Supersingular K3 surfaces in characteristic 5

Ichiro Shimada

Hiroshima University

30 January, 2011, Naruto

Let X be a smooth minimal complete surface defined over a field k. We say that X is a K3 surface if

$$\Omega^2_X \cong \mathcal{O}_X$$
 and $h^1(\mathcal{O}_X) = 0.$

Examples of K3 surfaces:

- X → P²: a double cover branched along a smooth curve of degree 6.
- $X \subset \mathbb{P}^3$: a smooth quartic surface.
- $X \subset \mathbb{P}^4$: a smooth complete intersection of degree (2,3).
- $X \subset \mathbb{P}^5$: a smooth complete intersection of degree (2,2,2).
- X → A/⟨i⟩: the minimal resolution of the quotient of an abelian surface A by the involution i(x) = -x, where char k ≠ 2.

The Néron-Severi lattice NS(X) of X is the group of numerical equivalence classes of divisors on X with the intersection form.

Definition

A K3 surface X is supersingular (in the sense of Shioda) if the rank of the Néron-Severi lattice NS(X) is equal to $B_2(X) = 22$.

Supersingular K3 surfaces exist only in positive characteristics. Examples of supersingular K3 surfaces:

- $X \to \mathbb{P}^2$: the double cover branched along the Fermat sextic $x^6 + y^6 + z^6 = 0$ in characteristic 5.
- X ⊂ P³: the Fermat quartic surface w⁴ + x⁴ + y⁴ + z⁴ = 0 in characteristic 3.

If X is a supersingular K3 surface, then NS(X) is an even lattice of rank 22 with signature (1,21).

Theorem (Artin, Rudakov-Shafarevich)

Let X be a supersingular K3 surface in characteristic p > 0. Then there exists a positive integer $\sigma \le 10$ such that

$$\mathrm{NS}^{\vee}(X)/\mathrm{NS}(X)\cong (\mathbb{Z}/p\mathbb{Z})^{\oplus 2\sigma}$$

Definition

The positive integer σ is called the *Artin invariant* of *X*.

Theorem (Ogus, Rudakov-Shafarevich)

For any prime p, a supersingular K3 surface in characteristic p with the Artin invariant 1 is unique up to isomorphisms.

In fact, for a supersingular elliptic curve E in characteristic $p \neq 2$, the minimal resolution $X \rightarrow (E \times E)/\langle i \rangle$ of the quotient of $E \times E$ by the involution i(x) = -x is the supersingular K3 surface with the Artin invariant 1.

In this talk, we exhibit projective models of the supersingular K3 surface with the Artin invariant 1 in characteristic 5.

From now on, we work over an algebraically closed field k of characteristic 5.

For a polynomial $f \in k[x]$ of degree ≤ 6 , let $B_f \subset \mathbb{P}^2$ denote the projective plane curve of degree 6 whose affine part is defined by

$$y^5-f(x)=0.$$

(If deg f < 6, we add the line at infinity so that deg B_f is always 6.)

Theorem (Pho-S.)

If B_f has only simple singularities (ADE-singularities), then the minimal resolution $X_f \to Y_f$ of the double cover $Y_f \to \mathbb{P}^2$ branched along B_f is supersingular with Artin invariant ≤ 3 .

Conversely, for any supersingular K3 surface X with Artin invariant ≤ 3 , there is a polynomial f such that $X \cong X_f$.

Let $\omega \in \mathbb{F}_{25}$ be a root of $\omega^2 + \omega + 1 = 0$.

Theorem

The Artin invariant of X_f is 1 if and only if $B_f \subset \mathbb{P}^2$ is projectively isomorphic to one of the following. We put $f(x) = x^2(x-1)^2g(x)$.

No.	g	$\operatorname{Sing}(B_f)$
1	x(x-1)	$2E_8 + A_4$
2	X	$A_9 + E_8 + A_4$
3	x(x - 2)	$E_{8} + 3A_{4}$
4	1	$A_{9} + 3A_{4}$
5	$x + 2\omega + 3$	$A_{9} + 3A_{4}$
6	$x^2 - x + 2$	5 <i>A</i> 4
7	(x+1)(x+3)	$5A_4$
8	$x^2 - \omega x + \omega$	5 <i>A</i> 4
8	$x^2 - \bar{\omega}x + \bar{\omega}$	$5A_4$

These 9 models are not projectively isomorphic.

We have a similar description for the locus

```
\{ f \mid \text{the Artin invariant of } X_f \text{ is } 2 \},\
```

and hence we can calculate the Artin invariant of X_f from the polynomial f.

Problem

The supersingular K3 surface $X_F \to \mathbb{P}^2$ branched along

$$x^6 + y^6 + z^6 = 0$$

is also with Artin invariant 1. Write the birational maps between X_F and the 9 projective models.