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Supersingular K3 surfaces and lattice theory

Definition of supersingular K3 surfaces

Let k be an algebraically closed field of characteristic p ≥ 0.

Let X be a smooth projective surface defined over k. Two divisors
D1 and D2 on X are numerically equivalent and denoted by
D1 ≡ D2 if

D1.C = D2.C

holds for any curve C on X , where D.C denotes the intersection
number of D and C . The Z-module

NS(X ) := {divisors on X}/ ≡

is then equipped with a structure of the lattice by the intersection
pairing. We call NS(X ) the Néron-Severi lattice of X .
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Supersingular K3 surfaces and lattice theory

Definition of supersingular K3 surfaces

The cycle map
NS(X ) → H2

ét(X ,Ql)

is injective. In particular, we have

rank(NS(X )) ≤ b2(X ).

When k = C, we have

NS(X ) = H1,1(X ) ∩ H2(X ,Z),

and hence
rank(NS(X )) ≤ h1,1(X ).
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Supersingular K3 surfaces and lattice theory

Definition of supersingular K3 surfaces

Definition

A smooth projective surface X is called a K3 surface if

∃ a nowhere vanishing regular 2-form ωX on X , and

h1(X ,OX ) = 0.

K3 surfaces are 2-dimensional analogue of elliptic curves.

Examples of K3 surfaces:

double covers of P2 branching along smooth curves of deg 6,

smooth complete intersections of degree (4) in P3, degree
(2, 3) in P4, (2, 2, 2) in P5,

minimal resolutions of A/〈ι〉, where A are abelian surfaces and
ι is the involution x 7→ −x (p 6= 2),

. . . .
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Definition of supersingular K3 surfaces

If X is a K3 surface, then

b2(X ) = 22 and pg (X ) = 1.

In particular, we have

rank(NS(X )) ≤ 22.

If k = C, then we have

rank(NS(X )) ≤ 20.

A complex K3 surface X is called singular if rank(NS(X )) = 20.
We have a complete classification and an explicit method of
constructing all singular K3 surfaces due to Shioda and Inose.
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Definition of supersingular K3 surfaces

Definition

A K3 surface X is called supersingular if rank(NS(X )) = 22.

Problem

Construct all supersingular K3 surfaces.

More precisely, we want to obtain a theorem of the type:

Every supersingular K3 surface is defined by such and such
defining equations or constructed by such and such methods.

We have an answer in characteristic 2,
but not yet in characteristic > 2.
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Supersingular K3 surfaces and lattice theory

Unirationality and supersingularity

Definition

An algebraic surface S is unirational if there is a dominant rational
map P2 · · · → S .

If p = 0, every unirational surface is rational (birational to P2).
In particular, a complex K3 surface can never be unirational.

Theorem

If a smooth projective surface S is unirational, then
b2(S) = rank(NS(S)).

Corollary

A unirational K3 surface is supersingular.
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Examples

Consider the Fermat surface of degree d in P3

F : wd + xd + yd + zd = 0

in characteristic p > 0.

If d = q + 1 with q = pν , then F is defined by the Hermitian form

ww̄ + xx̄ + y ȳ + zz̄ = 0 where ā = aq,

over Fq, and hence is similar to the quadric surface.

Theorem (Shioda)

If d = q + 1, then F is unirational.

Corollary

If p ≡ 3 mod 4, then the Fermat quartic surface

w4 + x4 + y4 + z4 = 0

in characteristic p is a supersingular K3 surface.
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Examples

Suppose that p = 2. Let (x , y , z) be the homogeneous coordinates
of P2. Consider the purely inseparable double cover

Y : w2 = f (x , y , z)(=
∑

aijkx iy jzk)

of P2, where f is a general homogeneous polynomial of deg 6.
Then Y has 21 ordinary nodes, and the minimal resolution X of Y
is a K3 surface.

The pull-back of X → P2 by the morphism P2 → P2 given by

(ξ, η, ζ) 7→ (x , y , z) = (ξ2, η2, ζ2)

is defined by

(w−f (1/2)(ξ, η, ζ))2 = 0 where f (1/2)(ξ, η, ζ) =
∑

a
(1/2)
ijk ξiηjζk ,

and its reduced part w = f (1/2)(ξ, η, ζ) is rational. Therefore X is
unirational and hence is supersingular.
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Néron-Severi lattice of supersingular K3 surfaces

By a lattice, we mean a free Z-module L of finite rank with a
non-degenerate symmetric bilinear form

L× L → Z.

A lattice L is naturally embedded into the dual lattice

L∨ := Hom(L,Z).

The discriminant group of L is the abelian group

DL := L∨/L,

which is finite of order

| disc L| = | detML|,

where ML is a symmetric matrix expressing L× L → Z.
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Supersingular K3 surfaces and lattice theory

Néron-Severi lattice of supersingular K3 surfaces

Definition

A lattice L is even if x2 ∈ 2Z holds for any x ∈ L.

Definition

Let p be a prime integer. A lattice is p-elementary if DL is
isomorphic to direct product of the cyclic group of order p:

DL
∼= (Z/pZ)⊕t .

Definition

The signature sgn(L) = (s+, s−) of a lattice L is the pair of
numbers of positive and negative eigenvalues of ML (in R).
We say that L is indefinite if s+ > 0 and s− > 0.
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Néron-Severi lattice of supersingular K3 surfaces

Theorem (Rudakov-Shafarevich, Artin)

The Néron-Severi lattice NS(X ) of a supersingular K3 surface X in
characteristic p is

even,

of signature (1, 21) and

p-elementary.

There exists a positive integer σX ≤ 10 such that

DNS(X )
∼= (Z/pZ)⊕2σX .

Definition

The integer σX is called the Artin invariant of X .
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Néron-Severi lattice of supersingular K3 surfaces

Theorem

For each σ, there is only one isomorphism class of lattices L with

even,

rank(L) = 22, sgn(L) = (1, 21) and

DL
∼= (Z/pZ)⊕2σ.

Proof.

Use Eichler’s theorem on isom classes of indefinite lattices.

Corollary

The isomorphism class of the Néron-Severi lattice NS(X ) of a
supersingular K3 surface X is determined by the characteristic p
and the Artin invariant σX .
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Néron-Severi lattice of supersingular K3 surfaces

The Artin invariant goes down under specialization.

Theorem (Ogus)

If X and X ′ are supersingular K3 surfaces in characteristic p with
Artin invariant 1, then X and X ′ are isomorphic.

Recall that we want to obtain a theorem of the type:

Every supersingular K3 surface in characteristic p with Artin
invariant ≤ m is defined by such and such defining equations
or constructed by such and such methods.

For example:

Theorem (Ogus)

Every supersingular K3 surface in characteristic p 6= 2 with Artin
invariant ≤ 2 is a Kummer surface.

14 / 24



Supersingular K3 surfaces and lattice theory

Néron-Severi lattice of supersingular K3 surfaces

One of the motivations is:

Conjecture (Artin-Shioda)

Every supersingular K3 surface is unirational.

By the theorem of Ogus, we obtain the following:

Corollary

Every supersingular K3 surface with Artin invariant ≤ 2 is
unirational.

To show the unirationality, we need the defining equations.

We can get some defining equations from the lattice NS(X ).
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Known results

Theorem (S.-)

Every supersingular K3 surface in characteristic 2 is birational to
the purely inseparable double cover

w2 = f (x , y , z)

of P2, where f is a homogeneous polynomial of degree 6.

Corollary (Rudakov-Shafarevich)

Every supersingular K3 surface in characteristic 2 is unirational.
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Known results

Theorem (D.Q. Zhang and S.-)

Every supersingular K3 surface X in characteristic 3 with Artin
invariant ≤ 6 is birational to the purely inseparable triple cover of a
quadratic surface P1 × P1.

Corollary (Rudakov-Shafarevich)

Every supersingular K3 surface in characteristic 3 with Artin
invariant ≤ 6 is unirational.
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Known results

Theorem (Pho and S.-)

Every supersingular K3 surface X in characteristic 5 with Artin
invariant ≤ 3 is birational to the double cover of P2 branching
along a curve defined by

y5z − f (x , z) = 0

where f (x , z) is a homogeneous polynomial of degree 6.

Corollary

Every supersingular K3 surface X in characteristic 5 with Artin
invariant ≤ 3 is unirational.
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Known results

Remark

It is difficult to construct supersingular K3 surfaces with big Artin
invariants en masse.

There exist many sporadic examples of supersingular K3 surfaces
with big Artin invariants, due to Shioda and Goto.
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How to obtain the defining equations of X from NS(X )?

Definition

An effective divisor D on a K3 surface X is a polarization if D2 > 0
and the complete linear system |D| has no fixed components.

If D is a polarization, then |D| defines a morphism Φ : X → PN .
Let X → Y → PN be the Stein factorization of Φ. Then the
normal surface Y , birational to X , has only rational double points.

For a class h ∈ NS(X ), we put

R(X , h) := { x ∈ NS(X ) | (x , h) = 0 and x2 = −2 }.

Then R(X , h) is a root system.

Proposition

The ADE -type of the rational double points of Y is equal to the
Dynkin type of the root system R(X , [D]).
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How to obtain the defining equations of X from NS(X )?

Note that
NS(X ) ∼= Pic(X )

for a K3 surface X .

Proposition

Let h = [D] ∈ NS(X ) be a class with h2 > 0. Then D is a
polarization if and only if the following hold:

D is nef (that is, D.C ≥ 0 for any curve C ), and

{ x ∈ NS(X ) | x2 = 0 and (x , h) = 1 } is empty.

On the other hand, looking at the nef cone of NS(X )⊗ R, we
obtain the following:

Proposition

Let h ∈ NS(X ) be a class with h2 ≥ 0. Then there is an isometry
ϕ of NS(X ) such that ϕ(h) is nef.
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How to obtain the defining equations of X from NS(X )?

Therefore we have:

Theorem

If there exists a vector h ∈ NS(X ) with d = h2 > 0 such that

{ x ∈ NS(X ) | x2 = 0 and (x , h) = 1 } = ∅,

then X has a morphism Φ : X → PN with the Stein factorization

X → Y → PN

such that

(Φ∗O(1))2 = d , and

the normal surface Y has rational double points of the
ADE -type being equal to the Dynkin type of the root system

R(X , h) := { x ∈ NS(X ) | (x , h) = 0 and x2 = −2 }.
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How to obtain the defining equations of X from NS(X )?

We give a proof of the following theorem in char 5:

Theorem

Every supersingular K3 surface X in char 5 with σX ≤ 3 is
birational to the double cover of a plane branching along a curve
defined by y5 − f (x) = 0 with deg f = 6.

We consider the general case σX = 3. Then NS(X ) is
characterized by the properties of being even, sgn = (1, 21), and

DNS(X )
∼= (Z/5Z)6.

We can construct such a lattice NS(X ) lattice-theoretically. For
example,

NS(X ) ∼= (−A4)⊕(−A4)⊕(−A4)⊕(−A4)⊕(−A4)⊕
(

2 1
1 −2

)
,

where (−A4) denote the negative-definite root lattice of type A4.
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How to obtain the defining equations of X from NS(X )?

We have a vector h ∈ NS(X ) with h2 = 2 such that

{ x ∈ NS(X ) | x2 = 0 and (x , h) = 1 } = ∅, and

the root system { x ∈ NS(X ) | x2 = −2 and (x , h) = 0 }
is of type 5A4.

Therefore X is birational to a double cover of P2 branching along a
sextic curve B with 5A4 singularities. (Such a curve does not exist
in char 0.) Then the Gauss map

B → B∨

is inseparable of degree 5. We can show that B is defined by an
equation of the form y5 − f (x) = 0.
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