On lattice-theoretic invariants of curves on a surface

Ichiro Shimada

Hiroshima University

August 12, 2009, MSJ-SI, Sapporo

By a *lattice*, we mean a free \mathbb{Z} -module L of finite rank with a nondegenerate symmetric bilinear form

 $L \times L \rightarrow \mathbb{Z}.$

A lattice *L* is naturally embedded into $Hom(L, \mathbb{Z})$. The *discriminant group* of *L* is the finite abelian group

disc $L := \operatorname{Hom}(L, \mathbb{Z})/L$.

We fix a simply connected complex projective surface S, and consider reduced (possibly reducible) curves B on S.

We define several invariants of (S, B) by means of abelian coverings of S branching along B, and apply them for the construction of examples of *Zariski couples*.

Let B and B' be curves on S.

Definition

We say that a homeomorphism $f : B \cong B'$ preserves the classes of *irreducible components* if we have $[B_i] = [f(B_i)]$ in $H^2(S, \mathbb{Z})$ for any irreducible component B_i of B.

Definition

We say that B and B^\prime have the same embedding topology and write

$$B\sim_{
m top} B'$$

if there is a homeomorphism $h: (S, B) \cong (S, B')$ such that $h|B: B \xrightarrow{\sim} B'$ preserves the classes of irreducible components.

Definition

We say that B and B' are of the same configuration type and write

$$B \sim_{
m cfg} B'$$

if there are

- tubular neighborhoods $\mathcal{T} \subset S$ of B and $\mathcal{T}' \subset S$ of B',
- a homeomorphism $au : (\mathcal{T}, B) \cong (\mathcal{T}', B')$

such that $\tau|B:B \xrightarrow{\sim} B'$ preserves the classes of irred components.

It is obvious that

$$B \sim_{\mathrm{top}} B' \implies B \sim_{\mathrm{cfg}} B'$$

According to Artal-Bartolo (1994), we define as follows:

Definition

A couple [B, B'] of curves on S is said to be a Zariski couple if $B \sim_{cfg} B'$ but $B \not\sim_{top} B'$.

The first example was discovered by Zariski in 1930's.

Example

There are irreducible curves B and B' of degree 6 on \mathbb{P}^2 with six ordinary cusps as their only singularities such that

•
$$\pi_1(\mathbb{P}^2\setminus B)\cong \mathbb{Z}/2\mathbb{Z}*\mathbb{Z}/3\mathbb{Z}$$
, and

•
$$\pi_1(\mathbb{P}^2 \setminus B') \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$$

Hence [B, B'] is a Zariski couple of *simple sextics*.

Definition

A plane curve $B \subset \mathbb{P}^2$ of degree 6 is a *simple sextic* if it has only simple singularities:

$$A_n \quad x^{n+1} + y^2 = 0 \quad (n \ge 1)$$

$$D_n \quad x^{n-1} + xy^2 = 0 \quad (n \ge 4)$$

$$E_6 \quad x^4 + y^3 = 0$$

$$E_7 \quad x^3y + y^3 = 0$$

$$E_8 \quad x^5 + y^3 = 0$$

For simple sextics, we have

of config types = 11159

$$< \# \text{ of emb-top types} =?$$

< # of connected componets of equi-sing families =?

Example

We have three plane curves of degree 6

$$B_1 = C_1 + Q_1, \quad B_2 = C_2 + Q_2, \quad B_4 = C_4 + Q_4,$$

where Q_i is a quartic with one tacnode (A_3 point) and C_i is a smooth conic tangent to Q_i at two points with multiplicity 4 (two A_7 -points).

Let $E_i \rightarrow Q_i$ be the normalization of Q_i . Then E_i is of genus 1 and has four special points

p, q the pull-back of A_3 , s, t the pull-back of $2A_7$.

Then the order of [p + q - s - t] in $\operatorname{Pic}^{0}(E_{i})$ is 1, 2 and 4 according to i = 1, 2, 4. Their emb-top types are different, and hence $[B_{1}, B_{2}, B_{4}]$ is a Zariski *triple*.

Example

Consider two simple sextics

$$B_{\pm}$$
 : $z \cdot (G(x,y,z) \pm \sqrt{5}H(x,y,z)) = 0$, where

$$G = -9x^{4}z - 14x^{3}yz + 58x^{3}z^{2} - 48x^{2}y^{2}z - 64x^{2}yz^{2} + 10x^{2}z^{3} + 108xy^{3}z - 20xy^{2}z^{2} - 44y^{5} + 10y^{4}z, H = 5x^{4}z + 10x^{3}yz - 30x^{3}z^{2} + 30x^{2}y^{2}z + 20x^{2}yz^{2} - 40xy^{3}z + 20y^{5}.$$

The quintic $G \pm \sqrt{5}H = 0$ has a A_{10} - singular point and intersects the line z = 0 at only one point that is a A_{9} - singular point.

They are *conjugate* under the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, but have the different embedding topology. Hence $[B_+, B_-]$ is an *arithmetic Zariski couple*.

We fix a finite abelian group A once and for all.

Let B be a curve on S with the irred components B_1, \ldots, B_m . Since S is simply connected, all étale Galois coverings of $S \setminus B$ with the Galois group A are in one-to-one correspondence with the set

 γ is a surjective homomorphism

$$H^2(B) = \bigoplus \mathbb{Z}[B_i] \longrightarrow A$$

 $\mathcal{C}_{A}(S,B) := \left\{ \begin{array}{c} \gamma \\ \\ \gamma \end{array} \middle| \begin{array}{c} H^{2}(B) = \bigoplus \mathbb{Z}[B_{i}] \to A \\ \text{such that the image of the restriction} \\ \text{map } r : H^{2}(S) \to H^{2}(B) = \bigoplus \mathbb{Z}[B_{i}] \\ \text{is contained in Ker } \gamma \end{array} \right\}.$

$$\varphi_{\gamma}: W_{\gamma} \to S \setminus B.$$

Definition

A smooth projective completion of $\varphi_{\gamma}: W_{\gamma} \to S \setminus B$ is a morphism

$$\phi: X \to S$$

from a smooth projective surface X such that

\blacksquare X contains W_{γ} as a Zariski open dense subset, and

•
$$\phi$$
 extends $\varphi_{\gamma}: W_{\gamma} \to S \setminus B$.

We choose a smooth projective completion $\phi: X \to S$ of φ_{γ} (not necessarily A-equivariant), and put

$$\mathcal{E}(X) := \left\{ \begin{array}{c|c} E \subset X \end{array} \middle| \begin{array}{c} E \text{ is an irreducible curve on } X \text{ such} \\ \text{that } \phi(E) \text{ is a point on } S \end{array} \right\}$$

We consider

$$H^2(X)' := H^2(X)/(\text{the torsion part})$$

as a lattice by the cup-product. In this lattice, we have two submodules

$$\begin{array}{lll} \phi^*\mathrm{NS}(\mathcal{S}) &=& \langle \ [\phi^*\mathcal{C}] \ | \ \mathcal{C} \ \mathrm{is \ a \ curve \ on } \mathcal{S} \ \rangle, & \mathrm{and} \\ \langle \mathcal{E}(\mathcal{X}) \rangle &=& \langle \ [\mathcal{E}] \ | \ \mathcal{E} \in \mathcal{E}(\mathcal{X}) \ \rangle. \end{array}$$

The cup-product is non-degenerate on each of them. Moreover we have

$$\phi^* \mathrm{NS}(S) \perp \langle \mathcal{E}(X) \rangle.$$

Hence the cup-product is non-degenerate on

$$\Sigma(X) := \phi^* \mathrm{NS}(S) \oplus \langle \mathcal{E}(X) \rangle,$$

that is, $\Sigma(X)$ is a sublattice of $H^2(X)'$.

We denote by

$$\overline{\Sigma}(X) := (\Sigma(X) \otimes \mathbb{Q}) \cap H^2(X)'$$

the primitive closure of $\Sigma(X) = \phi^* NS(S) \oplus \langle \mathcal{E}(X) \rangle$ in $H^2(X)'$.

Definition

We put

$$egin{array}{lll} F_A(S,B,\gamma) &:= & \overline{\Sigma}(X)/\Sigma(X), \ \sigma_A(S,B,\gamma) &:= & \operatorname{disc}\Sigma(X) = \operatorname{Hom}(\Sigma(X),\mathbb{Z})/\Sigma(X), \end{array}$$

which are finite abelian groups, and

$$T_A(S, B, \gamma) := \Sigma(X)^{\perp} = \overline{\Sigma}(X)^{\perp} \subset H^2(X)',$$

which is a primitive sublattice of $H^2(X)'$.

Proposition

Neither $F_A(S, B, \gamma)$ nor $\sigma_A(S, B, \gamma)$ nor $T_A(S, B, \gamma)$ does depend on the choice of the smooth projective completion $\phi : X \to S$ of $\varphi_{\gamma} : W_{\gamma} \to S \setminus B$.

The proof is very easy. Suppose that $\phi': X' \to S$ is another smooth projective completion. Then we have a commutative diagram

where X'' is a smooth projective surface, and $X'' \to X$ and $X'' \to X'$ are birational morphisms that are isom over $S \setminus B$.

Since a birational morphism between smooth surfaces are composite of blowing-ups at points, we obtain orthogonal direct-sum decompositions

$$\Sigma(X'') = \Sigma(X) \oplus \langle e_1 \rangle \oplus \cdots \oplus \langle e_N \rangle$$
 and
 $H^2(X'')' = H^2(X)' \oplus \langle e_1 \rangle \oplus \cdots \oplus \langle e_N \rangle,$

where e_1, \ldots, e_N are classes with $e_i^2 = -1$. Hence we obtain

$$\begin{array}{rcl} \overline{\Sigma}(X)/\Sigma(X) &\cong & \overline{\Sigma}(X'')/\Sigma(X''), \\ \operatorname{Hom}(\Sigma(X),\mathbb{Z})/\Sigma(X) &\cong & \operatorname{Hom}(\Sigma(X''),\mathbb{Z})/\Sigma(X''), \\ & \Sigma(X)^{\perp} &\cong & \Sigma(X'')^{\perp}. \end{array}$$

The same isomorphisms hold between X' and X''.

By means of the celebrated theorem of Villamayor on the existence of the equivariant resolution of singularities, we can prove the following:

Proposition

There exists an *A*-equivariant smooth projective completion $\phi: X \to S$ for $\varphi_{\gamma}: W_{\gamma} \to S \setminus B$.

Hence the finite abelian groups $F_A(S, B, \gamma)$, $\sigma_A(S, B, \gamma)$ and the lattice $T_A(S, B, \gamma)$ are A-modules.

Consider the case
$$S = \mathbb{P}^2$$
 and $A = \mathbb{Z}/2\mathbb{Z}$.

Example

The example of Zariski revisited:

Let B be a plane curve of degree 6 defined by

$$f^3 + g^2 = 0$$
, $\deg f = 2$, $\deg g = 3$, general.

Then *B* is irred and $\operatorname{Sing} B$ consists of six cusps. The conic Q: f = 0 passes through $\operatorname{Sing} B$. On the other hand, there is an irred sextic *B'* with $\operatorname{Sing} B'$ consisting of 6 cusps such that there are no conics passing through them. (Del Pezzo, Segre, Zariski.)

• $F_A(\mathbb{P}^2, B, \gamma) \cong \mathbb{Z}/3\mathbb{Z}, \quad \pi_1(\mathbb{P}^2 \setminus B) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z},$

 $\blacksquare \ F_{\mathcal{A}}(\mathbb{P}^2,B',\gamma)=0, \qquad \pi_1(\mathbb{P}^2\setminus B')\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/3\mathbb{Z}.$

In fact, $F_A(\mathbb{P}^2, B, \gamma) \cong \mathbb{Z}/3\mathbb{Z}$ is generated by the class of the lift of the conic Q. (The conic Q splits in X into $\tilde{Q}^+ \cup \tilde{Q}^-$.)

Consider again the case $S = \mathbb{P}^2$ and $A = \mathbb{Z}/2\mathbb{Z}$.

Example

Recall the conjugate plane sextics B_+ and B_- with $A_9 + A_{10}$ -singular points:

$$B_{\pm}$$
 : $z \cdot (G(x, y, z) \pm \sqrt{5} H(x, y, z)) = 0.$

We have

$$T_{\mathcal{A}}(\mathbb{P}^2, \mathcal{B}_+, \gamma) \cong \begin{bmatrix} 2 & 1 \\ 1 & 28 \end{bmatrix}, \quad T_{\mathcal{A}}(\mathbb{P}^2, \mathcal{B}_-, \gamma) \cong \begin{bmatrix} 8 & 3 \\ 3 & 8 \end{bmatrix}$$

The invariant $T_A(S, B, \gamma)$ is a topological invariant. Let

 $h:(S,B) \xrightarrow{\sim} (S,B')$

be a homeomorphism. Since *h* induces a homeomorphism $S \setminus B \cong S \setminus B'$, we obtain a bijection

 $h^*: \mathcal{C}_A(S, B') \xrightarrow{\sim} \mathcal{C}_A(S, B).$

For $\gamma \in \mathcal{C}_{A}(S, B')$, the covering $\varphi_{h^*\gamma} : W_{h^*\gamma} \to S \setminus B$ is obtained by pulling back $\varphi_{\gamma} : W_{\gamma} \to S \setminus B'$ by $h : S \setminus B \cong S \setminus B'$.

Theorem

Suppose that the classes $[B_i]$ span $NS(S) \otimes \mathbb{Q}$ over \mathbb{Q} . Then

 $T_A(S, B, h^*\gamma) \cong T_A(S, B', \gamma).$

Proof Since $W_{h^*\gamma}$ is homeomorphic to W_{γ} , it is enough to show that $T_A(S, B, \gamma)$ is determined by the homeo-type of W_{γ} . Let

$$\iota_W: H_2(W_\gamma) imes H_2(W_\gamma) o \mathbb{Z}$$

be the intersection pairing. We put

 $\operatorname{Ker}(\iota_W) := \{ x \in H_2(W_{\gamma}) \mid \iota_W(x, y) = 0 \text{ for all } y \in H_2(W_{\gamma}) \}.$ Then ι_W induces a non-degenerate symmetric bilinear form

 $\overline{\iota}_W$: $H_2(W_\gamma)/\operatorname{Ker}(\iota_W) \times H_2(W_\gamma)/\operatorname{Ker}(\iota_W) \to \mathbb{Z}$. The lattice $(H_2(W_\gamma)/\operatorname{Ker}(\iota_W), \overline{\iota}_W)$ is determined by the homeomorphism type of W_γ . Hence the proof is completed by showing that the homomorphism

$$H_2(W_\gamma) \to H_2(X)$$

induced by the inclusion $W_{\gamma} \hookrightarrow X$ induces

 $H_2(W_\gamma)/\operatorname{Ker}(\iota_W)\cong T_A(S,B,\gamma)\subset H_2(X)'.$

Definition

A map of equi-configuration is a homeomorphism $\tau : (\mathcal{T}, B) \xrightarrow{\sim} (\mathcal{T}', B')$, where $\mathcal{T}, \mathcal{T}' \subset S$ are tubular nbds of B, B' respectively, such that the induced homeomorphic $B \xrightarrow{\sim} B'$ preserves the classes of irreducible components.

If $\tau : (\mathcal{T}, B) \xrightarrow{\sim} (\mathcal{T}', B')$ is a map of equi-configuration, then we have the following commutative diagram:

$H^2(S)$	\xrightarrow{r}	$H^2(B')$
		$\downarrow \tau^*$
$H^2(S)$	\xrightarrow{r}	$H^{2}(B).$

Therefore τ induces a bijection

$$au_*: \mathcal{C}_{\mathcal{A}}(S, B) \xrightarrow{\sim} \mathcal{C}_{\mathcal{A}}(S, B').$$

Corollary

Let $\tau : (\mathcal{T}, B) \cong (\mathcal{T}', B')$ be a map of equi-configuration. If $T_A(S, B, \gamma) \not\cong T_A(S, B', \tau_*\gamma)$, then [B, B'] is a Zariski couple.

By this corollary, we can obtain many examples of Zariski couples. We can also prove the following for

$$\sigma_{\mathcal{A}}(S, B, \gamma) := \operatorname{disc} \Sigma(X)$$

by means of the minimal good embedded resolution of $B \subset S$.

Proposition

Let $\tau : (\mathcal{T}, B) \xrightarrow{\sim} (\mathcal{T}', B')$ be a map of equi-configuration. Then $\sigma_A(S, B, \gamma) \cong \sigma_A(S, B', \tau_*\gamma)$.

Since the lattice $H^2(X)'$ is unimodular, the three invariants

$$\begin{array}{lll} F_A(S,B,\gamma) &=& \overline{\Sigma}(X)/\Sigma(X), \\ \sigma_A(S,B,\gamma) &=& \operatorname{disc} \Sigma(X) = \operatorname{Hom}(\Sigma(X),\mathbb{Z})/\Sigma(X) \\ T_A(S,B,\gamma) &=& \Sigma(X)^{\perp} \end{array}$$

satisfy

$$|\operatorname{disc}(T_A(S, B, \gamma))| = \frac{|\sigma_A(S, B, \gamma)|}{|F_A(S, B, \gamma)|^2}.$$

Corollary

Let $\tau : (\mathcal{T}, B) \cong (\mathcal{T}', B')$ be a map of equi-configuration, so that $\sigma_A(S, B, \gamma) \cong \sigma_A(S, B', \tau_*\gamma)$. If $|F_A(S, B, \gamma)| \neq |F_A(S, B', \tau_*\gamma)|$, then [B, B'] is a Zariski couple.

Example

For the Zariski triple

$$B_1 = C_1 + Q_1, \quad B_2 = C_2 + Q_2, \quad B_4 = C_4 + Q_4$$

described above, we have

$$F_A(\mathbb{P}^2, B_4) \cong \mathbb{Z}/2\mathbb{Z}, \ F_A(\mathbb{P}^2, B_2) \cong \mathbb{Z}/4\mathbb{Z}, \ F_A(\mathbb{P}^2, B_1) \cong \mathbb{Z}/8\mathbb{Z}.$$

These cyclic groups are generated by the classes of

the reduced part of the proper transform of C_4 , the lift of a conic passing through Sing B_2 , the lift of a line passing through Sing B_1 ,

respectively.

Definition

We say that a complex K3 surface X is singular if rank(NS(X)) attains the possible maximum 20.

Shioda and Inose showed that the isomorphism class of a singular K3 surface is determined by its transcendental lattice

$$T(X) := \operatorname{NS}(X)^{\perp}$$

with its Hodge decomposition $T(X)\otimes \mathbb{C}=H^{2,0}\oplus H^{0,2}$. We denote by

 $\tilde{T}(X)$

the oriented transcendental lattice of X, which is a positive definite lattice of rank 2.

Shioda and Inose also gave an explicit way of constructing a singular K3 surface X from the oriented transcendental lattice $\tilde{T}(X)$. The singular K3 surface X is obtained as a certain double cover of the Kummer surface

 $\operatorname{Km}(E \times E'),$

where *E* and *E'* are elliptic curves with *CM* by some orders of $\mathbb{Q}(\sqrt{-|\operatorname{disc} T(X)|})$. In particular, we have

Theorem

Every singular K3 surface is defined over a number field.

S.- and Schütt (2007) proved the following by means of the class field theory of imaginary quadratic fields:

Theorem

Let X and X' be singular K3 surfaces defined over $\overline{\mathbb{Q}}$. If their transcendental lattices T(X) and T(X') are contained in the same genus, then there exists $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ such that $X' \cong X^{\sigma}$.

Definition

A plane curve $B \subset \mathbb{P}^2$ of degree 6 is called a *maximizing sextic* if *B* has only simple singularities and the sum of the Milnor numbers attains the possible maximum 19.

Let *B* be a maximizing sextic. Consider the double covering $W_{\gamma} \to \mathbb{P}^2 \setminus B$ branching along every irreducible component of *B*. Then we obtain a singular K3 surface *X* as a smooth projective completion $X \to \mathbb{P}^2$ of $W_{\gamma} \to \mathbb{P}^2 \setminus B$, and the lattice invariant $T_A(\mathbb{P}^2, B, \gamma)$ is the transcendental lattice T(X).

By searching for maximizing sextics B such that the genus of the lattice $T_A(\mathbb{P}^2, B, \gamma)$ contains more than one isomorphism classes, we obtain many examples of arithmetic Zariski couples of maximizing sextics:

No.	sing – type	$T_A(\mathbb{P}^2, B, \gamma)$, $T_{\mathcal{A}}(\mathbb{P}^2, B^{\sigma}, \gamma)$	
1	$E_8 + A_{10} + A_1$	<i>L</i> [6, 2, 8],	<i>L</i> [2, 0, 22]	
2	$E_8 + A_6 + A_4 + A_1$	<i>L</i> [8, 2, 18],	<i>L</i> [2, 0, 70]	
3	$E_6 + D_5 + A_6 + A_2$	<i>L</i> [12, 0, 42],	<i>L</i> [6, 0, 84]	
4	$E_6 + A_{10} + A_3$	<i>L</i> [12, 0, 22],	<i>L</i> [4, 0, 66]	
5	$E_6 + A_{10} + A_2 + A_1$	<i>L</i> [18, 6, 24],	<i>L</i> [6, 0, 66]	
6	$E_6 + A_7 + A_4 + A_2$	<i>L</i> [24, 0, 30],	<i>L</i> [6, 0, 120]	
7	$E_6 + A_6 + A_4 + A_2 + A_1$	<i>L</i> [30, 0, 42],	<i>L</i> [18, 6, 72]	
8	$D_8 + A_{10} + A_1$	<i>L</i> [6, 2, 8],	<i>L</i> [2, 0, 22]	
9	$D_8 + A_6 + A_4 + A_1$	<i>L</i> [8, 2, 18],	<i>L</i> [2, 0, 70]	
34	$A_7 + A_5 + A_4 + A_2 + A_1$	<i>L</i> [24, 0, 30],	<i>L</i> [6, 0, 120]	
where	_	_		
${\mathcal L}[{\boldsymbol a},{\boldsymbol b},{\boldsymbol c}]:=\left[egin{array}{cc} {\boldsymbol a} & {\boldsymbol b} \ {\boldsymbol b} & {\boldsymbol c} \end{array} ight].$				

28 / 34

Question:

Are there any arithmetic Zariski couple [B, B'] such that $\pi_1(\mathbb{P}^2 \setminus B)$ is not isomorphic to $\pi_1(\mathbb{P}^2 \setminus B')$?

Note that $\pi_1(\mathbb{P}^2 \setminus B)$ and $\pi_1(\mathbb{P}^2 \setminus B')$ have isomorphic pro-finite completions.

Digression:

Recall the arithmetic Zariski couple $[B_+, B_-]$ with

$$\mathcal{T}_{\mathcal{A}}(\mathbb{P}^2, B_+, \gamma) \cong \left[egin{array}{cc} 2 & 1 \ 1 & 28 \end{array}
ight], \quad \mathcal{T}_{\mathcal{A}}(\mathbb{P}^2, B_-, \gamma) \cong \left[egin{array}{cc} 8 & 3 \ 3 & 8 \end{array}
ight]$$

Consider the double coverings of the complements:

$$W_{\pm}$$
 : $w^2 \cdot (G(x, y, 1) \pm \sqrt{5} \cdot H(x, y, 1)) = 1.$

Both of them are smooth affine surfaces in \mathbb{C}^3 . They are not homeomorphic.

Remark

Many examples of conjugate but non-homeomorphic complex varieties have been constructed since Serre (1960).

The relation between F_A and π_1

The invariant $F_A(S, B, \gamma)$ is related to $\pi_1(S \setminus B)$.

We denote by $N_\gamma \subset \pi_1(S \setminus B)$ the kernel of the homomorphism

$$\pi_1(S \setminus B) \twoheadrightarrow A$$

corresponding to $\varphi_{\gamma} : W_{\gamma} \to S \setminus B$. Then the action of A on $H_1(W_{\gamma}) = N_{\gamma}/[N_{\gamma}, N_{\gamma}]$ is associated with

$$0 \rightarrow H_1(W_\gamma) \rightarrow \pi_1(S \setminus B)/[N_\gamma, N_\gamma] \rightarrow A \rightarrow 0:$$

that is, $a \in A$ acts on $x \in H_1(W_\gamma)$ by

$$a(x) = \tilde{a} \cdot x \cdot \tilde{a}^{-1},$$

where $\tilde{a} \in \pi_1(S \setminus B)/[N_{\gamma}, N_{\gamma}]$ is the pre-image of $a \in A$, and we regard $H_1(W_{\gamma})$ as a normal subgroup of $\pi_1(S \setminus B)/[N_{\gamma}, N_{\gamma}]$. Hence, if A acts on $H_1(W_{\gamma})$ non-trivially, $\pi_1(S \setminus B)$ is non-abelian. The relation between F_A and π_1

We can prove the following:

Theorem

Assume the following:

(a) A is a cyclic group of prime order I,
(b) the classes [B₁],..., [B_m] span NS(S) ⊗ Q over Q, and
(c) γ([B_i]) ≠ 0 for i = 1,..., m.
If the p-part F_A(S, B, γ)_p of F_A(S, B, γ) is non-trivial for some p ≠ I, then π₁(S \ B) acts on H₁(W_γ) non-trivially and hence is non-abelian.

Remark on the computation of the invariants

The invariant $\sigma_A(S, B, \gamma)$ can be computed from the configuration data of B.

We have developed a general method of Zariski-van Kampen type to calculate the lattice $T_A(S, B, \gamma)$.

Hence $|F_A(S, B, \gamma)|$ can be also calculated.

However, there seems to be no general method to determine $F_A(S, B, \gamma)$ so far, and it would be more difficult to find algebraic cycles that generate $F_A(S, B, \gamma)$ explicitly.

On lattice-theoretic invariants of curves on a surface

Remark on the computation of the invariants

Thank you!