Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Ichiro Shimada

Hiroshima University
February 19, 2010, Tokyo

Let X be a smooth projective complex surface, and let $D=\sum m_{i} C_{i}$ be an effective divisor on X.
We regard

$$
H^{2}(X):=H^{2}(X, \mathbb{Z}) /(\text { torsion })
$$

as a unimodular lattice by the cup-product. We consider the submodule

$$
\mathcal{L}(X, D):=\left\langle\left[C_{i}\right]\right\rangle \subset H^{2}(X)
$$

generated by the classes [C_{i}] of reduced irreducible components C_{i} of D, and its primitive closure

$$
\overline{\mathcal{L}}(X, D):=(\mathcal{L}(X, D) \otimes \mathbb{Q}) \cap H^{2}(X) \subset H^{2}(X)
$$

Problem

How to calculate the finite abelian group

$$
A(X, D):=\overline{\mathcal{L}}(X, D) / \mathcal{L}(X, D) ?
$$

Motivation 1.

Let X_{m} be the Fermat surface

$$
x_{0}^{m}+x_{1}^{m}+x_{2}^{m}+x_{3}^{m}=0
$$

and let D be the union of the $3 m^{2}$ lines on X_{m}. For simplicity, we assume $m \geq 5$. Shioda showed that

$$
(m, 6)=1 \Longleftrightarrow \mathrm{NS}\left(X_{m}\right)=\overline{\mathcal{L}}\left(X_{m}, D\right)
$$

and posed the problem

$$
(m, 6)=1 \Longleftrightarrow \mathrm{NS}\left(X_{m}\right)=\mathcal{L}\left(X_{m}, D\right) ?
$$

Recently, Schütt, Shioda and van Luijk showed the following by modulo p reduction technique and computer-aided calculation:

Theorem

Let m be ≤ 100 and prime to 6 . Then $\operatorname{NS}\left(X_{m}\right)=\mathcal{L}\left(X_{m}, D\right)$. In particular, $A\left(X_{m}, D\right)=0$.

Motivation 2.

In 1930's, Coble discovered a pair [S_{0}, S_{1}] of quartic surfaces in \mathbb{P}^{3} with 8 nodes that can not be connected by equising deformation: S_{0} is called azygetic, and S_{1} is called syzygetic.
They are distinguished by

$$
h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Q}(2)\right)= \begin{cases}2 & \text { if } Q=\operatorname{Sing} S_{0} \\ 3 & \text { if } Q=\operatorname{Sing} S_{1}\end{cases}
$$

where $\mathcal{I}_{Q} \subset \mathcal{O}_{\mathbb{P}^{3}}$ is the ideal sheaf of $Q \subset \mathbb{P}^{3}$.
Let X_{0} and X_{1} be the minimal resolutions of S_{0} and S_{1}, respectively, and let D_{0} and D_{1} be the exceptional divisors.
Then we have

$$
\left\{\begin{aligned}
A\left(X_{0}, D_{0}\right)=\overline{\mathcal{L}}\left(X_{0}, D_{0}\right) / \mathcal{L}\left(X_{0}, D_{0}\right) & =0 \\
A\left(X_{1}, D_{1}\right)=\overline{\mathcal{L}}\left(X_{1}, D_{1}\right) / \mathcal{L}\left(X_{1}, D_{1}\right) & \cong \mathbb{Z} / 2 \mathbb{Z}
\end{aligned}\right.
$$

Using the Torelli theorem for complex $K 3$ surfaces, we have found a quartet $\left[S_{0}, S_{1}, S_{2}, S_{3}\right]$ of quartic surfaces with RDPs of type

$$
2 A_{1}+2 A_{2}+2 A_{5}
$$

such that, for the minimal resolution X_{i} of S_{i} and the exceptional divisor D_{i} on X_{i}, we have

$$
\begin{aligned}
A\left(X_{0}, D_{0}\right) & =0 \\
A\left(X_{1}, D_{1}\right) & \cong \mathbb{Z} / 2 \mathbb{Z} \\
A\left(X_{2}, D_{2}\right) & \cong \mathbb{Z} / 3 \mathbb{Z} \\
A\left(X_{3}, D_{3}\right) & \cong \mathbb{Z} / 6 \mathbb{Z}
\end{aligned}
$$

Motivation 3.

Let C_{1} and C_{2} be smooth conics on \mathbb{P}^{2} in general position, and let L_{1}, \ldots, L_{4} be their common tangents. Consider the double covering $S \rightarrow \mathbb{P}^{2}$ branching along

$$
T:=C_{1}+C_{2}+L_{1}+L_{2}+L_{3}+L_{4} .
$$

Then S has RDPs of type $8 A_{3}+10 A_{1}$. Let $X \rightarrow S$ be the minimal resolution of S, and let D be the total transform of T. Then $A(X, D)$ is non-trivial.

We have the following classical theorem due to Salmon:

Theorem

There is a conic passing through the eight tacnodes of T.

Let X be a smooth projective complex surface, and $D=\sum m_{i} C_{i}$ an effective divisor on X.
For a submodule $M \subset H^{2}(X)$, we put

$$
\operatorname{disc} M:=|\operatorname{det}(S)|,
$$

where S is the symmetric matrix expressing the cup-product restricted to M. Then

$$
M \text { is a sublattice of } H^{2}(X) \Longleftrightarrow \operatorname{disc} M \neq 0
$$

If $\mathcal{L}(X, D)=\left\langle\left[C_{i}\right]\right\rangle$ is a sublattice, then so is $\overline{\mathcal{L}}(X, D)$ and

$$
|A(X, D)|=\sqrt{\frac{\operatorname{disc} \mathcal{L}(X, D)}{\operatorname{disc} \overline{\mathcal{L}}(X, D)}}
$$

In particular, if $\operatorname{disc} \mathcal{L}(X, D)$ is square-free, then $A(X, D)$ is trivial.

If we know the configuration of irreducible components C_{i} of D, then we can calculate $\mathcal{L}(X, D)$ algebro-geometrically.

We present an algorithm to calculate disc $\overline{\mathcal{L}}(X, D)$.
Remark that

$$
\operatorname{disc} \mathcal{L}(X, D), \quad \operatorname{disc} \overline{\mathcal{L}}(X, D), \quad \text { and } \quad A(X, D)
$$

depend only on the open surface

$$
x \backslash D
$$

namely, if X^{\prime} is another smooth projective surface containing $X \backslash D$ such that $D^{\prime}:=X^{\prime} \backslash(X \backslash D)$ is a union of curves, then we have

$$
\begin{aligned}
\operatorname{disc} \mathcal{L}(X, D) & =\operatorname{disc} \mathcal{L}\left(X^{\prime}, D^{\prime}\right), \\
\operatorname{disc} \overline{\mathcal{L}}(X, D) & =\operatorname{disc} \overline{\mathcal{L}}\left(X^{\prime}, D^{\prime}\right), \\
A(X, D) & \cong A\left(X^{\prime}, D^{\prime}\right) .
\end{aligned}
$$

We show that, under certain assumptions, $\operatorname{disc} \overline{\mathcal{L}}(X, D)$ can be calculated topologically from $X \backslash D$.

Suppose that $\operatorname{disc} \mathcal{L}(X, D) \neq 0$. Then we have

$$
\overline{\mathcal{L}}(X, D)=\left(\mathcal{L}(X, D)^{\perp}\right)^{\perp}
$$

and, since $H^{2}(X)$ is unimodular, we have

$$
\operatorname{disc} \overline{\mathcal{L}}(X, D)=\operatorname{disc} \mathcal{L}(X, D)^{\perp}
$$

Thus it is enough to calculate the orthogonal complement $\mathcal{L}(X, D)^{\perp}$.

Proposition

By the Poincaré duality $H^{2}(X) \cong H_{2}(X)$, the orthogonal complement $\mathcal{L}(X, D)^{\perp} \subset H^{2}(X)$ is equal to the image of the homomorphism

$$
j_{*}: H_{2}(X \backslash D) \rightarrow H_{2}(X)
$$

induced by the inclusion $j: X \backslash D \hookrightarrow X$.
The proof follows from the following commutative diagram:

$$
\begin{array}{ccc}
H_{2}(X \backslash D) & \xrightarrow{j_{*}} & H_{2}(X) \\
\mid 2 & & \mid 2 \\
H^{2}(X, D) & \longrightarrow & H^{2}(X)
\end{array} \quad \longrightarrow \quad H^{2}(D)=\bigoplus H^{2}\left(C_{i}\right) .
$$

Remark

If $\mathcal{L}(X, D)^{\perp} \cong \operatorname{Im} j_{*}$ is of rank 0 , then $\overline{\mathcal{L}}(X, D)=H^{2}(X)$ and hence $|A(X, D)|=\sqrt{\operatorname{disc} \mathcal{L}(X, D)}$.

Since $j_{*}: H_{2}(X \backslash D) \rightarrow H_{2}(X)$ preserves the intersection pairing (,) of topological cycles, we have the following:

Proposition

Suppose that $\operatorname{disc} \mathcal{L}(X, D) \neq 0$. Then the lattice $\mathcal{L}(X, D)^{\perp} \cong \operatorname{Im} j_{*}$ is isomorphic to the lattice

$$
H_{2}(X \backslash D) / \operatorname{ker}\left(H_{2}(X \backslash D)\right)
$$

where $\operatorname{ker}\left(H_{2}(X \backslash D)\right)$ denotes the submodule

$$
\left\{x \in H_{2}(X \backslash D) \mid(x, y)=0 \text { for all } y \in H_{2}(X \backslash D)\right\}
$$

Therefore, to calculate $\operatorname{disc} \overline{\mathcal{L}}(X, D)$, it is enough to calculate $H_{2}(X \backslash D)$ and the intersection pairing on $H_{2}(X \backslash D)$.

We apply our method to coverings of \mathbb{P}^{2} branching along 4 lines

$$
B_{0}, \quad B_{1}, \quad B_{2}, \quad B_{3}
$$

in general position. Since

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \bigcup B_{i}\right)=\left(\mathbb{Z} \gamma_{0} \oplus \cdots \oplus \mathbb{Z} \gamma_{3}\right) /\left\langle\gamma_{0}+\cdots+\gamma_{3}\right\rangle
$$

is abelian, where $\gamma_{0}, \ldots, \gamma_{3}$ are simple loops around B_{0}, \ldots, B_{3}, these coverings are necessarily abelian.
For a surjective homomorphism

$$
\rho: \pi_{1}\left(\mathbb{P}^{2} \backslash \cup B_{i}\right) \rightarrow H
$$

to a finite abelian group H, we denote by

$$
\phi_{\rho}: Y_{\rho} \rightarrow \mathbb{P}^{2}
$$

the finite covering associated to ρ, and by

$$
\varphi_{\rho}: X_{\rho} \rightarrow Y_{\rho} \rightarrow \mathbb{P}^{2}
$$

the composite of the resolution $X_{\rho} \rightarrow Y_{\rho}$ and the covering ϕ_{ρ}.

As the divisor D, we consider the pull-back of the three lines

$$
\Lambda_{1}+\Lambda_{2}+\Lambda_{3}
$$

passing through two of the six intersection points of B_{0}, \ldots, B_{3} :

$$
D_{\rho}:=\varphi_{\rho}^{*}\left(\Lambda_{1}+\Lambda_{2}+\Lambda_{3}\right) \subset X_{\rho}
$$

Thick lines are B_{i}, and dash-lines are Λ_{ν}

Note that D_{ρ} contains the exceptional divisor of $X_{\rho} \rightarrow Y_{\rho}$.

When ρ is the maximal homomorphism

$$
\begin{aligned}
\pi_{1}\left(\mathbb{P}^{2} \backslash \bigcup B_{i}\right)= & \left(\mathbb{Z} \gamma_{0} \oplus \cdots \oplus \mathbb{Z} \gamma_{3}\right) /\left\langle\gamma_{0}+\cdots+\gamma_{3}\right\rangle \\
\rightarrow & (\mathbb{Z} / m \mathbb{Z})^{3}=(\mathbb{Z} / m \mathbb{Z}) e_{0} \oplus(\mathbb{Z} / m \mathbb{Z}) e_{1} \oplus(\mathbb{Z} / m \mathbb{Z}) e_{2}
\end{aligned}
$$

to the abelian group of exponent m given by

$$
\rho\left(\gamma_{i}\right)=e_{i} \quad(i=0,1,2) \quad \text { and } \quad \rho\left(\gamma_{3}\right)=-e_{0}-e_{1}-e_{2},
$$

then X_{ρ} is the Fermat surface of degree m, and D_{ρ} is the union of the $3 m^{2}$ lines.

In general, X_{ρ} is a resolution of a quotient Y_{ρ} of the Fermat surface.

The divisor D_{ρ} is the union of the images of the $3 m^{2}$ lines and the exceptional divisors of the resolution.

Since the singular points on Y_{ρ} are cyclic quotient singularities, we can resolve them by Hirzebruch-Jung method. Thus we can calculate the lattice $\mathcal{L}\left(X_{\rho}, D_{\rho}\right)$.
(Since $\mathcal{L}\left(X_{\rho}, D_{\rho}\right)$ contains a vector h with $h^{2}>0$, we have $\operatorname{disc} \mathcal{L}\left(X_{\rho}, D_{\rho}\right) \neq 0$ by Hodge index theorem.)
On the other hand, we obtain $\operatorname{disc} \overline{\mathcal{L}}\left(X_{\rho}, D_{\rho}\right)$ by calculating the intersection pairing on $H_{2}\left(X_{\rho} \backslash D_{\rho}\right)$.

We have carried out these calculations for all coverings associated to homomorphisms

$$
\rho: \pi_{1}\left(\mathbb{P}^{2} \backslash \bigcup B_{i}\right) \rightarrow \mathbb{Z} / m \mathbb{Z}
$$

to cyclic groups of order $m \leq 40$.
In this case, the open surface $X_{\rho} \backslash D_{\rho}$ is a quotient of

$$
X_{m} \backslash \text { (union of the } 3 m^{2} \text { lines) }
$$

by the group $(\mathbb{Z} / m \mathbb{Z})^{2}$.
It turns out that the finite abelian groups

$$
A\left(X_{\rho}, D_{\rho}\right)=\overline{\mathcal{L}}\left(X_{\rho}, D_{\rho}\right) / \mathcal{L}\left(X_{\rho}, D_{\rho}\right)
$$

are non-trivial for many cases.

Let

$$
R_{0}, \quad R_{1}, \quad R_{2}, \quad R_{3}
$$

be the reduced irreducible curves on X_{ρ} that are mapped to the branching lines $B_{0}, B_{1}, B_{2}, B_{3}$, respectively. It is easy to see that

$$
\left[R_{i}\right] \in \overline{\mathcal{L}}\left(X_{\rho}, D_{\rho}\right)
$$

Theorem

Let $\rho: \pi_{1}\left(\mathbb{P}^{2} \backslash \bigcup B_{i}\right) \rightarrow \mathbb{Z} / m \mathbb{Z}$ be a surjective homomorphism to a cyclic group of order m with $4 \leq m \leq 40$. Then

$$
\overline{\mathcal{L}}\left(X_{\rho}, D_{\rho}\right)=\mathcal{L}\left(X_{\rho}, D_{\rho}\right)+\left\langle\left[R_{0}\right],\left[R_{1}\right],\left[R_{2}\right],\left[R_{3}\right]\right\rangle
$$

We put

$$
\begin{aligned}
\mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right) & :=\mathcal{L}\left(X_{\rho}, D_{\rho}\right)+\left\langle\left[R_{0}\right],\left[R_{1}\right],\left[R_{2}\right],\left[R_{3}\right]\right\rangle \\
& =\mathcal{L}\left(X_{\rho}, D_{\rho}+R_{0}+R_{1}+R_{2}+R_{3}\right) .
\end{aligned}
$$

We can calculate disc $\mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$ algebro-geometrically.
The statement of Theorem is equivalent to say that $\mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$ is primitive in $H^{2}\left(X_{\rho}\right)$ for $4 \leq m \leq 40$.

All we have to do is to calculate $\operatorname{disc}\left(\mathcal{L}\left(X_{\rho}, D_{\rho}\right)^{\perp}\right)$ and to show

$$
\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)=\operatorname{disc}\left(\mathcal{L}\left(X_{\rho}, D_{\rho}\right)^{\perp}\right)
$$

Problem

 Is $\mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$ primitive for all m and ρ ?The homomorphism $\rho: \pi_{1}\left(\mathbb{P}^{2} \backslash \bigcup B_{i}\right) \rightarrow \mathbb{Z} / m \mathbb{Z}$ is given by

$$
\left[a_{0}, a_{1}, a_{2}, a_{3}\right]:=\left[\rho\left(\gamma_{0}\right), \rho\left(\gamma_{1}\right), \rho\left(\gamma_{2}\right), \rho\left(\gamma_{3}\right)\right] .
$$

Example

The following is the table of $\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$ and $\operatorname{disc} \mathcal{L}\left(X_{\rho}, D_{\rho}\right)$ for $m=12$:

$\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$	$\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$	$\operatorname{disc} \mathcal{L}\left(X_{\rho}, D_{\rho}\right)$	rank
$[0,0,1,11]$	1	1	62
$[0,1,1,10]$	1	$(2)^{4}(3)^{4}$	62
$[0,1,2,9]$	1	$(2)^{4}$	50
$[0,1,3,8]$	1	1	46
$[0,1,4,7]$	1	$(3)^{4}$	50
$[0,1,5,6]$	1	$(2)^{4}$	50
$[1,1,1,9]$	$(2)^{2}(3)$	$(2)^{10}(3)^{5}$	44
$[1,1,2,8]$	$(2)^{4}(3)$	$(2)^{8}(3)^{5}$	36

Example

$\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$	$\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$	$\operatorname{disc} \mathcal{L}\left(X_{\rho}, D_{\rho}\right)$	rank
$[1,1,3,7]$	$(3)^{3}$	$(2)^{6}(3)^{7}$	30
$[1,1,4,6]$	1	$(2)^{4}(3)^{4}$	38
$[1,1,5,5]$	$(2)^{6}$	$(2)^{14}(3)^{4}$	40
$[1,1,11,11]$	1	$(2)^{6}(3)^{4}$	38
$[1,2,2,7]$	$(2)^{4}(3)^{3}$	$(2)^{10}(3)^{7}$	38
$[1,2,3,6]$	$(2)^{2}(3)^{2}$	$(2)^{8}(3)^{2}$	34
$[1,2,4,5]$	$(2)^{4}$	$(2)^{8}(3)^{4}$	31
$[1,2,10,11]$	1	$(2)^{6}(3)^{4}$	38
$[1,3,3,5]$	$(2)^{4}(3)^{2}$	$(2)^{10}(3)^{2}$	30
$[1,3,4,4]$	$(3)^{3}$	$(3)^{7}$	34
$[1,3,9,11]$	1	$(2)^{6}$	26
$[1,3,10,10]$	$(3)^{3}$	$(2)^{6}(3)^{7}$	40

Example

$\left[a_{0}, a_{1}, a_{2}, a_{3}\right]$	$\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$	$\operatorname{disc} \mathcal{L}\left(X_{\rho}, D_{\rho}\right)$	rank
$[1,4,8,11]$	1	$(3)^{4}$	28
$[1,4,9,10]$	(3)	$(2)^{4}(3)^{5}$	33
$[1,5,7,11]$	1	$(2)^{6}(3)^{4}$	26
$[1,5,9,9]$	$(2)^{6}$	$(2)^{14}$	28
$[1,6,6,11]$	1	$(2)^{6}$	34
$[1,6,7,10]$	$(3)^{2}$	$(2)^{6}(3)^{6}$	34
$[1,6,8,9]$	$(2)^{2}$	$(2)^{6}$	30
$[1,7,8,8]$	$(2)^{4}(3)^{3}$	$(2)^{4}(3)^{7}$	26
$[2,3,3,4]$	$(2)^{4}$	$(2)^{8}$	34
$[2,3,9,10]$	1	$(2)^{6}$	34
$[3,4,8,9]$	1	1	30

We explain the method to calculate $H_{2}\left(X_{\rho} \backslash D_{\rho}\right)$ in detail.
First remark that, if Γ is an arbitrary line on \mathbb{P}^{2}, then

$$
\mathcal{L}\left(X_{\rho}, D_{\rho}\right) \subset \mathcal{L}\left(X_{\rho}, D_{\rho}+\varphi_{\rho}^{*}(\Gamma)\right) \subset \overline{\mathcal{L}}\left(X_{\rho}, D_{\rho}\right)
$$

and therefore we have

$$
\mathcal{L}\left(X_{\rho}, D_{\rho}\right)^{\perp}=\mathcal{L}\left(X_{\rho}, D_{\rho}+\varphi_{\rho}^{*}(\Gamma)\right)^{\perp}
$$

Hence it is enough to take suitable lines $\Gamma_{1}, \ldots, \Gamma_{k}$, put

$$
U:=\mathbb{P}^{2} \backslash\left(\bigcup B_{i} \cup \bigcup \wedge_{\nu} \cup \bigcup \Gamma_{q}\right)
$$

and calculate the intersection form on $H_{2}\left(X^{U}\right)$, where

$$
X^{U}:=\varphi_{\rho}^{-1}(U)
$$

We choose U in such a way that U admits a morphism

$$
f: U \rightarrow \mathbb{C} \backslash\left\{P_{1}, \ldots, P_{N}\right\}
$$

such that the composite

$$
f \circ \varphi_{\rho}: \quad X^{U} \rightarrow U \rightarrow \mathbb{C} \backslash\left\{P_{1}, \ldots, P_{N}\right\}
$$

is a locally trivial fibration (in the classical topology) with fibers being open Riemann surfaces.

The thick lines are B_{0}, \ldots, B_{3} :
The x-axis and the y-axis are Λ_{1} and $\Lambda_{2} \quad\left(\Lambda_{3}\right.$ is the line at infinity):

The fibration f is given by $(x, y) \mapsto x$, and hence we have to remove two extra vertical dash-lines Γ_{1} and Γ_{2}. In this case, we have $N=3$.

We choose a base point

$$
b \in \mathbb{C} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}
$$

and consider the open Riemann surface

$$
R_{b}:=\left(f \circ \varphi_{\rho}\right)^{-1}(b) \subset X^{U} .
$$

Then R_{b} is an étale cover of the punctured affine line

$$
f^{-1}(b) \subset U
$$

Thus we can calculate $H_{1}\left(R_{b}, \mathbb{Z}\right)$ and the intersection pairing

$$
Q: H_{1}\left(R_{b}\right) \times H_{1}\left(R_{b}\right) \rightarrow \mathbb{Z}
$$

We choose a system of simple loops $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ with the base point b on $\mathbb{C} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$ as follows:

(The loops are $\sigma_{1}, \sigma_{2}, \sigma_{3}$ from left to right.)
When $t \in \mathbb{C}$ moves along σ_{i}, the punctured and branching points of

$$
\left(f \circ \varphi_{\rho}\right)^{-1}(t) \rightarrow f^{-1}(t)
$$

undergo the braid monodromies. Looking at them, we obtain the monodromies along σ_{i} :

$$
\mu_{i}: H_{1}\left(R_{b}\right) \rightarrow H_{1}\left(R_{b}\right) .
$$

Since $\mathbb{C} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$ is homotopically equivalent to the union of σ_{i}, the open surface X^{U} is homotopically equivalent to the union of the fibers $\left(f \circ \varphi_{\rho}\right)^{-1}(t)$ over these loops.
Let an element

$$
\left(\left[\gamma_{1}\right],\left[\gamma_{2}\right],\left[\gamma_{3}\right]\right) \in \bigoplus_{i=1}^{3} H_{1}\left(R_{b}\right)
$$

represent a topological chain on X^{U} that is the union of tubes drawn by the topological cycle $\gamma_{i} \subset R_{b}$ moving over σ_{i}. Its boundary is in R_{b}, and the homology class of the boundary is

$$
w\left(\left[\gamma_{1}\right],\left[\gamma_{2}\right],\left[\gamma_{3}\right]\right):=\sum\left(1-\mu_{i}\right)\left(\left[\gamma_{i}\right]\right) \in H_{1}\left(R_{b}\right) .
$$

Hence $H_{2}\left(X^{U}\right)$ is equal to the kernel of

$$
w: \bigoplus_{i=1}^{3} H_{1}\left(R_{b}\right) \rightarrow H_{1}\left(R_{b}\right) .
$$

The intersection pairing on $H_{2}\left(X^{U}\right)$ is calculated by perturbing the system of simple loops $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$:

For the perturbation above, we have

$$
\begin{aligned}
& -\left(\left[\gamma_{1}\right],\left[\gamma_{2}\right],\left[\gamma_{3}\right]\right) \cdot\left(\left(\left[\gamma_{1}^{\prime}\right],\left[\gamma_{2}^{\prime}\right],\left[\gamma_{3}^{\prime}\right]\right)\right. \\
= & Q\left(\left(1-\mu_{1}\right)\left(\left[\gamma_{1}\right]\right),\left(1-\mu_{2}\right)\left(\left[\gamma_{2}^{\prime}\right]\right)\right) \\
+ & Q\left(\left(1-\mu_{1}\right)\left(\left[\gamma_{1}\right]\right),\left(1-\mu_{3}\right)\left(\left[\gamma_{3}^{\prime}\right]\right)\right) \\
+ & Q\left(\left(1-\mu_{2}\right)\left(\left[\gamma_{2}\right]\right),\left(1-\mu_{3}\right)\left(\left[\gamma_{3}^{\prime}\right]\right)\right) \\
+ & Q\left(\left(1-\mu_{1}\right)\left(\left[\gamma_{1}\right]\right),-\mu_{1}\left(\left[\gamma_{1}^{\prime}\right]\right)\right)+Q\left(\left(1-\mu_{2}\right)\left(\left[\gamma_{2}\right]\right),-\mu_{2}\left(\left[\gamma_{2}^{\prime}\right]\right)\right) \\
& \quad+Q\left(\left(1-\mu_{3}\right)\left(\left[\gamma_{3}\right]\right),-\mu_{3}\left(\left[\gamma_{3}^{\prime}\right]\right)\right) .
\end{aligned}
$$

Then we can calculate
$\operatorname{ker}\left(H_{2}\left(X^{U}\right)\right):=\left\{x \in H_{2}\left(X^{U}\right) \mid(x, y)=0\right.$ for all $\left.y \in H_{2}\left(X^{U}\right)\right\}$, and the lattice

$$
H_{2}\left(X^{U}\right) / \operatorname{ker}\left(H_{2}\left(X^{U}\right)\right) \cong \mathcal{L}\left(X_{\rho}, D_{\rho}\right)^{\perp}
$$

If $H_{2}\left(X^{U}\right) \neq \operatorname{ker}\left(H_{2}\left(X^{U}\right)\right)$, then we confirm
$\operatorname{disc}\left(H_{2}\left(X^{U}\right) / \operatorname{ker}\left(H_{2}\left(X^{U}\right)\right)\right)=\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$.
If $H_{2}\left(X^{U}\right)=\operatorname{ker}\left(H_{2}\left(X^{U}\right)\right)$, then we confirm $\operatorname{disc} \mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)=1$.
Thus we can conclude that $\mathcal{L}^{\prime}\left(X_{\rho}, D_{\rho}\right)$ is primitive.

Remark

For Shioda's original problem of Fermat surface X_{m} of degree m, we have to consider the covering $X^{U} \rightarrow U$ of mapping degree m^{3}. Maple has run out of memory even when $m=6\left(m^{3}=216\right)$.

Thank you!

