On equisingular families of plane curves of degree 6

Ichiro Shimada

Hiroshima University
2009.01.19 at University of Tokyo

$\S 1$ Four equivalence relations of simple sextics

$B \subset \mathbb{P}^{2}$: a complex reduced projective plane curve of degree 6 .
B is a simple sextic
$\Leftrightarrow B$ has only simle singularities ($A D E$-singularities)
\Leftrightarrow the minimal resolution X_{B} of the double cover $Y_{B} \rightarrow \mathbb{P}^{2}$ branching along B is a $K 3$ surface

- μ_{B} : the total Milnor number of B.
- R_{B} : the $A D E$ type of $\operatorname{Sing} B$.
- \mathcal{E}_{B} : the set of exceptional (-2)-curves for the minimal resolution $X_{B} \rightarrow Y_{B}$. We have $\left|\mathcal{E}_{B}\right|=\mu_{B}$.
- $\Sigma_{B} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)$: the sublattice generated by the classes [E] of $E \in \mathcal{E}_{B}$ and the polarization class $h:=\left[\rho^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right]$, where $\rho: X_{B} \rightarrow Y_{B} \rightarrow \mathbb{P}^{2}$. We have rank $\Sigma_{B}=1+\mu_{B}$.
- $\bar{\Sigma}_{B} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)$: the primitive closure of Σ_{B} in $H^{2}\left(X_{B}, \mathbb{Z}\right)$.

Example by Zariski in 1930's

There exist two irreducible simple sextics with six ordinary cusps (that is, $R_{B}=6 A_{2}$)
$B_{t r s}=\left\{f^{3}+g^{2}=0\right\}$ (torus type) and $B_{n t r s}$ (non-torus type)
that cannot be connected by an equisingular family.
Their differences are described in a several ways:

- $\pi_{1}\left(\mathbb{P}^{2} \backslash B_{\text {trs }}\right) \cong \mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 3 \mathbb{Z}$, while $\pi_{1}\left(\mathbb{P}^{2} \backslash B_{\text {ntrs }}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
- \exists a smooth conic $\Gamma=\{f=0\}$ passing through the six cusps of $B_{t r s}$, which splits into two curves Γ_{+}and Γ_{-}in $X_{B_{t r s}}$, while \nexists a conic passing through the six cusps of $B_{\text {ntrs }}$.
- the finite abelian group $\bar{\Sigma}_{B_{t r s}} / \Sigma_{B_{t r s}}$ is cyclic of order 3 generated by $\left[\Gamma_{+}\right] \in \bar{\Sigma}_{B_{t r s}}$, while $\bar{\Sigma}_{B_{n t r s}} / \Sigma_{B_{n t r s}}=0$.
$B \sim_{\text {eqs }} B^{\prime} \Leftrightarrow B$ and B^{\prime} are connected by an equisingular family. $B \sim_{\text {lat }} B^{\prime} \Leftrightarrow \exists$ a bijection $\mathcal{E}_{B} \cong \mathcal{E}_{B^{\prime}}$ that induces, with $\phi(h)=h$, an isometry of lattices $\phi: \bar{\Sigma}_{B} \cong \bar{\Sigma}_{B^{\prime}}$.
$B \sim_{\text {cfg }} B^{\prime} \Leftrightarrow \exists$ tubular nbds $T \subset \mathbb{P}^{2}$ of B and $T^{\prime} \subset \mathbb{P}^{2}$ of B^{\prime}
\exists a homeo $\varphi:(T, B) \simeq\left(T^{\prime}, B^{\prime}\right)$ such that
- $\operatorname{deg} B_{i}=\operatorname{deg} \varphi\left(B_{i}\right)$ for each irred comp B_{i} of B,
- φ induces a local analytic isomorphism at each singular point of B and B^{\prime}.
$B \sim_{\text {top }} B^{\prime} \Leftrightarrow \exists$ a homeo $\varphi:\left(\mathbb{P}^{2}, B\right) \xrightarrow{\sim}\left(\mathbb{P}^{2}, B^{\prime}\right)$ that induces a local analytic isom at each singular point.

Example
For the example by Zariski, we have

$$
\begin{gathered}
B_{\text {trs }} \sim_{\mathrm{cfg}} B_{n t r s}, \quad \text { but } \\
B_{\text {trs }} \not \chi_{\mathrm{eqs}} B_{n t r s}, \quad B_{\text {trs }} \not \chi_{\mathrm{lat}} B_{n t r s}, \quad B_{\text {trs }} \not \chi_{\mathrm{top}} B_{n t r s} .
\end{gathered}
$$

Remark

The torus curves $B_{t r s}=\left\{f^{3}+g^{2}=0\right\}$ of Zariski form a connected equisingular family. An explicit defining equation of a non-torus curve $B_{n t r s}$ of Zariski was first given by Oka (1994). The connectedness of the equisingular family of non-torus curves was established by Degtyarev (2008).

Aim: to compare these four equivalence relations.

§2 Comparison of $\sim_{\text {lat }}$ and $\sim_{\text {cfg }}$

Using the surjectivity of the period mapping for complex K3 surfaces, Yang (1996) classified all lattice types (the equivalence classes of $\left.\sim_{\text {lat }}\right)$. He has also established an algorithm to determine the configuration type of a given lattice type.

Numbers of lattice types and configuration types:

μ_{B}	0	1	2	3	4	5	6	7	8	9	10	11
$\sim_{\text {cfg }}$	1	1	2	3	6	10	18	30	53	89	148	246
$\sim_{\text {lat }}$	1	1	2	3	6	10	18	30	53	89	148	246

μ_{B}	12	13	14	15	16	17	18	19	total
$\sim_{\text {cfg }}$	415	684	1090	1623	2139	2283	1695	623	11159
$\sim_{\text {lat }}$	416	686	1096	1639	2171	2330	1734	629	11308

Definition

A configuration type consisting of k lattice types with $k>1$ is called a lattice Zariski k-plet.

Aim: Desribe all lattice Zariski k-plets.
There are no lattice Zariski k-plets with $k \geq 4$.
Example of a lattice Zariski triple
There are three lattice types $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ in the configuration type of $B=C \cup Q$, where C is a smooth conic and Q is a quartic with a tacnode P_{1} intersecting C at P_{2}, P_{3} with multiplicity 4 , so that $R_{B}=A_{3}+2 A_{7}$.
These three lattice types are distinguished as follows:

$$
\begin{aligned}
& B \in \Lambda_{1} \quad \Leftrightarrow\left[\bar{\Sigma}_{B}: \Sigma_{B}\right]=4, \\
& B \in \Lambda_{2} \quad \Leftrightarrow\left[\bar{\Sigma}_{B}: \Sigma_{B}\right]=8 \\
& B \in \Lambda_{3} \quad \Leftrightarrow\left[\bar{\Sigma}_{B}: \Sigma_{B}\right]=2
\end{aligned}
$$

Definition

A simple sextic B is said to be lattice-generic if $\bar{\Sigma}_{B}=\operatorname{NS}\left(X_{B}\right)$ holds.

Remark
For any B, there exists a lattice-generic B^{\prime} such that $B \sim_{\text {eqs }} B^{\prime}$. In particular, every lattice type contains a lattice-generic member.

The three lattice types above are distinguished geometrically. Let B be a lattice-generic member of the configuration type above.

- $B \in \Lambda_{1}$ if and only if \exists a smooth conic Γ passing through P_{1}, P_{2}, P_{3} such that $\operatorname{mult}_{P_{i}}(B, \Gamma)=4$ for $i=1,2,3$.
- $B \in \Lambda_{2}$ if and only if \exists a line Γ passing through P_{1}, P_{2}, P_{3}.
- $B \in \Lambda_{3}$ if and only if there are no such conics or lines.

Z-splitting curves (Z stands for "Zariski")

Definition

A reduced irreducible curve $\Gamma \subset \mathbb{P}^{2}$ is called splitting for B if the strict transform of Γ by $X_{B} \rightarrow \mathbb{P}^{2}$ splits into distinct irred components $\Gamma_{+} \subset X_{B}$ and $\Gamma_{-} \subset X_{B}$, which are called the lifts of Γ.

A splitting curve $\Gamma \subset \mathbb{P}^{2}$ is called Z-splitting if the class $\left[\Gamma_{+}\right]$of $\Gamma_{+} \subset X_{B}$ is contained in the primitive closure $\bar{\Sigma}_{B} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)$.

Remark
(1) A splitting curve is Z-splitting if and only if it is stable under a small equisingular deformation of B.
(2) We have a numerical criterion (involving the intersection multiplicities of B and Γ) to determine whether a splitting curve Γ is Z-splitting or not.

Example

Consider the torus curve $B_{\text {trs }}=\left\{f^{3}+g^{2}=0\right\}$ of Zariski, where f and g are general. Then the conic $\Gamma=\{f=0\}$ is Z-splitting. If $f=f_{1} f_{2}$ with $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}=1$, then the lines $\Gamma_{1}=\left\{f_{1}=0\right\}$ and $\Gamma_{2}=\left\{f_{2}=0\right\}$ are splitting but not Z-splitting. In this case, the simple sextic

$$
B^{\prime}:=\left\{f_{1}^{3} f_{2}^{3}+g^{2}=0\right\}
$$

with $R_{B^{\prime}}=6 A_{2}$ is contained in the same lattice type as $B_{t r s}$, but is not lattice-generic.

We have written an algorithm to determine all Z-splitting curves of degree ≤ 2 for a lattice-generic member of a given lattice type. In particular, if B and B^{\prime} are lattice-generic and $B \sim_{\text {lat }} B^{\prime}$, then the numbers of Z-splitting lines (resp. conics) for B and for B^{\prime} are equal.

By this algorithm, we have obtained the following:

> Theorem
> The lattice types in any lattice Zariski k-plets $(k>1)$ are distinguished by the numbers of Z-splitting lines and Z-splitting conics for their lattice-generic members.

We are going to classify all Z-splitting lines and Z-splitting conics for simple sextics.

§3 Classification of Z-splitting lines and conics

For simplicity, we call a pair (B, Γ) of a lattice-generic simple sextic B and a Z-splitting curve Γ a lattice-generic Z-pair.

Definition

Let (B, Γ) and $\left(B^{\prime}, \Gamma^{\prime}\right)$ be lattice-generic Z-pairs. We say that (B, Γ) and $\left(B^{\prime}, \Gamma^{\prime}\right)$ are of the same lattice type and write $(B, \Gamma) \sim_{\text {lat }}\left(B^{\prime}, \Gamma^{\prime}\right)$ if there exists a bijection $\mathcal{E}_{B} \cong \mathcal{E}_{B^{\prime}}$ that induces an isometry of lattices $\phi: \bar{\Sigma}_{B} \cong \bar{\Sigma}_{B^{\prime}}$ such that

- ϕ preserves h, and
- ϕ maps the class $\left[\Gamma_{+}\right] \in \bar{\Sigma}_{B}$ to $\left[\Gamma_{+}^{\prime}\right] \in \bar{\Sigma}_{B^{\prime}}$ or $\left[\Gamma_{-}^{\prime}\right] \in \bar{\Sigma}_{B^{\prime}}$.

The lattice type containing a lattice-generic Z-pair (B, Γ) is denoted by $\lambda(B, \Gamma)$.

We have $(B, \Gamma) \sim_{\text {lat }}\left(B^{\prime}, \Gamma^{\prime}\right) \Longrightarrow B \sim_{\text {lat }} B^{\prime} \Longrightarrow B \sim_{\text {cfg }} B^{\prime}$.

Definition

The order of a lattice type $\lambda(B, \Gamma)$ is the order of the class $\left[\Gamma_{+}\right] \in \bar{\Sigma}_{B}$ in the finite abelian group $\bar{\Sigma}_{B} / \Sigma_{B}$.

Definition

Let λ and λ_{0} be lattice types of lattice-generic Z-pairs. We say that λ_{0} is a specialization of λ if there exists an analytic family $\left(B_{t}, \Gamma_{t}\right)_{t \in \Delta}$ of lattice-generic Z-pairs parametrized by a unit disc Δ such that $\left(B_{t}, \Gamma_{t}\right) \in \lambda$ for $t \neq 0$, and $\left(B_{0}, \Gamma_{0}\right) \in \lambda_{0}$.

We are going to classify the lattice types of lattice-generic Z-pairs (B, Γ) with $\operatorname{deg} \Gamma \leq 2$ from which all lattice types are obtained by specializations.

Theorem (Classification of Z-splitting lines)
Let λ be the lattice type of a lattice-generic Z-pair (B, Γ) with $\operatorname{deg} \Gamma=1$. Then the order d of λ is $6,8,10$ or 12 , and λ is a specialization of the following lattice type $\lambda_{\text {lin }, d}=\lambda\left(B_{d}, \Gamma_{d}\right)$:

	$R_{B_{d}}$	degrees of irreducible components
$\lambda_{\text {lin,6 }}$	$3 A_{5}$	$[3,3]$ (the cubics are smooth)
$\lambda_{\text {lin, } 8}$	$A_{3}+2 A_{7}$	$[2,4]$ (the quartic has A_{3})
$\lambda_{\text {lin,10 }}$	$2 A_{4}+A_{9}$	$[1,5]$ (the quintic has $2 A_{4}$)
$\lambda_{\text {lin,12 }}$	$A_{3}+A_{5}+A_{11}$	$[2,4]$ (the quartic has A_{5}).

For each $\lambda_{\text {lin,d }}=\lambda\left(B_{d}, \Gamma_{d}\right)$, the Z-splitting line Γ_{d} passes through the three singular points of B_{d}. The finite abelian group $\bar{\Sigma}_{B_{d}} / \Sigma_{B_{d}}$ is cyclic of order d, and is generated by the class $\left[\left(\Gamma_{d}\right)_{+}\right]$of the lift.

Theorem (Classification of Z-splitting conics)
Let λ be the lattice type of a lattice-generic Z-pair (B, Γ) with $\operatorname{deg} \Gamma=2$. Then the order d of λ is $3,4,5,6,7$ or 8 , and λ is a specialization of the following lattice type $\lambda_{\text {con,d }}=\lambda\left(B_{d}, \Gamma_{d}\right)$:

$$
\begin{array}{lll}
& R_{B_{d}} & \text { degs } \\
\lambda_{\text {con }, 3} & 6 A_{2} & {[6]} \\
\lambda_{\text {con }, 4} & 2 A_{1}+4 A_{3} & \left.[2,4] \text { (the quartic has } 2 A_{1}\right) \\
\lambda_{\text {con }, 5} & 4 A_{4} & {[6]} \\
\lambda_{\text {con }, 6} & 2 A_{1}+2 A_{2}+2 A_{5} & \left.[2,4] \text { (the quartic has } 2 A_{2}\right) \\
\lambda_{\text {con }, 7} & 3 A_{6} & {[6]} \\
\lambda_{\text {con }, 8} & A_{1}+A_{3}+2 A_{7} & {[2,4] \text { (the quartic has } A_{1}+A_{3} \text {). }}
\end{array}
$$

The finite abelian group $\bar{\Sigma}_{B_{d}} / \Sigma_{B_{d}}$ is cyclic of order d, and is generated by the class $\left[\left(\Gamma_{d}\right)_{+}\right]$of the lift.

Each of the simple sextics in these "generating" lattice types

$$
\lambda_{\text {lin,d }} \quad(d=6,8,10, \neq 12) \quad \text { and } \quad \lambda_{\text {con }, d} \quad(d=3, \ldots, 8)
$$

is a member of lattice Zariski k-plets $(k>1)$.

Example
The simple sextic in $\lambda_{\text {con,3 }}\left(R_{B}=6 A_{2}\right.$, degs $\left.=[6]\right)$ is the torus curve $B_{t r s}$ of Zariski. It has a non-torus partner $B_{n t r s}$.

Example
The simple sextic in $\lambda_{\text {lin,8 }}\left(R_{B}=A_{3}+2 A_{7}\right.$, degs $\left.=[2,4]\right)$ is a member of the lattice Zariski triple presented above.

What classes generates the finite abelian group $\bar{\Sigma}_{B} / \Sigma_{B}$?

Let B be a lattice-generic simple sextic.
$\Sigma_{B}^{\prime} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)$: the sublattice generated by Σ_{B} and the reduced parts of the strict transforms of the irred components of B.

$$
\Sigma_{B} \subset \Sigma_{B}^{\prime} \subset \bar{\Sigma}_{B} .
$$

Theorem (Exceptional simple sextic)
(1) If \exists a Z-splitting curve of degree ≤ 2, then $\bar{\Sigma}_{B} / \Sigma_{B}^{\prime}$ is generated by the classes of the lifts of these Z-splitting curves.
(2) There exists a lattice-generic $B_{\text {exc }}$ with $R_{B_{\text {exc }}}=3 A_{1}+4 A_{3}$ and degs $B_{\text {exc }}=[2,4]$ (the quartic has $3 A_{1}$) such that $\Sigma_{B_{\text {exc }}}^{\prime} \neq \bar{\Sigma}_{B_{\text {exc }}}$ but there are no Z-splitting curves of degree ≤ 2.
(3) If $\Sigma_{B}^{\prime} \neq \bar{\Sigma}_{B}$ but there are no Z-splitting curves of degree ≤ 2, then the lattice type of B is a specialization of that of $B_{\text {exc }}$.

The group $\bar{\Sigma}_{B_{\text {exc }}} / \Sigma_{B_{\text {exc }}}$ is cyclic of order 4, and is generated by the classes of the lift $\left[\Gamma_{+}\right]$of Z-splitting cubic curves Γ. Hence we have

Corollary

For a lattice-generic $B, \bar{\Sigma}_{B}=\operatorname{NS}\left(X_{B}\right)$ is generated over Σ_{B}^{\prime} by the classes of the lifts of Z-splitting curves of degree ≤ 3.

Remark

The exceptional simple sextic $B_{\text {exc }}=C \cup Q$ is a member of lattice Zariski couple. Let $B_{\text {exc }}^{\prime}=C^{\prime} \cup Q^{\prime}$ be a lattice-generic member of the partner in this lattice Zariski couple. Then $\bar{\Sigma}_{B_{\text {exc }}^{\prime}} / \Sigma_{B_{\text {exc }}^{\prime}}$ is also cyclic of order 4. There exists a Z-splitting conic Γ for $B_{\text {exc }}^{\prime}$ and $\bar{\Sigma}_{B_{e x c}^{\prime}} / \Sigma_{B_{e x c}^{\prime}}$ is generated by $\left[\Gamma_{+}\right]$.

$\S 4$ Comparison of $\sim_{\text {lat }}$ and $\sim_{\text {top }}$

Recall the implications:

$$
\begin{array}{rlll}
B \sim_{\text {eqs }} B^{\prime} & \geqslant B \sim_{\text {lat }} B^{\prime} & \ngtr & \\
& \geqslant \sim_{\text {cfg }} B^{\prime} \\
& & & \\
& & &
\end{array}
$$

For a simple sextic B, we denote by

$$
T_{B} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)
$$

the orthogonal complement of $\Sigma_{B} \subset H^{2}\left(X_{B}, \mathbb{Z}\right)$. (If B is lattice-generic, then T_{B} is the transcendental lattice of X_{B}.)

Theorem
If $B \sim_{\text {top }} B^{\prime}$, then the lattices T_{B} and $T_{B^{\prime}}$ are isomorphic.

Proof

We consider the open $K 3$ surface $U_{B}:=\rho^{-1}\left(\mathbb{P}^{2} \backslash B\right) \subset X_{B}$. We put

$$
J_{\infty}\left(U_{B}\right):=\bigcap_{K} \operatorname{Im}\left(H_{2}\left(U_{B} \backslash K, \mathbb{Z}\right) \rightarrow H_{2}\left(U_{B}, \mathbb{Z}\right)\right)
$$

where K runs through the set of compact subsets of U_{B}, and put $V_{2}\left(U_{B}\right):=H_{2}\left(U_{B}, \mathbb{Z}\right) / J_{\infty}\left(U_{B}\right)$. Then the intersection pairing

$$
\iota_{B}: H_{2}\left(U_{B}, \mathbb{Z}\right) \times H_{2}\left(U_{B}, \mathbb{Z}\right) \rightarrow \mathbb{Z}
$$

induces $\bar{\iota}_{B}: V_{2}\left(U_{B}\right) \times V_{2}\left(U_{B}\right) \rightarrow \mathbb{Z}$. By construction, we have

$$
B \sim_{\text {top }} B^{\prime} \Longrightarrow\left(V_{2}\left(U_{B}\right), \bar{\iota}_{B}\right) \cong\left(V_{2}\left(U_{B^{\prime}}\right), \bar{\iota}_{B^{\prime}}\right)
$$

Then Theorem follows from

$$
\left(V_{2}\left(U_{B}\right), \bar{\iota}_{B}\right) \cong T_{B}
$$

We have obtained following theorem by means of the Shioda-Inose construction of the singular $K 3$ surfaces (the complex $K 3$ surfaces with Picard number 20).

Theorem (S.- and Schütt)
Let X and X^{\prime} be singular $K 3$ surfaces defined over $\overline{\mathbb{Q}}$ such that their transcendental lattices are in the same genus. Then X and X^{\prime} are conjugate under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

Corollary

Let B be a simple sextic with $\mu_{B}=19$ defined over $\overline{\mathbb{Q}}$. If the genus containing T_{B} contains more than one isomorphism classes of lattices, then $\exists \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ such that $B \sim_{\text {lat }} B^{\sigma}$ and $B \not \chi_{\text {top }} B^{\sigma}$. (Remark that the lattice type is determined algebraically.)

Can this corollary be generalized to equisingular families of simple sextics with $\mu_{B}<19$?

Example (Arima and S.-)
Consider $\quad B_{ \pm}: z \cdot(G(x, y, z) \pm \sqrt{5} \cdot H(x, y, z))=0$, where

$$
\begin{aligned}
G(x, y, z) & :=-9 x^{4} z-14 x^{3} y z+58 x^{3} z^{2}-48 x^{2} y^{2} z-64 x^{2} y z^{2} \\
& +10 x^{2} z^{3}+108 x y^{3} z-20 x y^{2} z^{2}-44 y^{5}+10 y^{4} z \\
H(x, y, z) & :=5 x^{4} z+10 x^{3} y z-30 x^{3} z^{2}+30 x^{2} y^{2} z+ \\
& +20 x^{2} y z^{2}-40 x y^{3} z+20 y^{5} .
\end{aligned}
$$

We have degs $B_{ \pm}=[1,5]$ with the quintic having A_{10} and $R_{B_{ \pm}}=$ $A_{10}+A_{9}$. Their transcendental lattices are

$$
T_{B_{+}} \cong\left[\begin{array}{cc}
2 & 1 \\
1 & 28
\end{array}\right], \quad T_{B_{-}} \cong\left[\begin{array}{ll}
8 & 3 \\
3 & 8
\end{array}\right]
$$

Hence we have $B_{+} \sim_{\text {lat }} B_{-}$but $B_{+} \not \chi_{\text {top }} B_{-}$.

Does $B \sim_{\text {top }} B^{\prime}$ imply $B \sim_{\text {lat }} B^{\prime}$?

Since $H^{2}\left(X_{B}, \mathbb{Z}\right)$ is unimodular, we have $\left|\operatorname{disc} T_{B}\right|=\left|\operatorname{disc} \bar{\Sigma}_{B}\right|$.
Proposition
Suppose that $B \sim_{\text {cfg }} B^{\prime}$ (and hence $\Sigma_{B} \cong \Sigma_{B^{\prime}}$). Then

$$
\left[\bar{\Sigma}_{B}: \Sigma_{B}\right] \neq\left[\bar{\Sigma}_{B^{\prime}}: \Sigma_{B^{\prime}}\right] \Longrightarrow B \not \chi_{\mathrm{top}} B^{\prime}
$$

In many cases (but not in all cases), the lattice types in a configuration type are distinguished by $\left[\bar{\Sigma}_{B}: \Sigma_{B}\right]$.

Proposition

Let B and B^{\prime} be simple sextics such that

$$
B \sim_{\mathrm{cfg}} B^{\prime}, \quad\left[\bar{\Sigma}_{B}: \Sigma_{B}\right]=\left[\bar{\Sigma}_{B^{\prime}}: \Sigma_{B^{\prime}}\right], \quad B \not \chi_{\mathrm{lat}} B^{\prime} .
$$

Then either the lattice types of $\left[B, B^{\prime}\right]$ are specializations of those of $\left[B_{e x c}, B_{e x c}^{\prime}\right]$, or $R_{B}=A_{1}+A_{3}+2 A_{7}$ and degs $B=[2,4]$.

$\S 5$ Comparison of $\sim_{\text {lat }}$ and $\sim_{\text {eqs }}$

Using the refined version of the surjectivity of the period mapping for complex K3 surfaces, Degtyarev (2008) has given an algorithm to determine the connected components of the equisingular family (the equivalence classes of $\sim_{\text {eqs }}$) in a given lattice type.

His algorithm involves a calculation of the orthogonal group $O\left(T_{B}\right)$. Since T_{B} is indefinite for $\mu_{B}<19$, the complete table of the connected components of the equisingular family has not yet obtained except for the case $\mu_{B}=19$.
λ : a given lattice type.
We want to calculate
$\operatorname{CES}(\lambda):=\lambda / \sim_{\text {eqs }}$: the set of connected components of the equisingular family in λ.

- $\bar{\Sigma}$: the Néron-Severi lattice of $\lambda ; \operatorname{sgn} \bar{\Sigma}=(1, \mu)$.
- $G \subset O(\bar{\Sigma})$: the subgroup of isometries of $\bar{\Sigma}$ preserving the set of exceptional (-2)-curves $[E]$ and the polarization h.
- $\mathcal{T}_{\text {s }}$: the set of isomorphism classes of even lattices T with sgn $T=(2,19-\mu)$ whose discriminant form is (-1) times the discriminant form of $\bar{\Sigma}$ (the set of possible transcendental lattices).

We have a natural projection

$$
p: \operatorname{CES}(\lambda) \rightarrow \mathcal{T}_{\mathrm{s}}
$$

For $T \in \mathcal{T}_{\mathrm{s}}$, we put

- $L(\bar{\Sigma}, T)$: the set of even unimodular overlattices L of $\bar{\Sigma} \oplus T$ in which $\bar{\Sigma}$ and T are primitive (these L are the $K 3$ lattice).
- $c \Omega(T)$: the set of connected components of the cone $\left\{x \in T \otimes \mathbb{R} \mid x^{2}>0\right\}$.

Theorem (Degtyarev)
We have

$$
p^{-1}(T) \cong(G \times O(T)) \backslash(L(\bar{\Sigma}, T) \times c \Omega(T))
$$

We say that a connected component is real if the corresponding $(G \times O(T)$)-orbit $\subset L(\bar{\Sigma}, T) \times c \Omega(T)$ is stable under the interchanging of the two elements of $c \Omega(T)$.

Example

The simple sextics with $R_{B}=A_{18}+A_{1}$ form one lattice type. The equisingular family has three connected components; one is real and the other two are non-real. Artal, Carmona and Cogolludo (2002) constructed these simple sextics defined over $\mathbb{Q}(\alpha)$, where α is a root of

$$
19 x^{3}+50 x^{2}+36 x+8=0
$$

which has one real root and two non-real roots. Their transcendental lattices are

$$
\left[\begin{array}{cc}
38 & 0 \\
0 & 2
\end{array}\right] \quad \text { (for real), }\left[\begin{array}{cc}
8 & \pm 2 \\
\pm 2 & 10
\end{array}\right] \quad \text { (for non-real). }
$$

Example

The simple sextics with $R_{B}=A_{19}$ form one lattice type. The equisingular family has two connected components, and both are real. Artal et al. showed that they are conjugate by $\operatorname{Gal}(\mathbb{Q}(\sqrt{5}) / \mathbb{Q})$. Their transcendental lattices are

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & 20
\end{array}\right] .
$$

We would like to know whether these two are $\sim_{\text {top }}$ or not.

Example

The simple sextics with $R_{B}=A_{14}+A_{4}+A_{1}$ form one lattice type. The equisingular family has six non-real connected components. Their transcendental lattices are all isomorphic to

$$
\left[\begin{array}{cc}
10 & 0 \\
0 & 30
\end{array}\right]
$$

Summary

The "zoology" of simple sextics is interesting.

