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• By a lattice, we mean a finitely generated free Z-module

Λ equipped with a non-degenerate symmetric bilinear

form

Λ × Λ → Z.

• A lattice Λ is said to be even if (v, v) ∈ 2Z for any v ∈ Λ.
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§1. Singular K3 surfaces

A smooth projective surface X is called a K3 surface if KX
∼=

OX and h1(OX) = 0.

For a K3 surface X defined over a field k, we denote by

NS(X) the Néron-Severi lattice of X ⊗ k̄, where k̄ is the al-

gebraic closure of k; that is, NS(X) is the lattice of numerical

equivalence classes of divisors on X ⊗ k̄ with the intersection

pairing.

Definition. A K3 surface X defined over a field of char-

acteristic 0 is said to be singular if rank(NS(X)) attains the

possible maximum 20.

Shioda and Inose showed that every singular K3 surface X

is defined over a number field F .
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Let X be a singular K3 surface defined over a number field

F . We denote by Emb(F, C) the set of embeddings of F into

C, and investigate the transcendental lattice

T (Xσ) := (NS(X) ↪→ H2(Xσ, Z))⊥

for each embedding σ ∈ Emb(F, C), where Xσ is the complex

K3 surface X ⊗F,σ C. Note that each T (Xσ) is a positive-

definite even lattice of rank 2.



4

We put

M :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

4ac − b2 > 0

}
,

on which g ∈ GL2(Z) acts by M 7→ tgMg. We denote the

set of isomorphism classes of even, positive-definite lattices

(resp. oriented lattices) of rank 2 by

L := M/ GL2(Z) (resp. L̃ := M/ SL2(Z) ).

Let S be a complex singular K3 surface. By the Hodge

decomposition T (S) ⊗ C = H2,0(S) ⊕ H0,2(S), we can define

a canonical orientation on T (S). We denote by T̃ (S) the

oriented transcendental lattice of S.

Theorem (Shioda and Inose). The map S 7→ T̃ (S) induces

a bijection from the set of isomorphism classes of complex

singular K3 surfaces to the set L̃.
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Definition. Let Λ be an even lattice. Then Λ is canonically

embedded into

Λ∨ := Hom(Λ, Z)

as a subgroup of finite index, and we have a natural symmet-

ric bilinear form

Λ∨ × Λ∨ → Q
that extends the symmetric bilinear form on Λ. The finite

abelian group

DΛ := Λ∨/Λ,

together with the natural quadratic form

qΛ : DΛ → Q/2Z
is called the discriminant form of Λ.

Proposition. Suppose that an even lattice M is embedded

into an even unimodular lattice L primitively. Let N denote

the orthogonal complement of M in L. Then we have

(DM , qM) ∼= (DN , −qN)
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Definition. Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z
are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

We have the following:

Theorem (Nikulin). Two even lattices of the same rank are

in the same genus if and only if they have the same signature

and their discriminant forms are isomorphic.
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Proposition. Let X be a singular K3 surface defined over

a number field F . For σ, σ′ ∈ Emb(F, C), the lattices T (Xσ)

and T (Xσ′
) are in the same genus.

This follows from Nikulin’s theorem. We have

NS(X) ∼= NS(Xσ) ∼= NS(Xσ′
).

Since H2(Xσ, Z) is unimodular, the discriminant form of

T (Xσ) is isomorphic to (−1) times the discriminant form

of NS(Xσ):

(DT (Xσ), qT (Xσ)) ∼= (DNS(Xσ), −qNS(Xσ)).

The same holds for T (Xσ′
). Hence T (Xσ) and T (Xσ′

) have

the isomorphic discriminant forms.
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Theorem (S.- and Schütt). Let G ⊂ L be a genus of

even positive-definite lattices of rank 2, and let G̃ ⊂ L̃ be the

pull-back of G by the natural projection L̃ → L. Then there

exists a singular K3 surface X defined over a number field

F such that the set

{ T̃ (Xσ) | σ ∈ Emb(F, C) } ⊂ L̃
coincides with the oriented genus G̃.

We denote by Emb(C, C) the set of embeddings σ : C ↪→
C of the complex number field C into itself. Two complex

varieties X and X ′ are said to be conjugate if there exists

σ ∈ Emb(C, C) such that X ′ is isomorphic over C to

Xσ := X ⊗C,σ C.

Corollary. Let X and X ′ be complex singular K3 surfaces.

If their transcendental lattices are in the same genus, then

they are conjugate.
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§2. Non-homeomorphic conjugate varieties

It is obvious from the definition that conjugate varieties are

homeomorphic in Zariski topology.

Problem. How about in the classical complex topology?

Example. The betti numbers of a smooth projective

complex variety X are “algebraic”, that is,

bi(X) = bi(X
σ) for any σ ∈ Emb(C, C),

in virtue of the theory of étale cohomology groups.



10

We have the following:

Example (Serre (1964)). There exist conjugate smooth

projective varieties X and Xσ such that their topological

fundamental groups are not isomorphic:

π1(X) 6∼= π1(X
σ).

In particular, X and Xσ are not homotopically equivalent.

Grothendieck’s dessins d’enfant (1984).

Let f : C → P1 be a finite covering defined over Q branching

only at the three points 0, 1, ∞ ∈ P1. For σ ∈ Gal(Q/Q),

consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ are topologically distinct in general.

Belyi’s theorem asserts that the action of Gal(Q/Q) on the

set of topological types of the covering of P1 branching only

at 0, 1, ∞ is faithful.
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Other examples of non-homeomorphic conjugate varieties.

• Abelson: Topologically distinct conjugate varieties with

finite fundamental group.

Topology 13 (1974).

• Artal Bartolo, Carmona Ruber, Cogolludo Agust́ın: Ef-

fective invariants of braid monodromy.

Trans. Amer. Math. Soc. 359 (2007).

• S.-: On arithmetic Zariski pairs in degree 6.

arXiv:math/0611596

• S.-: Non-homeomorphic conjugate complex varieties.

arXiv:math/0701115

• Easton, Vakil: Absolute Galois acts faithfully on the

components of the moduli space of surfaces: A Belyi-

type theorem in higher dimension. arXiv:0704.3231

• Bauer, Catanese, Grunewald: The absolute Galois group

acts faithfully on the connected components of the mod-

uli space of surfaces of general type. arXiv:0706.1466

• F. Charles: Conjugate varieties with distinct real coho-

mology algebras. arXiv:0706.3674
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Let V be an oriented topological manifold of real dimension

4. We put

H2(V ) := H2(V, Z)/torsion,

and let

ιV : H2(V ) × H2(V ) → Z
be the intersection pairing. We then put

J∞(V ) :=
⋂
K

Im(H2(V \ K) → H2(V )),

where K runs through the set of compact subsets of V , and

set

B̃V := H2(V )/J∞(V ) and BV := (B̃V )/torsion.

Since any topological cycle is compact, the intersection pair-

ing ιV induces a symmetric bilinear form

βV : BV × BV → Z.

It is obvious that the isomorphism class of (BV , βV ) is a topo-

logical invariant of V .
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Theorem. Let X be a complex smooth projective surface,

and let C1, . . . , Cn be irreducible curves on X. We put

V := X \
⋃

Ci.

Suppose that the classes [C1], . . . , [Cn] span NS(X)⊗Q. Then

(BV , βV ) is isomorphic to the transcendental lattice

T (X) := (NS(X) ↪→ H2(X))⊥/torsion.

Hence T (X) is a topological invariant of the open surface

V ⊂ X.
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Construction of examples.

Let T1 and T2 be even positive-definite lattices of rank 2 that

are in the same genus but not isomorphic. We have a singular

K3 surface X defined over a number field F , and embeddings

σ1, σ2 ∈ Emb(F, C) such that

T (Xσ1) ∼= T1 and T (Xσ2) ∼= T2.

Let C1, . . . , Cn be irreducible curves on X whose classes span

NS(X) ⊗ Q. Enlarging F , we can assume that

V := X \
⋃

Ci.

is defined over F . Then the conjugate open varieties

V σ1 and V σ2

are not homeomorphic.
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§3. Maximizing sextic

Definition. (1) A complex plane curve C ⊂ P2 of degree 6 is

called a maximizing sextic if C has only simple singularities

and its total Milnor number is 19.

(2) Two complex projective plane curves C and C′ are said to

be conjugate if there exists σ ∈ Emb(C, C) such that Cσ ⊂ P2

is projectively equivalent to C′ ⊂ P2.

If C is a maximizing sextic, the minimal resolution XC → YC

of the double cover YC → P2 of P2 branching exactly along C

is a complex singular K3 surface. We put

T [C] := T (XC), and T̃ [C] := T̃ (XC).

Theorem. Let C be a maximizing sextic, and let T̃ ′ be

an oriented lattice such that its underlying (non-oriented)

lattice is in the same genus, but not isomorphic, with T [C].

Then there is a maximizing sextic C′ such that T̃ [C′] ∼= T̃ ′,

and that C and C′ are conjugate, but (P2, C) and (P2, C′) are

not homeomorphic.
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Definition. A pair of complex projective plane curves

C and C′ is called an arithmetic Zariski pair if they are

conjugate but (P2, C) and (P2, C′) are not homeomorphic.

Remark. The first example of an arithmetic Zariski pair

was discovered by Artal, Carmona and Cogolludo in degree

12 by means of completely different method.

Using Torelli theorem, we can make a complete list of the

ADE-types of maximizing sextics and their oriented tran-

scendental lattices. Thus we obtain the following complete

list of arithmetic Zariski pairs of maximizing sextics.

In the table below, L[2a, b, 2c] denotes the lattice of rank 2

given by the matrix [
2a b

b 2c

]
.
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1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]
2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]
3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]
4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]
5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]
6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]
7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]
8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]
9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]
10 D7 + A12 L[6, 2, 18], L[2, 0, 52]
11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]
12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]
13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]
14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]
15 A18 + A1 L[8, 2, 10], L[2, 0, 38]
16 A16 + A3 L[4, 0, 34], L[2, 0, 68]
17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]
18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]
19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]
20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]
21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]
22 A10 + A9 L[10, 0, 22], L[2, 0, 110]
23 A10 + A9 L[8, 3, 8], L[2, 1, 28]
24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]
25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]
26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]
27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]
28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]
29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]
30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]
31 A8 + A6 + A4 + A1 L[22, 4, 58], L[18, 0, 70]
32 A7 + A6 + A4 + A2 L[24, 0, 70], L[6, 0, 280]
33 A7 + A6 + A4 + 2A1 L[18, 4, 32], L[2, 0, 280]
34 A7 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6, 0, 120]
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§4. Maximizing sextics of type A10 + A9

There are 4 connected components in the moduli space of

maximizing sextics of type

A10 + A9.

Two of them have irreducible members, and their oriented

transcendental lattices are[
10 0

0 22

]
and

[
2 0

0 110

]
.

The other two have reducible members (a line and an irre-

ducible quintic), and their oriented transcendental lattices

are [
8 3

3 8

]
and

[
2 1

1 28

]
.

We will consider these reducible members.
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Arima has found a defining equation over Q(
√

5):

C± : z · (G(x, y, z) ±
√

5 · H(x, y, z)) = 0, where

G(x, y, z) := −9 x4z − 14 x3yz + 58 x3z2 − 48 x2y2z −
−64 x2yz2 + 10 x2z3 + +108 xy3z −
−20 xy2z2 − 44 y5 + 10 y4z,

H(x, y, z) := 5 x4z + 10 x3yz − 30 x3z2 + 30 x2y2z +

+20 x2yz2 − 40 xy3z + 20 y5.

We have two possibilities:

T [C+] ∼=

[
8 3

3 8

]
and T [C−] ∼=

[
2 1

1 28

]
, or

T [C+] ∼=

[
2 1

1 28

]
and T [C−] ∼=

[
8 3

3 8

]
.

Problem. Which is the case?

Remark. This problem cannot be solved by any algebraic

methods.
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Calculating the vanishing cycle associated with a pencil of

genus 2 curves on the K3 surfaces XC± coming from the

pencil of lines on P2, we obtain the following:

Proposition.

T [C+] ∼=

[
2 1

1 28

]
, T [C−] ∼=

[
8 3

3 8

]
.

Problem.

π1(P2 \ C+) ∼= π1(P2 \ C−)?


