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On supersingular varieties

Frobenius supersingular varieties

Definition

Let X be a smooth projective variety over Fq.
The following are equivalent:

(i) There is a polynomial N(t) ∈ Z[t] such that

|X (Fqν )| = N(qν)

for all ν ∈ Z>0.

(ii) The eigenvalues of the q th power Frobenius on the l-adic
cohomology ring are powers of q by integers.

If these are satisfied, then b2i−1(X ) = 0 and

N(t) =
dim X∑

i=0

b2i (X ) t i .

We say that X is Frobenius supersingular if (i) and (ii) are satisfied.
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Frobenius supersingular varieties

An example

If the cohomology ring of X is generated by the classes of algebraic
cycles over Fq, then X is Frobenius supersingular.

The converse is true if the Tate conjecture is assumed.

We have examples of Frobenius supersingular varieties of
non-negative Kodaira dimension.

Theorem

The Fermat variety

X := {xq+1
0 + · · ·+ xq+1

2m+1 = 0} ⊂ P2m+1

of dimension 2m and degree q + 1 regarded as a variety over Fq2 is
Frobenius supersingular.

This follows from

|X (Fq2)| = 1 + q2 + · · ·+ q4m + (b2m(X )− 1)q2m.
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Frobenius supersingular varieties

Problems

Problems on Frobenius supersingular varieties

Construct non-trivial examples.

Prove (or disprove) the unirationality.

Present explicitly algebraic cycles that generate the
cohomology ring.

Investigate the lattice given by the intersection pairing of
algebraic cycles.

Produce dense lattices by the intersection pairing in small
characteristics.

We discuss these problems
for the classical example of Fermat varieties of degree q + 1, and
for the new example of Frobenius incidence varieties.
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Frobenius supersingular varieties

Problems

Unirationality and Supersingularity

A variety X is called (purely-inseparably) unirational if there is a
dominant (purely-inseparable) rational map

Pn · ·→ X .

Theorem (Shioda)

Let S be a smooth projective surface defined over k = k̄. If S is
unirational, then the Picard number ρ(S) is equal to b2(S); that is,
S is supersingular in the sense of Shioda.

The converse is conjectured to be true for K3 surfaces.
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Frobenius supersingular varieties

Problems

Artin-Shioda conjecture

Every supersingular K3 surface S (in the sense of Shioda) is
conjectured to be (purely-inseparably) unirational.

The discriminant of the Néron-Severi lattice NS(S) is −p2σ(S),
where σ(S) is a positive integer ≤ 10, which is called the Artin
invariant of S .

The conjecture is confirmed to be true in the following cases:

p odd and σ(S) ≤ 2 (Ogus and Shioda):

p = 2 (Rudakov and Shafarevich, S.-):

p = 3 and σ(S) ≤ 6
(Rudakov and Shafarevich, S.- and De Qi Zhang):

p = 5 and σ(S) ≤ 3 (S.- and Pho Duc Tai).

Method: The structure theorem for NS(S) by
Rudakov-Shafarevich.
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Fermat varieties

Unirationality

Fermat variety of degree q + 1

Unirationality of the Fermat variety

Theorem (Shioda-Katsura, S.-)

The Fermat variety X of degree q + 1 and dimension n ≥ 2 in
characteristic p > 0 is purely-inseparably unirational, where q = pν .

Indeed, X contains a linear subspace Λ ⊂ Pn+1 of dimension [n/2].
The unirationality is proved by the projection from the center Λ.
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Fermat varieties

Terminologies about lattices

Lattice

By a quasi-lattice, we mean a free Z-module L of finite rank
with a symmetric bilinear form

( , ) : L× L → Z.

If the symmetric bilinear form is non-degenerate, we say that
L is a lattice.

If L is a quasi-lattice, then L/L⊥ is a lattice, where

L⊥ := { x ∈ L | (x , y) = 0 for all y ∈ L }.
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Fermat varieties

Lattice of algebraic cycles

Lattices associated with the Fermat varieties

The Fermat variety

X := {xq+1
0 + · · ·+ xq+1

2m+1 = 0} ⊂ P2m+1

of dimension 2m and degree q + 1 contains many m-dimensional
linear subspaces Λi . The number is

m∏

ν=0

(q2ν+1 + 1).

Each of them is defined over Fq2 .

Let Ñ (X ) ⊂ Am(X ) be the Z-module generated by the rational
equivalence classes of Λi , where A(X ) is the Chow ring.

By the intersection pairing

Ñ (X )× Ñ (X ) → Z,

we can consider Ñ (X ) as a quasi-lattice.
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Fermat varieties

Lattice of algebraic cycles

Let N (X ) := Ñ (X )/Ñ (X )⊥ be the associated lattice.

Theorem (Tate, S.-)

(1) The rank of N (X ) is equal to b2m(X ).
(2) The discriminant of N (X ) is a power of p.

Corollary

The cycle map induces an isomorphism N (X )⊗Ql
∼= H2m(X ,Ql).

The assertion (2) is an analogue of the result that the discriminant
of the Néron-Severi lattice NS(S) of a supersinglar K3 surface S is
a power of p.
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Fermat varieties

Lattice of algebraic cycles

Let h ∈ N (X ) be the numerical equivalence class of a linear plane
section X ∩ Pm+1.

We put

Nprim(X ) := { x ∈ N (X ) | (x , h) = 0 } = 〈h〉⊥.

Theorem

The lattice [−1]mNprim(X ) is positive-definite.

Here [−1]mNprim(X ) is the lattice obtained from Nprim(X ) by
changing the sign with (−1)m.
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Fermat varieties

Definition of dense lattices

Dense lattices

Let L be a positive-definite lattice of rank m.
The minimal norm of L is defined by

Nmin(L) := min{x2 | x ∈ L, x 6= 0},

and the normalized center density of L is defined by

δ(L) := (disc L)−1/2 · (Nmin(L)/4)m/2.

Minkowski and Hlawka proved in a non-constructive way that, for
each m, there is a positive-definite lattice L of rank m with

δ(L) > MH(m) :=
ζ(m)

2m−1Vm
,

where Vm is the volume of the m-dimensional unit ball.
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Fermat varieties

Definition of dense lattices

We say that a positive-definite lattice L of rank m is dense if

δ(L) > MH(m).

The intersection pairing of algebraic cycles in positive
characteristic has been used to construct dense lattices.

For example, Elkies and Shioda constructed many dense lattices as
Mordell-Weil lattices of elliptic surfaces in positive characteristics.
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Fermat varieties

Dense lattice in characteristic 2

Dense lattices arising from Fermat varieties

Let X be the Fermat cubic variety of dimension 2m
in characteristic 2.
Recall that X contains many m-dimensional linear subspaces Λi .

We consider the positive-definite lattice

〈[Λi ]− [Λj ]〉 ⊂ [−1]mNprim(X )

generated by the classes [Λi ]− [Λj ]. Their properties are as follows:

dimX rank Nmin log2 δ log2 MH name

2 6 2 −3.792... −7.344... E6

4 22 4 −1.792... −13.915... Λ22

6 86 8 34.207... 19.320... N86
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Frobenius incidence varieties

Definition

Frobenius incidence variety

We fix an n-dimensional linear space V over Fp with n ≥ 3.

We denote by Gn,l = Gn−l
n the Grassmannian variety of

l-dimensional subspaces of V .

Let F be a field of characteristic p, and consider an F -rational
linear subspace L ∈ Gn,l(F ) of V .

Let φ be the p th power Frobenius morphism of Gn,l . For a positive
integer ν, we put

L(pν) := φν(L).
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Frobenius incidence varieties

Definition

Let l and c be positive integers such that l + c < n.

We denote by Ic
n,l the incidence subvariety of Gn,l × G c

n :

Ic
n,l(F ) = { (L, M) ∈ Gn,l(F )× G c

n (F ) | L ⊂ M }.

Let r := pa and s := pb be powers of p by positive integers. We
define the Frobenius incidence variety X c

n,l by

X c
n,l := (φa × id)∗ Ic

n,l ∩ (id× φb)∗ Ic
n,l .

Then X c
n,l is defined over Fp, and we have

X c
n,l(F ) = { (L, M) ∈ Gn,l(F )× G c

n (F ) | L(r) ⊂ M and L ⊂ M(s) }
= { (L, M) ∈ Gn,l(F )× G c

n (F ) | L + L(rs) ⊂ M(s) }
= { (L, M) ∈ Gn,l(F )× G c

n (F ) | L(r) ⊂ M ∩M(rs) }.
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Frobenius incidence varieties

Frobenius supersingularity

Theorem

(1) The scheme X c
n,l is smooth and geometrically irreducible of

dimension (n − l − c)(l + c).

(2) If X c
n,l is regarded as a scheme over Frs , then X c

n,l is Frobenius
supersingular.

The smoothness of X c
n,l is proved by computing the dimension of

Zariski tangent spaces.

We prove the second assertion by counting the number of
F(rs)ν -rational points of X c

n,l .

We put
q := rs.
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Frobenius incidence varieties

Frobenius supersingularity

The main ingredient of the proof is the finite set

Tl ,d(q, qν) := { L ∈ Gn,l(Fqν ) | dim(L ∩ L(q)) = d }.
When l = d , we have Tl ,l(q, qν) = Gn,l(Fq) for any ν.

For d < l , we calculate the cardinality of the set

P := { (L, M) ∈ Gn,l(Fqν )× Gn,2l−d(Fqν ) | L + L(q) ⊂ M }
= { (L, M) ∈ Gn,l(Fqν )× Gn,2l−d(Fqν ) | L(q) ⊂ M ∩M(q) },

in two ways using the projections
P → Gn,l(Fqν ) and P → Gn,2l−d(Fqν ).
Then we get

|P| =
l∑

t=d

|Tl ,t(q, qν)| · |Gn−2l+t,t−d(Fqν )|

=
2l−d∑

u=l

|T2l−d ,u(q, qν)| · |Gu,l(Fqν )|.
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Frobenius incidence varieties

Frobenius supersingularity

By this equality, we obtain a recursive formula for |Tl ,d(q, qν)|.
Using the projection X c

n,l(Fqν ) → Gn,l(Fqν ), we obtain the
following:

|X c
n,l(Fqν )| =

l∑

d=0

|Tl ,d(q, qν)| · |G c
n−2l+d(Fqν )|.

By the recursive formula for |Tl ,d(q, qν)|, we prove that there is a
monic polynomial Nc

n,l(t) of degree (l + c)(n − l − c) such that

|X c
n,l(Fqν )| = Nc

n,l(q
ν).

Therefore X c
n,l is Frobenius supersingular.

Since Nc
n,l(t) is monic, X c

n,l is geometrically irreducible.
Moreover we obtain the Betti numbers of X c

n,l .
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Frobenius incidence varieties

Examples

Example

Let (x1 : · · · : xn) and (y1 : · · · : yn) be homogeneous coordinates of
Gn,1 = P∗(V ) and G 1

n = P∗(V ) that are dual to each other. Then
I1

n,1 = {∑ xiyi = 0}, and hence X 1
n,1 is defined by

{
x r
1 y1 + · · ·+ x r

n yn = 0,
x1 y s

1 + · · ·+ xn y s
n = 0.

The Betti numbers of X 1
n,1 are as follows:

b2i = b2(n−2)−2i =

{
i + 1 if i < n − 2,
n − 2 + (qn − 1)/(q − 1) if i = n − 2.

When r = s = 2 (and hence q = 4), X 1
3,1 is the supersingular K3

surface with Artin invariant 1 (Mukai’s model).
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Frobenius incidence varieties

Examples

Example

The Betti numbers of X 2
7,2 are calculated as follows:

b0 = b24 : 1
b2 = b22 : 2
b4 = b20 : 5
b6 = b18 : q6 + q5 + q4 + q3 + q2 + q + 8
b8 = b16 : 2 (q6 + q5 + q4 + q3 + q2 + q) + 12
b10 = b14 : 3 (q6 + q5 + q4 + q3 + q2 + q) + 14
b12 : q10 + q9 + 2 q8 + 2 q7 + 6 q6+

+6 q5 + 6 q4 + 5 q3 + 5 q2 + 4 q + 16.
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Frobenius incidence varieties

Unirationality

Unirationality of X c
n,l

Theorem

The Frobenius incidence variety X c
n,l is purely-inseparably

unirational.

Idea of the proof for the case 2l + c ≤ n.

We define X̃ ⊂ Gn,l × G c
n by

X̃ (F ) = { (L, M) | L ⊂ M, L(rs) ⊂ M }.

The projection X̃ → Gn,l is dominant. Using this projection, we

can show that X̃ is rational. The map (L, M) 7→ (L,M(s)) is a
dominant morphism from X̃ to X c

n,l .
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Frobenius incidence varieties

Algebraic cycles

Algebraic cycles on X l
n,l

Let Λ be an Frs -rational linear subspace of V such that
l ≤ dimΛ ≤ n − c. We define ΣΛ ⊂ Gn,l × G c

n by

ΣΛ(F ) := { (L,M) ∈ Gn,l(F )× G c
n (F ) | L ⊂ Λ and Λ(r) ⊂ M }.

It follows from Λ(rs) = Λ that ΣΛ is contained in X c
n,l .

When l = c , we have 2 dimΣΛ = dimX l
n,l .

We can calculate the intersection numbers of these ΣΛ on X l
n,l .
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Frobenius incidence varieties

Algebraic cycles

We consider the case where l = c = 1:

X 1
n,1 ⊂ P∗(V )× P∗(V ).

We put

H := Im( An−2(P∗(V )× P∗(V )) → An−2(X 1
n,1) ).

By the intersection pairing, we can consider the submodule

Ñ (X 1
n,1) := H+ 〈[ΣΛ]〉 ⊂ An−2(X 1

n,1)

as a quasi-lattice. Let

N (X 1
n,1) := Ñ (X 1

n,1)/Ñ (X 1
n,1)

⊥

be the associated lattice, and put

Nprim(X 1
n,1) := H⊥ ⊂ N (X 1

n,1).
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Frobenius incidence varieties

Algebraic cycles

Theorem

(1) The rank of N (X 1
n,1) is b2(n−2)(X

1
n,1).

(2) The discriminant of N (X 1
n,1) is a power of p.

(3) The lattice [−1]nNprim(X 1
n,1) is positive-definite.

Corollary

The cohomology ring of X 1
n,1 is generated by the classes of ΣΛ and

the image of A(P∗(V )× P∗(V )) → A(X 1
n,1).
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Frobenius incidence varieties

Dense lattices in characteristic 2

Dense lattices of rank 84 and 85

Theorem

Suppose that p = r = s = 2. Then Nprim(X 1
4,1) is an even

positive-definite lattice of rank 84, with discriminant 85 · 216, and
with minimal norm 8.

In fact, Nprim(X 1
4,1) is a section of a larger lattice MC of rank

85 = |P3(F4)|
constructed by the projective geometry over F4 and a code over

R := Z/8Z.

We put
T := P3(F4).

For S ⊂ T , we denote by vS ∈ RT and ṽS ∈ ZT the characteristic
functions of S .
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Frobenius incidence varieties

Dense lattices in characteristic 2

Let C ⊂ RT be the submodule generated by

22−k(vP − vP′),

where P and P ′ are F4-rational linear subspaces of P3 of dimension
k (k = 0, 1, 2), and let MC be the pull-back of C by ZT → RT .

We define a Q-valued symmetric bilinear form on ZT by

(ṽ{t}, ṽ{t′}) = δtt′/4 (t, t ′ ∈ T ).

Then MC ⊂ ZT is a lattice.

name rank disc Nmin log2 δ log2 MH

Nprim(X 1
4,1) 84 85 · 216 8 30.795... 17.546...

MC 85 220 8 32.5 18.429...

N86 86 3 · 216 8 34.207... 19.320...
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Frobenius incidence varieties

Dense lattices in characteristic 2

Thank you!
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