Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Ichiro Shimada

Hiroshima University

February 19, 2010, Tokyo

Problem

Let X be a smooth projective complex surface, and let $D = \sum m_i C_i$ be an effective divisor on X. We regard

$$H^2(X) := H^2(X,\mathbb{Z})/(ext{torsion})$$

as a unimodular lattice by the cup-product. We consider the submodule

$$\mathcal{L}(X,D) := \langle [C_i] \rangle \subset H^2(X)$$

generated by the classes $[C_i]$ of reduced irreducible components C_i of D, and its primitive closure

$$ar{\mathcal{L}}(X,D) := (\mathcal{L}(X,D)\otimes \mathbb{Q})\cap H^2(X) \ \subset \ H^2(X)$$

Problem

How to calculate the finite abelian group

$$A(X,D) := \overline{\mathcal{L}}(X,D)/\mathcal{L}(X,D)?$$

Motivation 1.

Let X_m be the Fermat surface

$$x_0^m + x_1^m + x_2^m + x_3^m = 0,$$

and let D be the union of the $3m^2$ lines on X_m . For simplicity, we assume $m \ge 5$. Shioda showed that

$$(m,6)=1 \iff \operatorname{NS}(X_m)=\overline{\mathcal{L}}(X_m,D),$$

and posed the problem

$$(m,6) = 1 \iff \operatorname{NS}(X_m) = \mathcal{L}(X_m,D)?$$

Recently, Schütt, Shioda and van Luijk showed the following by modulo p reduction technique and computer-aided calculation:

Theorem

Let m be ≤ 100 and prime to 6. Then $NS(X_m) = \mathcal{L}(X_m, D)$. In particular, $A(X_m, D) = 0$.

Motivation 2.

In 1930's, Coble discovered a pair $[S_0, S_1]$ of quartic surfaces in \mathbb{P}^3 with 8 nodes that can *not* be connected by equising deformation: S_0 is called *azygetic*, and S_1 is called *syzygetic*.

They are distinguished by

$$h^0(\mathbb{P}^3,\mathcal{I}_Q(2)) = egin{cases} 2 & ext{if } Q = ext{Sing } S_0, \ 3 & ext{if } Q = ext{Sing } S_1, \end{cases}$$

where $\mathcal{I}_Q \subset \mathcal{O}_{\mathbb{P}^3}$ is the ideal sheaf of $Q \subset \mathbb{P}^3$.

Let X_0 and X_1 be the minimal resolutions of S_0 and S_1 , respectively, and let D_0 and D_1 be the exceptional divisors. Then we have

$$\begin{cases} A(X_0, D_0) = \bar{\mathcal{L}}(X_0, D_0) / \mathcal{L}(X_0, D_0) &= 0\\ A(X_1, D_1) = \bar{\mathcal{L}}(X_1, D_1) / \mathcal{L}(X_1, D_1) &\cong \mathbb{Z}/2\mathbb{Z}. \end{cases}$$

Using the Torelli theorem for complex K3 surfaces, we have found a *quartet* $[S_0, S_1, S_2, S_3]$ of quartic surfaces with RDPs of type

$$2A_1 + 2A_2 + 2A_5$$

such that, for the minimal resolution X_i of S_i and the exceptional divisor D_i on X_i , we have

$$\begin{array}{rcl} A(X_0,D_0) &=& 0,\\ A(X_1,D_1) &\cong& \mathbb{Z}/2\mathbb{Z},\\ A(X_2,D_2) &\cong& \mathbb{Z}/3\mathbb{Z},\\ A(X_3,D_3) &\cong& \mathbb{Z}/6\mathbb{Z}. \end{array}$$

Motivation 3.

Let C_1 and C_2 be smooth conics on \mathbb{P}^2 in general position, and let L_1, \ldots, L_4 be their common tangents. Consider the double covering $S \to \mathbb{P}^2$ branching along

$$T := C_1 + C_2 + L_1 + L_2 + L_3 + L_4.$$

Then S has RDPs of type $8A_3 + 10A_1$. Let $X \to S$ be the minimal resolution of S, and let D be the total transform of T. Then A(X, D) is *non*-trivial.

We have the following classical theorem due to Salmon:

Theorem

There is a conic passing through the eight tacnodes of T.

Let X be a smooth projective complex surface, and $D = \sum m_i C_i$ an effective divisor on X.

For a submodule $M \subset H^2(X)$, we put

 $\operatorname{disc} M := |\det(S)|,$

where S is the symmetric matrix expressing the cup-product restricted to M. Then

$$M$$
 is a sublattice of $H^2(X) \iff \operatorname{disc} M \neq 0$.

If $\mathcal{L}(X,D) = \langle [C_i] \rangle$ is a sublattice, then so is $\overline{\mathcal{L}}(X,D)$ and

$$|\mathcal{A}(X,D)| = \sqrt{rac{\operatorname{disc}\mathcal{L}(X,D)}{\operatorname{disc}\bar{\mathcal{L}}(X,D)}}.$$

In particular, if $\operatorname{disc} \mathcal{L}(X, D)$ is square-free, then A(X, D) is trivial.

If we know the configuration of irreducible components C_i of D, then we can calculate $\mathcal{L}(X, D)$ algebro-geometrically.

We present an algorithm to calculate disc $\overline{\mathcal{L}}(X, D)$.

Remark that

disc
$$\mathcal{L}(X, D)$$
, disc $\overline{\mathcal{L}}(X, D)$, and $A(X, D)$

depend only on the open surface

 $X \setminus D$;

namely, if X' is another smooth projective surface containing $X \setminus D$ such that $D' := X' \setminus (X \setminus D)$ is a union of curves, then we have

$$\begin{split} \operatorname{disc} \mathcal{L}(X,D) &= \operatorname{disc} \mathcal{L}(X',D'), \\ \operatorname{disc} \bar{\mathcal{L}}(X,D) &= \operatorname{disc} \bar{\mathcal{L}}(X',D'), \\ A(X,D) &\cong A(X',D'). \end{split}$$

We show that, under certain assumptions, disc $\overline{\mathcal{L}}(X, D)$ can be calculated *topologically* from $X \setminus D$.

Suppose that disc $\mathcal{L}(X, D) \neq 0$. Then we have

 $\overline{\mathcal{L}}(X,D) = (\mathcal{L}(X,D)^{\perp})^{\perp},$

and, since $H^2(X)$ is unimodular, we have

$$\operatorname{disc} \overline{\mathcal{L}}(X, D) = \operatorname{disc} \mathcal{L}(X, D)^{\perp}$$

Thus it is enough to calculate the orthogonal complement $\mathcal{L}(X, D)^{\perp}$.

Proposition

By the Poincaré duality $H^2(X) \cong H_2(X)$, the orthogonal complement $\mathcal{L}(X, D)^{\perp} \subset H^2(X)$ is equal to the image of the homomorphism

$$j_*:H_2(X\setminus D)\to H_2(X)$$

induced by the inclusion $j: X \setminus D \hookrightarrow X$.

The proof follows from the following commutative diagram:

$$\begin{array}{ccccccccc} H_2(X \setminus D) & \stackrel{j_*}{\longrightarrow} & H_2(X) \\ & |\wr & & |\wr \\ H^2(X,D) & \longrightarrow & H^2(X) & \longrightarrow & H^2(D) = \bigoplus H^2(C_i). \end{array}$$

Remark

If $\mathcal{L}(X,D)^{\perp} \cong \operatorname{Im} j_*$ is of rank 0, then $\overline{\mathcal{L}}(X,D) = H^2(X)$ and hence $|A(X,D)| = \sqrt{\operatorname{disc} \mathcal{L}(X,D)}$.

Since $j_*: H_2(X \setminus D) \to H_2(X)$ preserves the *intersection pairing* (,) of topological cycles, we have the following:

Proposition

Suppose that disc $\mathcal{L}(X, D) \neq 0$. Then the lattice $\mathcal{L}(X, D)^{\perp} \cong \operatorname{Im} j_*$ is isomorphic to the lattice

 $H_2(X \setminus D) / \ker(H_2(X \setminus D)),$

where $\ker(H_2(X \setminus D))$ denotes the submodule

 $\{ x \in H_2(X \setminus D) \mid (x, y) = 0 \text{ for all } y \in H_2(X \setminus D) \}.$

Therefore, to calculate disc $\overline{\mathcal{L}}(X, D)$, it is enough to calculate $H_2(X \setminus D)$ and the intersection pairing on $H_2(X \setminus D)$.

We apply our method to coverings of \mathbb{P}^2 branching along 4 lines

$$B_0, \quad B_1, \quad B_2, \quad B_3$$

in general position. Since

$$\pi_1(\mathbb{P}^2 \setminus \bigcup B_i) = (\mathbb{Z} \gamma_0 \oplus \cdots \oplus \mathbb{Z} \gamma_3) / \langle \gamma_0 + \cdots + \gamma_3 \rangle$$

is abelian, where $\gamma_0, \ldots, \gamma_3$ are simple loops around B_0, \ldots, B_3 , these coverings are necessarily abelian. For a surjective homomorphism

$$\rho: \pi_1(\mathbb{P}^2 \setminus \cup B_i) \to H$$

to a finite abelian group H, we denote by

$$\phi_\rho: Y_\rho \to \mathbb{P}^2$$

the finite covering associated to ρ , and by

$$\varphi_{\rho}: X_{\rho} \to Y_{\rho} \to \mathbb{P}^2$$

the composite of the resolution $X_{\rho} \rightarrow Y_{\rho}$ and the covering ϕ_{ρ} .

As the divisor D, we consider the pull-back of the three lines

$$\Lambda_1 + \Lambda_2 + \Lambda_3$$

passing through two of the six intersection points of B_0, \ldots, B_3 :

Thick lines are B_i , and dash-lines are Λ_{ν}

Note that D_{ρ} contains the exceptional divisor of $X_{\rho} \rightarrow Y_{\rho}$.

When ρ is the maximal homomorphism

$$\pi_1(\mathbb{P}^2 \setminus \bigcup B_i) = (\mathbb{Z} \gamma_0 \oplus \cdots \oplus \mathbb{Z} \gamma_3) / \langle \gamma_0 + \cdots + \gamma_3 \rangle$$

$$\rightarrow (\mathbb{Z}/m\mathbb{Z})^3 = (\mathbb{Z}/m\mathbb{Z})e_0 \oplus (\mathbb{Z}/m\mathbb{Z})e_1 \oplus (\mathbb{Z}/m\mathbb{Z})e_2$$

to the abelian group of exponent m given by

$$\rho(\gamma_i) = e_i \quad (i = 0, 1, 2) \quad \text{and} \quad \rho(\gamma_3) = -e_0 - e_1 - e_2,$$

then X_{ρ} is the Fermat surface of degree m, and D_{ρ} is the union of the $3m^2$ lines.

In general, X_{ρ} is a resolution of a quotient Y_{ρ} of the Fermat surface.

The divisor D_{ρ} is the union of the images of the $3m^2$ lines and the exceptional divisors of the resolution.

Since the singular points on Y_{ρ} are cyclic quotient singularities, we can resolve them by *Hirzebruch-Jung* method. Thus we can calculate the lattice $\mathcal{L}(X_{\rho}, D_{\rho})$.

(Since $\mathcal{L}(X_{\rho}, D_{\rho})$ contains a vector h with $h^2 > 0$, we have $\operatorname{disc} \mathcal{L}(X_{\rho}, D_{\rho}) \neq 0$ by Hodge index theorem.)

On the other hand, we obtain disc $\overline{\mathcal{L}}(X_{\rho}, D_{\rho})$ by calculating the intersection pairing on $H_2(X_{\rho} \setminus D_{\rho})$.

We have carried out these calculations for all coverings associated to homomorphisms

$$\rho: \pi_1(\mathbb{P}^2 \setminus \bigcup B_i) \to \mathbb{Z}/m\mathbb{Z}$$

to cyclic groups of order $m \leq 40$.

In this case, the open surface $X_{\rho} \setminus D_{\rho}$ is a quotient of

$$X_m \setminus (\text{union of the } 3m^2 \text{ lines})$$

by the group $(\mathbb{Z}/m\mathbb{Z})^2$.

It turns out that the finite abelian groups

$$A(X_
ho,D_
ho)=ar{\mathcal{L}}(X_
ho,D_
ho)/\mathcal{L}(X_
ho,D_
ho)$$

are non-trivial for many cases.

Let

R_0 , R_1 , R_2 , R_3

be the reduced irreducible curves on X_{ρ} that are mapped to the branching lines B_0, B_1, B_2, B_3 , respectively. It is easy to see that

 $[R_i]\in \bar{\mathcal{L}}(X_\rho,D_\rho).$

Theorem

Let $\rho : \pi_1(\mathbb{P}^2 \setminus \bigcup B_i) \to \mathbb{Z}/m\mathbb{Z}$ be a surjective homomorphism to a cyclic group of order m with $4 \le m \le 40$. Then

 $ar{\mathcal{L}}(X_
ho,D_
ho)=\mathcal{L}(X_
ho,D_
ho)+\langle [R_0],[R_1],[R_2],[R_3]
angle.$

We put

$$egin{array}{rll} \mathcal{L}'(X_
ho,D_
ho) &:= & \mathcal{L}(X_
ho,D_
ho) + \langle [R_0],[R_1],[R_2],[R_3]
angle \ &= & \mathcal{L}(X_
ho,D_
ho+R_0+R_1+R_2+R_3). \end{array}$$

We can calculate $\operatorname{disc} \mathcal{L}'(X_{\rho}, D_{\rho})$ algebro-geometrically.

The statement of Theorem is equivalent to say that $\mathcal{L}'(X_{\rho}, D_{\rho})$ is primitive in $H^2(X_{\rho})$ for $4 \le m \le 40$.

All we have to do is to calculate $\operatorname{disc}(\mathcal{L}(X_{\rho}, D_{\rho})^{\perp})$ and to show

$$\operatorname{disc} \mathcal{L}'(X_{\rho}, D_{\rho}) = \operatorname{disc}(\mathcal{L}(X_{\rho}, D_{\rho})^{\perp}).$$

Problem

Is $\mathcal{L}'(X_{\rho}, D_{\rho})$ primitive for all m and ρ ?

Example

The homomorphism
$$\rho : \pi_1(\mathbb{P}^2 \setminus \bigcup B_i) \to \mathbb{Z}/m\mathbb{Z}$$
 is given by
 $[a_0, a_1, a_2, a_3] := [\rho(\gamma_0), \rho(\gamma_1), \rho(\gamma_2), \rho(\gamma_3)].$

Example

The following is the table of disc $\mathcal{L}'(X_{\rho}, D_{\rho})$ and disc $\mathcal{L}(X_{\rho}, D_{\rho})$ for m = 12:

$[\textbf{a}_0, \textbf{a}_1, \textbf{a}_2, \textbf{a}_3]$	$\operatorname{disc} \mathcal{L}'(X_{\rho}, D_{\rho})$	$\operatorname{disc} \mathcal{L}(X_{\rho}, D_{\rho})$	rank
[0, 0, 1, 11]	1	1	62
[0, 1, 1, 10]	1	$(2)^4(3)^4$	62
[0, 1, 2, 9]	1	(2) ⁴	50
[0, 1, 3, 8]	1	1	46
[0, 1, 4, 7]	1	(3) ⁴	50
[0, 1, 5, 6]	1	(2) ⁴	50
[1, 1, 1, 9]	$(2)^{2}(3)$	$(2)^{10}(3)^5$	44
[1, 1, 2, 8]	$(2)^{4}(3)$	$(2)^8(3)^5$	36

Example

Example

$[a_0,a_1,a_2,a_3]$	$\operatorname{disc} \mathcal{L}'(X_{\rho}, D_{\rho})$	$\operatorname{disc} \mathcal{L}(X_{\rho}, D_{\rho})$	rank
[1, 1, 3, 7]	$(3)^{3}$	$(2)^{6}(3)^{7}$	30
[1, 1, 4, 6]	1	$(2)^4(3)^4$	38
[1, 1, 5, 5]	(2) ⁶	$(2)^{14}(3)^4$	40
$\left[1,1,11,11 ight]$	1	$(2)^{6}(3)^{4}$	38
[1, 2, 2, 7]	$(2)^4(3)^3$	$(2)^{10}(3)^7$	38
[1, 2, 3, 6]	$(2)^2(3)^2$	$(2)^8(3)^2$	34
[1, 2, 4, 5]	$(2)^4$	$(2)^8(3)^4$	31
[1, 2, 10, 11]	1	$(2)^{6}(3)^{4}$	38
[1, 3, 3, 5]	$(2)^4(3)^2$	$(2)^{10}(3)^2$	30
[1, 3, 4, 4]	$(3)^{3}$	(3) ⁷	34
[1, 3, 9, 11]	1	$(2)^{6}$	26
[1, 3, 10, 10]	(3) ³	$(2)^{6}(3)^{7}$	40

Example

Example

$[a_0, a_1, a_2, a_3]$	$\operatorname{disc} \mathcal{L}'(X_{\rho}, D_{\rho})$	$\operatorname{disc} \mathcal{L}(X_{\rho}, D_{\rho})$	rank
[1, 4, 8, 11]	1	(3) ⁴	28
[1, 4, 9, 10]	(3)	$(2)^4(3)^5$	33
[1, 5, 7, 11]	1	$(2)^{6}(3)^{4}$	26
[1, 5, 9, 9]	$(2)^{6}$	$(2)^{14}$	28
[1, 6, 6, 11]	1	$(2)^{6}$	34
[1, 6, 7, 10]	$(3)^2$	$(2)^{6}(3)^{6}$	34
[1, 6, 8, 9]	$(2)^2$	$(2)^{6}$	30
[1, 7, 8, 8]	$(2)^4(3)^3$	$(2)^4(3)^7$	26
[2, 3, 3, 4]	$(2)^4$	$(2)^{8}$	34
[2, 3, 9, 10]	1	$(2)^{6}$	34
[3, 4, 8, 9]	1	1	30

We explain the method to calculate $H_2(X_{\rho} \setminus D_{\rho})$ in detail. First remark that, if Γ is an arbitrary line on \mathbb{P}^2 , then

$$\mathcal{L}(X_{
ho}, D_{
ho}) \ \subset \ \mathcal{L}(X_{
ho}, D_{
ho} + arphi_{
ho}^*(\Gamma)) \ \subset \ ar{\mathcal{L}}(X_{
ho}, D_{
ho}),$$

and therefore we have

$$\mathcal{L}(X_
ho, D_
ho)^\perp = \mathcal{L}(X_
ho, D_
ho + arphi_
ho^*(\Gamma))^\perp.$$

Hence it is enough to take suitable lines $\Gamma_1, \ldots, \Gamma_k$, put

$$U := \mathbb{P}^2 \setminus (\bigcup B_i \cup \bigcup \Lambda_{\nu} \cup \bigcup \Gamma_q),$$

and calculate the intersection form on $H_2(X^U)$, where

$$X^U := \varphi_\rho^{-1}(U).$$

We choose U in such a way that U admits a morphism

$$f: U \to \mathbb{C} \setminus \{P_1, \ldots, P_N\}$$

such that the composite

$$f \circ \varphi_{\rho} : X^U \to U \to \mathbb{C} \setminus \{P_1, \dots, P_N\}$$

is a locally trivial fibration (in the classical topology) with fibers being open Riemann surfaces.

The thick lines are B_0, \ldots, B_3 : The x-axis and the y-axis are Λ_1 and Λ_2 (Λ_3 is the line at infinity):

The fibration f is given by $(x, y) \mapsto x$, and hence we have to remove two extra vertical dash-lines Γ_1 and Γ_2 . In this case, we have N = 3.

We choose a base point

 $b \in \mathbb{C} \setminus \{P_1, P_2, P_3\},\$

and consider the open Riemann surface

$$R_b := (f \circ \varphi_{\rho})^{-1}(b) \subset X^U.$$

Then R_b is an étale cover of the punctured affine line

$$f^{-1}(b) \subset U.$$

Thus we can calculate $H_1(R_b, \mathbb{Z})$ and the intersection pairing

$$Q: H_1(R_b) \times H_1(R_b) \rightarrow \mathbb{Z}.$$

Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Calculation of the intersection pairing on $H_2(X \setminus D)$

We choose a system of simple loops $\{\sigma_1, \sigma_2, \sigma_3\}$ with the base point *b* on $\mathbb{C} \setminus \{P_1, P_2, P_3\}$ as follows:

(The loops are $\sigma_1, \sigma_2, \sigma_3$ from left to right.)

When $t \in \mathbb{C}$ moves along σ_i , the punctured and branching points of

$$(f\circ arphi_
ho)^{-1}(t) o f^{-1}(t)$$

undergo the *braid monodromies*. Looking at them, we obtain the monodromies along σ_i :

$$\mu_i : H_1(R_b) \rightarrow H_1(R_b).$$

Since $\mathbb{C} \setminus \{P_1, P_2, P_3\}$ is homotopically equivalent to the union of σ_i , the open surface X^U is homotopically equivalent to the union of the fibers $(f \circ \varphi_\rho)^{-1}(t)$ over these loops.

Let an element

$$([\gamma_1], [\gamma_2], [\gamma_3]) \in igoplus_{i=1}^3 H_1(R_b)$$

represent a topological *chain* on X^U that is the union of tubes drawn by the topological cycle $\gamma_i \subset R_b$ moving over σ_i .

Its boundary is in R_b , and the homology class of the boundary is

$$w([\gamma_1], [\gamma_2], [\gamma_3]) := \sum (1 - \mu_i)([\gamma_i]) \in H_1(R_b).$$

Hence $H_2(X^U)$ is equal to the kernel of

$$w$$
 : $\bigoplus_{i=1}^{3} H_1(R_b) \rightarrow H_1(R_b).$

Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Calculation of the intersection pairing on $H_2(X \setminus D)$

The intersection pairing on $H_2(X^U)$ is calculated by *perturbing* the system of simple loops $\{\sigma_1, \sigma_2, \sigma_3\}$:

For the perturbation above, we have

$$\begin{aligned} &-([\gamma_1], [\gamma_2], [\gamma_3]) \cdot (([\gamma_1'], [\gamma_2'], [\gamma_3']) \\ &= Q((1 - \mu_1)([\gamma_1]), (1 - \mu_2)([\gamma_2'])) \\ &+Q((1 - \mu_1)([\gamma_1]), (1 - \mu_3)([\gamma_3'])) \\ &+Q((1 - \mu_2)([\gamma_2]), (1 - \mu_3)([\gamma_3'])) \\ &+Q((1 - \mu_1)([\gamma_1]), -\mu_1([\gamma_1'])) + Q((1 - \mu_2)([\gamma_2]), -\mu_2([\gamma_2'])) \\ &+Q((1 - \mu_3)([\gamma_3]), -\mu_3([\gamma_3'])). \end{aligned}$$

Then we can calculate

 $\ker(H_2(X^U)) := \{ x \in H_2(X^U) \mid (x, y) = 0 \text{ for all } y \in H_2(X^U) \},$ and the lattice

$$H_2(X^U)/\ker(H_2(X^U)) \cong \mathcal{L}(X_\rho, D_\rho)^{\perp}.$$

If $H_2(X^U) \neq \ker(H_2(X^U))$, then we confirm $\operatorname{disc}(H_2(X^U)/\ker(H_2(X^U))) = \operatorname{disc} \mathcal{L}'(X_\rho, D_\rho).$

If $H_2(X^U) = \ker(H_2(X^U))$, then we confirm disc $\mathcal{L}'(X_{\rho}, D_{\rho}) = 1$. Thus we can conclude that $\mathcal{L}'(X_{\rho}, D_{\rho})$ is primitive.

Remark

For Shioda's original problem of Fermat surface X_m of degree m, we have to consider the covering $X^U \rightarrow U$ of mapping degree m^3 . Maple has run out of memory even when m = 6 ($m^3 = 216$). Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Calculation of the intersection pairing on $H_2(X \setminus D)$

Thank you!