a sketch of the proof.

Suppose that

T̃ =

[
2a b

b 2c

]
with d := b2 − 4ac < 0

is given. We put

E′ := C/(Z + τ ′Z), where τ ′ =
−b +

√
d

2a
, and

E := C/(Z + τZ) , where τ =
b +

√
d

2
,

and consider the elliptic surface

A := E′ × E.

Shioda and Mitani showed that the oriented transcendental

lattice T̃ (A) is isomorphic to T̃ . Let

Ã → A

be the blowing up of A at the 2-torsion points of A, and let

Km(A) ← Ã

be the quotient by the lift of the inversion of A.
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Shioda and Inose showed that, on Km(A), there exist reduced

effective divisors C and Θ such that

(i) C = C1 + · · · + C8 and Θ = Θ1 + · · · + Θ8 are disjoint,

(ii) C is an ADE-configuration of (−2)-curves of type E8,

(iii) Θ is an ADE-configuration of (−2)-curves of type 8A1,

(iv) there exists a class [L] ∈ NS(Km(A)) such that 2[L] = [Θ].

Let

Ỹ → Km(A)

be the double covering branched exactly along Θ, and let

Y ← Ỹ

be the contraction of (−1)-curves on Ỹ (that is, the inverse

images of Θ1, . . . , Θ8).

Theorem (Shioda and Inose).

The surface Y is a singular K3 surface, and the diagram

Y ←− Ỹ −→ Km(A) ←− Ã −→ A

induces an isomorphism

T̃ (Y ) ∼= T̃ (A) (∼= T̃ )

of the oriented transcendental lattices.
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Suppose that we have a Shioda-Inose-Kummer diagram

Y ←− Ỹ −→ Km(A) ←− Ã −→ A = E ′ × E
over an open subset U ⊂ Spec ZF . We denote by

Yη ←− Ỹη −→ Km(Aη) ←− Ãη −→ Aη = E′
η × Eη

the generic fiber of the diagram, and by

Yp ←− Ỹp −→ Km(Ap) ←− Ãp −→ Ap = E′
p × Ep

the fiber over a closed point p ∈ U .

Analyzing the arguments of Shioda and Inose carefully, we ob-

tain the following theorem.

Theorem.

(1) The above diagram over η induces an isomorphism

T̃ (Y σ
η ) ∼= T̃ (Aσ

η)

for any σ ∈ Emb(F, C).

(2) Except for a finite number of points p of U , we have

Yp is supersingular ⇐⇒ E′
p and Ep are supersingular,

and if this is the case, then the above diagram over p induces

L(Y, p) ∼= (Hom(E′
η, Eη) ↪→ Hom(E′

p, Ep))
⊥.
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Here, for elliptic curves E1, E2 defined over a field k, we denote

by Hom(E1, E2) the Z-module of homomorphisms

φ : E1 ⊗ k̄ → E2 ⊗ k̄,

and we regard Hom(E1, E2) as a lattice by

(φ, φ) := 2 deg φ.

Thus the theorems are reduced to the statements about elliptic

curves.

The lattices

T̃ (Aσ
η) = T̃ (E′

η
σ × Eη

σ) (σ ∈ Emb(F, C))

are calculated by the classical theory of complex multiplications

in the class field theory.

The lattice

(Hom(E′
η, Eη) ↪→ Hom(E′

p, Ep))
⊥

is calculated by Deuring’s theory of endmorphism rings of su-

persingular elliptic curves.

We use Dorman’s description of optimal embeddings of the

integer ring of an imaginary quadratic fields into the Deuring

order.
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§7. An application to topology

We denote by Emb(C, C) the set of embeddings σ : C ↪→ C of

the complex number field C into itself.

Definition.

For a complex variety X and σ ∈ Emb(C, C), we define a com-

plex variety Xσ by the following diagram of the fiber product:

Xσ −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec C.

Two complex varieties X and X ′ are said to be conjugate if

there exists σ ∈ Emb(C, C) such that X ′ is isomorphic to Xσ

over C.

It is obvious from the definition that conjugate varieties are

homeomorphic in Zariski topology.

Problem.

How about in the classical complex topology?
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We have the following very classical:

Example (Serre (1964)).

There exist conjugate smooth projective varieties X and Xσ

such that their topological fundamental groups are not isomor-

phic:

π1(X) 6∼= π1(X
σ).

In particular, X and Xσ are not homotopically equivalent.

We also have the following:

Grothendieck’s dessins d’enfant.

Let f : C → P1 be a finite covering defined over Q branching

only at the three points 0, 1, ∞ ∈ P1. For σ ∈ Gal(Q/Q),

consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ are topologically distinct in general.

Belyi’s theorem asserts that the action of Gal(Q/Q) on the set

of topological types of the covering of P1 branching only at

0, 1, ∞ is faithful.
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Other examples of non-homeomorphic conjugate varieties.

• Abelson: Topologically distinct conjugate varieties with fi-

nite fundamental group.

Topology 13 (1974).

• Artal Bartolo, Carmona Ruber, Cogolludo Agust́ın: Effec-

tive invariants of braid monodromy.

Trans. Amer. Math. Soc. 359 (2007).

• S.-: On arithmetic Zariski pairs in degree 6.

arXiv:math/0611596

• S.-: Non-homeomorphic conjugate complex varieties.

arXiv:math/0701115

• Easton, Vakil: Absolute Galois acts faithfully on the com-

ponents of the moduli space of surfaces: A Belyi-type the-

orem in higher dimension. arXiv:0704.3231

• Bauer, Catanese, Grunewald: The absolute Galois group

acts faithfully on the connected components of the moduli

space of surfaces of general type. arXiv:0706.1466

• F. Charles: Conjugate varieties with distinct real cohomol-

ogy algebras. arXiv:0706.3674
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Using the theorem on the transcendental lattices of singular K3

surfaces defined over a number field, we construct examples of

non-homeomorphic conjugate varieties.

Let V be an oriented topological manifold of real dimension 4.

We put

H2(V ) := H2(V, Z)/torsion,

and let

ιV : H2(V ) × H2(V ) → Z
be the intersection pairing. We then put

J∞(V ) :=
⋂
K

Im(H2(V \ K) → H2(V )),

where K runs through the set of compact subsets of V , and set

B̃V := H2(V )/J∞(V ) and BV := (B̃V )/torsion.

Since any topological cycle is compact, the intersection pairing

ιV induces a symmetric bilinear form

βV : BV × BV → Z.

It is obvious that the isomorphism class of (BV , βV ) is a topo-

logical invariant of V .
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Theorem.

Let X be a complex smooth projective surface, and let

C1, . . . , Cn be irreducible curves on X. We put

V := X \
⋃

Ci.

Suppose that the classes [C1], . . . , [Cn] span NS(X) ⊗ Q. Then

(BV , βV ) is isomorphic to the transcendental lattice

T (X) := (NS(X) ↪→ H2(X))⊥/torsion.

Construction of examples.

Let T1 and T2 be even positive-definite lattices of rank 2 that

are in the same genus but not isomorphic. We have a singular

K3 surface X defined over a number field F , and embeddings

σ1, σ2 ∈ Emb(F, C) such that

T (Xσ1) ∼= T1 and T (Xσ2) ∼= T2.

Let C1, . . . , Cn be irreducible curves on X whose classes span

NS(X) ⊗ Q. Enlarging F , we can assume that

V := X \
⋃

Ci.

is defined over F . Then the conjugate open varieties

V σ1 and V σ2

are not homeomorphic.
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Remark.

By the classical theory of Gauss

Disquisitiones arithmeticae,

we have a complete theory of the decomposition of the set of

isomorphism classes of lattices of rank 2 (binary lattices) into

the disjoint union of genera.

Definition.

A complex plane curve C ⊂ P2 of degree 6 is called a maxi-

mizing sextic if C has only simple singularities (double points

of ADE-type) and the total Milnor number of C attains the

possible maximum 19.

Remark.

If C is a maximizing sextic, the minimal resolution XC → YC

of the double cover YC → P2 branching exactly along C is a

singular K3 surface. We denote by T [C] the transcendental

lattice of XC.
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In the following example, we employ a calculation of Artal,

Carmona and Cogolludo, and a result of Degtyarev.

We consider the following cubic extension of Q:

K := Q[t]/(ϕ), where ϕ = 17t3 − 18t2 − 228t + 556.

The roots of ϕ = 0 are α, ᾱ, β, where

α = 2.590 · · · + 1.108 · · ·
√

−1, β = −4.121 · · · .

There are three corresponding embeddings

σα : K ↪→ C, σᾱ : K ↪→ C and σβ : K ↪→ C.

There exists a homogeneous polynomial

Φ(x0, x1, x2) ∈ K[x0, x1, x2]

of degree 6 with coefficients in K such that the plane curve

C = {Φ = 0}
has three simple singular points of type

A16 + A2 + A1

as its only singularities. Consider the conjugate plane curves

Cα = {Φσα = 0}, Cᾱ = {Φσᾱ = 0} and Cβ = {Φσβ = 0}.

They show that, if C′ is a plane curve possessing A16 +A2 +A1

as its only singularities, then C′ is projectively isomorphic to

Cα, Cᾱ or Cβ.
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On the other hand, by the surjectivity of the period map for

complex K3 surfaces, we can prove that there are exactly three

singular K3 surfaces that is a double cover of P2 with a sextic

branch curve possessing A16 + A2 + A1 as its only singularities.

Their oriented transcendental lattices are

[10, ±4, 22] :=

[
10 ±4

±4 22

]
and [6, 0, 34] :=

[
6 0

0 34

]
.

Therefore we have

T [Cα] ∼= [10, 4, 22] or [10, −4, 22] and T [Cβ] ∼= [6, 0, 34].

Let V ⊂ YC be the pull-back of P2 \ C by YC → P2, which

is a smooth open surface defined over K. Then the conjugate

varieties V σα and V σβ are not homeomorphic.

By the same method, we construct examples of pairs of non-

homeomorphic conjugate varieties as double covers of comple-

ments of maximizing sextics.
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1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]

4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]

5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]

6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]

7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]

8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

10 D7 + A12 L[6, 2, 18], L[2, 0, 52]

11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]

12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]

13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]

14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]

15 A18 + A1 L[8, 2, 10], L[2, 0, 38]

16 A16 + A3 L[4, 0, 34], L[2, 0, 68]

17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]

18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]

19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]

20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]

21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]

22 A10 + A9 L[10, 0, 22], L[2, 0, 110]

23 A10 + A9 L[8, 3, 8], L[2, 1, 28]

24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]

25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]

26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]

27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]

28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]

29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]

30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]
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