On supersingular varieties

Ichiro Shimada

Hiroshima University

24 September, 2010, Nagoya

Let X be a smooth projective variety over \mathbb{F}_{q}.
The following are equivalent:
(i) There is a polynomial $N(t) \in \mathbb{Z}[t]$ such that

$$
\left|X\left(\mathbb{F}_{q^{\nu}}\right)\right|=N\left(q^{\nu}\right)
$$

for all $\nu \in \mathbb{Z}_{>0}$.
(ii) The eigenvalues of the q th power Frobenius on the l-adic cohomology ring are powers of q by integers.
If these are satisfied, then $b_{2 i-1}(X)=0$ and

$$
N(t)=\sum_{i=0}^{\operatorname{dim} X} b_{2 i}(X) t^{i}
$$

We say that X is Frobenius supersingular if (i) and (ii) are satisfied.

- An example

If the cohomology ring of X is generated by the classes of algebraic cycles over \mathbb{F}_{q}, then X is Frobenius supersingular.
The converse is true if the Tate conjecture is assumed.
We have examples of Frobenius supersingular varieties of non-negative Kodaira dimension.

Theorem

The Fermat variety

$$
X:=\left\{x_{0}^{q+1}+\cdots+x_{2 m+1}^{q+1}=0\right\} \subset \mathbb{P}^{2 m+1}
$$

of dimension $2 m$ and degree $q+1$ regarded as a variety over $\mathbb{F}_{q^{2}}$ is Frobenius supersingular.

This follows from

$$
\left|X\left(\mathbb{F}_{q^{2}}\right)\right|=1+q^{2}+\cdots+q^{4 m}+\left(b_{2 m}(X)-1\right) q^{2 m}
$$

Problems on Frobenius supersingular varieties

- Construct non-trivial examples.
- Prove (or disprove) the unirationality.

■ Present explicitly algebraic cycles that generate the cohomology ring.

- Investigate the lattice given by the intersection pairing of algebraic cycles.
■ Produce dense lattices by the intersection pairing in small characteristics.

We discuss these problems for the classical example of Fermat varieties of degree $q+1$, and for the new example of Frobenius incidence varieties.

Unirationality and Supersingularity

A variety X is called (purely-inseparably) unirational if there is a dominant (purely-inseparable) rational map

$$
\mathbb{P}^{n} \cdots \rightarrow X
$$

Theorem (Shioda)

Let S be a smooth projective surface defined over $k=\bar{k}$. If S is unirational, then the Picard number $\rho(S)$ is equal to $b_{2}(S)$; that is, S is supersingular in the sense of Shioda.

The converse is conjectured to be true for $K 3$ surfaces.

-Problems

Artin-Shioda conjecture

Every supersingular $K 3$ surface S (in the sense of Shioda) is conjectured to be (purely-inseparably) unirational.
The discriminant of the Néron-Severi lattice $\operatorname{NS}(S)$ is $-p^{2 \sigma(S)}$, where $\sigma(S)$ is a positive integer ≤ 10, which is called the Artin invariant of S.

The conjecture is confirmed to be true in the following cases:

- p odd and $\sigma(S) \leq 2$ (Ogus and Shioda):
- $p=2$ (Rudakov and Shafarevich, S.-):
- $p=3$ and $\sigma(S) \leq 6$
(Rudakov and Shafarevich, S.- and De Qi Zhang):
- $p=5$ and $\sigma(S) \leq 3$ (S.- and Pho Duc Tai).

Method: The structure theorem for $\mathrm{NS}(S)$ by Rudakov-Shafarevich.

Fermat variety of degree $q+1$

Unirationality of the Fermat variety

Theorem (Shioda-Katsura, S.-)

The Fermat variety X of degree $q+1$ and dimension $n \geq 2$ in characteristic $p>0$ is purely-inseparably unirational, where $q=p^{\nu}$.

Indeed, X contains a linear subspace $\Lambda \subset \mathbb{P}^{n+1}$ of dimension $[n / 2]$. The unirationality is proved by the projection from the center Λ.

Lattice

By a quasi-lattice, we mean a free \mathbb{Z}-module L of finite rank with a symmetric bilinear form

$$
(,): L \times L \rightarrow \mathbb{Z}
$$

If the symmetric bilinear form is non-degenerate, we say that L is a lattice.

If L is a quasi-lattice, then L / L^{\perp} is a lattice, where

$$
L^{\perp}:=\{x \in L \mid(x, y)=0 \text { for all } y \in L\}
$$

Lattices associated with the Fermat varieties

The Fermat variety

$$
X:=\left\{x_{0}^{q+1}+\cdots+x_{2 m+1}^{q+1}=0\right\} \subset \mathbb{P}^{2 m+1}
$$

of dimension $2 m$ and degree $q+1$ contains many m-dimensional linear subspaces Λ_{i}. The number is

$$
\prod_{\nu=0}^{m}\left(q^{2 \nu+1}+1\right)
$$

Each of them is defined over $\mathbb{F}_{q^{2}}$.
Let $\tilde{\mathcal{N}}(X) \subset A^{m}(X)$ be the \mathbb{Z}-module generated by the rational equivalence classes of Λ_{i}, where $A(X)$ is the Chow ring.

By the intersection pairing

$$
\tilde{\mathcal{N}}(X) \times \tilde{\mathcal{N}}(X) \rightarrow \mathbb{Z}
$$

we can consider $\tilde{\mathcal{N}}(X)$ as a quasi-lattice.

Let $\mathcal{N}(X):=\widetilde{\mathcal{N}}(X) / \widetilde{\mathcal{N}}(X)^{\perp}$ be the associated lattice.

Theorem (Tate, S.-)

(1) The rank of $\mathcal{N}(X)$ is equal to $b_{2 m}(X)$.
(2) The discriminant of $\mathcal{N}(X)$ is a power of p.

Corollary

The cycle map induces an isomorphism $\mathcal{N}(X) \otimes \mathbb{Q}_{I} \cong H^{2 m}\left(X, \mathbb{Q}_{I}\right)$.

The assertion (2) is an analogue of the result that the discriminant of the Néron-Severi lattice $\mathrm{NS}(S)$ of a supersinglar $K 3$ surface S is a power of p.

Let $h \in \mathcal{N}(X)$ be the numerical equivalence class of a linear plane section $X \cap \mathbb{P}^{m+1}$.

We put

$$
\mathcal{N}_{\text {prim }}(X):=\{x \in \mathcal{N}(X) \mid(x, h)=0\}=\langle h\rangle^{\perp}
$$

Theorem

The lattice $[-1]^{m} \mathcal{N}_{\text {prim }}(X)$ is positive-definite.
Here $[-1]^{m} \mathcal{N}_{\text {prim }}(X)$ is the lattice obtained from $\mathcal{N}_{\text {prim }}(X)$ by changing the sign with $(-1)^{m}$.

Dense lattices

Let L be a positive-definite lattice of rank m.
The minimal norm of L is defined by

$$
N_{\min }(L):=\min \left\{x^{2} \mid x \in L, x \neq 0\right\}
$$

and the normalized center density of L is defined by

$$
\delta(L):=(\operatorname{disc} L)^{-1 / 2} \cdot\left(N_{\min }(L) / 4\right)^{m / 2} .
$$

Minkowski and Hlawka proved in a non-constructive way that, for each m, there is a positive-definite lattice L of rank m with

$$
\delta(L)>\operatorname{MH}(m):=\frac{\zeta(m)}{2^{m-1} V_{m}}
$$

where V_{m} is the volume of the m-dimensional unit ball.

We say that a positive-definite lattice L of rank m is dense if

$$
\delta(L)>\operatorname{MH}(m)
$$

The intersection pairing of algebraic cycles in positive characteristic has been used to construct dense lattices.

For example, Elkies and Shioda constructed many dense lattices as Mordell-Weil lattices of elliptic surfaces in positive characteristics.

Dense lattices arising from Fermat varieties

Let X be the Fermat cubic variety of dimension $2 m$ in characteristic 2.
Recall that X contains many m-dimensional linear subspaces Λ_{i}.
We consider the positive-definite lattice

$$
\left\langle\left[\Lambda_{i}\right]-\left[\Lambda_{j}\right]\right\rangle \subset[-1]^{m} \mathcal{N}_{\text {prim }}(X)
$$

generated by the classes $\left[\Lambda_{i}\right]-\left[\Lambda_{j}\right]$. Their properties are as follows:

$\operatorname{dim} X$	rank	$N_{\min }$	$\log _{2} \delta$	$\log _{2} \mathrm{MH}$	name
2	6	2	$-3.792 \ldots$	$-7.344 \ldots$	E_{6}
4	22	4	$-1.792 \ldots$	$-13.915 \ldots$	Λ_{22}
6	86	8	$34.207 \ldots$	$19.320 \ldots$	\mathcal{N}_{86}

Frobenius incidence variety

We fix an n-dimensional linear space V over \mathbb{F}_{p} with $n \geq 3$.
We denote by $G_{n, I}=G_{n}^{n-I}$ the Grassmannian variety of I-dimensional subspaces of V.

Let F be a field of characteristic p, and consider an F-rational linear subspace $L \in G_{n, l}(F)$ of V.

Let ϕ be the p th power Frobenius morphism of $G_{n, l}$. For a positive integer ν, we put

$$
L^{\left(p^{\nu}\right)}:=\phi^{\nu}(L) .
$$

- Definition

Let I and c be positive integers such that $I+c<n$.
We denote by $\mathcal{I}_{n, I}^{c}$ the incidence subvariety of $G_{n, I} \times G_{n}^{c}$:

$$
\mathcal{I}_{n, l}^{c}(F)=\left\{(L, M) \in G_{n, l}(F) \times G_{n}^{c}(F) \mid L \subset M\right\} .
$$

Let $r:=p^{a}$ and $s:=p^{b}$ be powers of p by positive integers. We define the Frobenius incidence variety $X_{n, l}^{c}$ by

$$
X_{n, I}^{c}:=\left(\phi^{a} \times \mathrm{id}\right)^{*} \mathcal{I}_{n, I}^{c} \cap\left(\mathrm{id} \times \phi^{b}\right)^{*} \mathcal{I}_{n, l}^{c} .
$$

Then $X_{n, l}^{c}$ is defined over \mathbb{F}_{p}, and we have

$$
\begin{aligned}
X_{n, l}^{c}(F) & =\left\{(L, M) \in G_{n, l}(F) \times G_{n}^{c}(F) \mid L^{(r)} \subset M \text { and } L \subset M^{(s)}\right\} \\
& =\left\{(L, M) \in G_{n, l}(F) \times G_{n}^{c}(F) \mid L+L^{(r s)} \subset M^{(s)}\right\} \\
& =\left\{(L, M) \in G_{n, l}(F) \times G_{n}^{c}(F) \mid L^{(r)} \subset M \cap M^{(r s)}\right\}
\end{aligned}
$$

Theorem

(1) The scheme $X_{n, I}^{c}$ is smooth and geometrically irreducible of dimension $(n-I-c)(I+c)$.
(2) If $X_{n, I}^{c}$ is regarded as a scheme over $\mathbb{F}_{r s}$, then $X_{n, I}^{c}$ is Frobenius supersingular.

The smoothness of $X_{n, l}^{c}$ is proved by computing the dimension of Zariski tangent spaces.

We prove the second assertion by counting the number of

We put

$$
q:=r s .
$$

The main ingredient of the proof is the finite set

$$
T_{l, d}\left(q, q^{\nu}\right):=\left\{L \in G_{n, l}\left(\mathbb{F}_{q^{\nu}}\right) \mid \operatorname{dim}\left(L \cap L^{(q)}\right)=d\right\}
$$

When $I=d$, we have $T_{l, I}\left(q, q^{\nu}\right)=G_{n, l}\left(\mathbb{F}_{q}\right)$ for any ν.
For $d<I$, we calculate the cardinality of the set

$$
\begin{aligned}
\mathcal{P} & :=\left\{(L, M) \in G_{n, /}\left(\mathbb{F}_{q^{\nu}}\right) \times G_{n, 2 l-d}\left(\mathbb{F}_{q^{\nu}}\right) \mid L+L^{(q)} \subset M\right\} \\
& =\left\{(L, M) \in G_{n, /}\left(\mathbb{F}_{q^{\nu}}\right) \times G_{n, 2 l-d}\left(\mathbb{F}_{q^{\nu}}\right) \mid L^{(q)} \subset M \cap M^{(q)}\right\},
\end{aligned}
$$

in two ways using the projections
$\mathcal{P} \rightarrow G_{n, l}\left(\mathbb{F}_{q^{\nu}}\right)$ and $\mathcal{P} \rightarrow G_{n, 2 l-d}\left(\mathbb{F}_{q^{\nu}}\right)$.
Then we get

$$
\begin{aligned}
|\mathcal{P}| & =\sum_{t=d}^{l}\left|T_{l, t}\left(q, q^{\nu}\right)\right| \cdot\left|G_{n-2 l+t, t-d}\left(\mathbb{F}_{q^{\nu}}\right)\right| \\
& =\sum_{u=1}^{2 l-d}\left|T_{2 I-d, u}\left(q, q^{\nu}\right)\right| \cdot\left|G_{u, l}\left(\mathbb{F}_{q^{\nu}}\right)\right| .
\end{aligned}
$$

By this equality, we obtain a recursive formula for $\left|T_{l, d}\left(q, q^{\nu}\right)\right|$. Using the projection $X_{n, l}^{c}\left(\mathbb{F}_{q^{\nu}}\right) \rightarrow G_{n, l}\left(\mathbb{F}_{q^{\nu}}\right)$, we obtain the following:

$$
\left|X_{n, l}^{c}\left(\mathbb{F}_{q^{\nu}}\right)\right|=\sum_{d=0}^{l}\left|T_{l, d}\left(q, q^{\nu}\right)\right| \cdot\left|G_{n-2 /+d}^{c}\left(\mathbb{F}_{q^{\nu}}\right)\right| .
$$

By the recursive formula for $\left|T_{l, d}\left(q, q^{\nu}\right)\right|$, we prove that there is a monic polynomial $N_{n, I}^{c}(t)$ of degree $(I+c)(n-I-c)$ such that

$$
\left|X_{n, l}^{c}\left(\mathbb{F}_{q^{\nu}}\right)\right|=N_{n, l}^{c}\left(q^{\nu}\right) .
$$

Therefore $X_{n, l}^{c}$ is Frobenius supersingular.
Since $N_{n, I}^{c}(t)$ is monic, $X_{n, l}^{c}$ is geometrically irreducible.
Moreover we obtain the Betti numbers of $X_{n, l}^{c}$.

Example

Let $\left(x_{1}: \cdots: x_{n}\right)$ and $\left(y_{1}: \cdots: y_{n}\right)$ be homogeneous coordinates of $G_{n, 1}=\mathbb{P}_{*}(V)$ and $G_{n}^{1}=\mathbb{P}^{*}(V)$ that are dual to each other. Then $\mathcal{I}_{n, 1}^{1}=\left\{\sum x_{i} y_{i}=0\right\}$, and hence $X_{n, 1}^{1}$ is defined by

$$
\left\{\begin{array}{l}
x_{1}^{r} y_{1}+\cdots+x_{n}^{r} y_{n}=0 \\
x_{1} y_{1}^{s}+\cdots+x_{n} y_{n}^{s}=0
\end{array}\right.
$$

The Betti numbers of $X_{n, 1}^{1}$ are as follows:

$$
b_{2 i}=b_{2(n-2)-2 i}= \begin{cases}i+1 & \text { if } i<n-2 \\ n-2+\left(q^{n}-1\right) /(q-1) & \text { if } i=n-2\end{cases}
$$

When $r=s=2$ (and hence $q=4$), $X_{3,1}^{1}$ is the supersingular K3 surface with Artin invariant 1 (Mukai's model).

Example

The Betti numbers of $X_{7,2}^{2}$ are calculated as follows:

$$
\begin{array}{ll}
b_{0}=b_{24}: & 1 \\
b_{2}=b_{22}: & 2 \\
b_{4}=b_{20}: & 5 \\
b_{6}=b_{18}: & q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+8 \\
b_{8}=b_{16}: & 2\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q\right)+12 \\
b_{10}=b_{14}: & 3\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q\right)+14 \\
b_{12}: & q^{10}+q^{9}+2 q^{8}+2 q^{7}+6 q^{6}+ \\
& +6 q^{5}+6 q^{4}+5 q^{3}+5 q^{2}+4 q+16 .
\end{array}
$$

Unirationality of $X_{n, l}^{c}$

Theorem

The Frobenius incidence variety $X_{n, l}^{c}$ is purely-inseparably unirational.

Idea of the proof for the case $2 I+c \leq n$.
We define $\widetilde{X} \subset G_{n, I} \times G_{n}^{c}$ by

$$
\widetilde{X}(F)=\left\{(L, M) \mid L \subset M, \quad L^{(r s)} \subset M\right\}
$$

The projection $\widetilde{X} \rightarrow G_{n, l}$ is dominant. Using this projection, we can show that \widetilde{X} is rational. The map $(L, M) \mapsto\left(L, M^{(s)}\right)$ is a dominant morphism from \widetilde{X} to $X_{n, l}^{c}$.

Algebraic cycles on $X_{n, l}^{l}$

Let Λ be an $\mathbb{F}_{r s}$-rational linear subspace of V such that $I \leq \operatorname{dim} \Lambda \leq n-c$. We define $\Sigma_{\Lambda} \subset G_{n, l} \times G_{n}^{c}$ by
$\Sigma_{\Lambda}(F):=\left\{(L, M) \in G_{n, l}(F) \times G_{n}^{c}(F) \mid L \subset \Lambda\right.$ and $\left.\Lambda^{(r)} \subset M\right\}$.
It follows from $\Lambda^{(r s)}=\Lambda$ that Σ_{Λ} is contained in $X_{n, l}^{c}$.
When $I=c$, we have $2 \operatorname{dim} \Sigma_{\Lambda}=\operatorname{dim} X_{n, l}^{I}$.
We can calculate the intersection numbers of these Σ_{Λ} on $X_{n, l}^{l}$.

- Algebraic cycles

We consider the case where $I=c=1$:

$$
X_{n, 1}^{1} \subset \mathbb{P}_{*}(V) \times \mathbb{P}^{*}(V)
$$

We put

$$
\mathcal{H}:=\operatorname{Im}\left(A^{n-2}\left(\mathbb{P}_{*}(V) \times \mathbb{P}^{*}(V)\right) \rightarrow A^{n-2}\left(X_{n, 1}^{1}\right)\right)
$$

By the intersection pairing, we can consider the submodule

$$
\tilde{\mathcal{N}}\left(X_{n, 1}^{1}\right):=\mathcal{H}+\left\langle\left[\Sigma_{\Lambda}\right]\right\rangle \subset A^{n-2}\left(X_{n, 1}^{1}\right)
$$

as a quasi-lattice. Let

$$
\mathcal{N}\left(X_{n, 1}^{1}\right):=\tilde{\mathcal{N}}\left(X_{n, 1}^{1}\right) / \tilde{\mathcal{N}}\left(X_{n, 1}^{1}\right)^{\perp}
$$

be the associated lattice, and put

$$
\mathcal{N}_{\text {prim }}\left(X_{n, 1}^{1}\right):=\mathcal{H}^{\perp} \subset \mathcal{N}\left(X_{n, 1}^{1}\right)
$$

Theorem

(1) The rank of $\mathcal{N}\left(X_{n, 1}^{1}\right)$ is $b_{2(n-2)}\left(X_{n, 1}^{1}\right)$.
(2) The discriminant of $\mathcal{N}\left(X_{n, 1}^{1}\right)$ is a power of p.
(3) The lattice $[-1]^{n} \mathcal{N}_{\text {prim }}\left(X_{n, 1}^{1}\right)$ is positive-definite.

Corollary

The cohomology ring of $X_{n, 1}^{1}$ is generated by the classes of Σ_{Λ} and the image of $A\left(\mathbb{P}_{*}(V) \times \mathbb{P}^{*}(V)\right) \rightarrow A\left(X_{n, 1}^{1}\right)$.

Dense lattices of rank 84 and 85

Theorem

Suppose that $p=r=s=2$. Then $\mathcal{N}_{\text {prim }}\left(X_{4,1}^{1}\right)$ is an even positive-definite lattice of rank 84 , with discriminant $85 \cdot 2^{16}$, and with minimal norm 8.

In fact, $\mathcal{N}_{\text {prim }}\left(X_{4,1}^{1}\right)$ is a section of a larger lattice $\mathcal{M}_{\mathcal{C}}$ of rank

$$
85=\left|\mathbb{P}^{3}\left(\mathbb{F}_{4}\right)\right|
$$

constructed by the projective geometry over \mathbb{F}_{4} and a code over

$$
R:=\mathbb{Z} / 8 \mathbb{Z}
$$

We put

$$
T:=\mathbb{P}^{3}\left(\mathbb{F}_{4}\right) .
$$

For $S \subset T$, we denote by $v_{S} \in R^{T}$ and $\tilde{v}_{S} \in \mathbb{Z}^{T}$ the characteristic functions of S.

Let $\mathcal{C} \subset R^{T}$ be the submodule generated by

$$
2^{2-k}\left(v_{P}-v_{P^{\prime}}\right)
$$

where P and P^{\prime} are \mathbb{F}_{4}-rational linear subspaces of \mathbb{P}^{3} of dimension $k(k=0,1,2)$, and let $\mathcal{M}_{\mathcal{C}}$ be the pull-back of \mathcal{C} by $\mathbb{Z}^{T} \rightarrow R^{T}$.
We define a \mathbb{Q}-valued symmetric bilinear form on \mathbb{Z}^{T} by

$$
\left(\tilde{v}_{\{t\}}, \tilde{v}_{\left\{t^{\prime}\right\}}\right)=\delta_{t t^{\prime}} / 4 \quad\left(t, t^{\prime} \in T\right)
$$

Then $\mathcal{M}_{\mathcal{C}} \subset \mathbb{Z}^{T}$ is a lattice.

name	rank	disc	$N_{\min }$	$\log _{2} \delta$	$\log _{2} M H$
$\mathcal{N}_{\text {prim }}\left(X_{4,1}^{1}\right)$	84	$85 \cdot 2^{16}$	8	$30.795 \ldots$	$17.546 \ldots$
$\mathcal{M}_{\mathcal{C}}$	85	2^{20}	8	32.5	$18.429 \ldots$
\mathcal{N}_{86}	86	$3 \cdot 2^{16}$	8	$34.207 \ldots$	$19.320 \ldots$

Thank you!

