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An algorithm to compute automorphism groups of K3 surfaces

Let X be an algebraic K3 surface.
We denote by SX the Néron-Severi lattice of X .

Suppose that X is defined over C, or is supersingular in odd
characteristic. Then, thanks to the Torelli-type theorem due to
Piatetski-Shapiro and Shafarevich (1971) and
Ogus (1978, 1983), we can study the automorphism group

Aut(X )

of X by SX .

We denote by O(SX ) the orthogonal group of SX . Then we
have a natural homomorphism

Aut(X ) → O(SX ).

It is known that this homomorphism has only a finite kernel.
We present an algorithm to give a finite set of generators of
the image of this homomorphism.
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We concentrate on complex K3 surfaces.

With the cup-product,

H := H2(X , Z)

is an even unimodular lattice of signature (3, 19). Let TX is
the orthogonal complement of SX = H ∩ H1,1 in H . Let
ωX ∈ TX ⊗ C be a non-zero holomorphic 2-form, and put

CX := { g ∈ O(TX ) | ωg
X = λ ωX for some λ ∈ C× }.

We denote by

Nef(X ) := { x ∈ SX ⊗ R | 〈x , [C ]〉 ≥ 0 for any curve C }

the nef cone of X , and put

Aut(Nef(X )) := { g ∈ O(SX ) | Nef(X )g = Nef(X ) }.
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Then we have:

Theorem. Via the natural actions of Aut(X ) on SX and TX ,
the group Aut(X ) is identified with the subgroup of

Aut(Nef(X )) × CX

consisting of pairs

(g , h) ∈ Aut(Nef(X )) × CX

such that g and h are restrictions of an element γ ∈ O(H) to
SX and TX , respectively.

Remark. There is a simple criterion for the existence of γ by
means of discriminant forms.
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Hence it is imprttant to calculate Aut(Nef(X )).

The nef cone Nef(X ) is bounded by the hyperplanes ([C ])⊥

perpendicular to the classes of (−2)-curves (that is, smooth
rational curves) on X .

The cases where Nef(X ) has only finitely many walls (⇐⇒
Aut(X ) is finite) were classified by Nikulin (1981, 2000) and
Vinberg (2007).

The fact that Aut(X ) is finitely generated was proved by
Sterk (1985) and Lieblich-Maulik (2011).
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Vinberg (1983) gave a set of generators of infinite Aut(X ) for
two most algebraic K3 surfaces.

Using an idea of Borcherds, Kondo (1998) gave a set of
generators of Aut of a generic Jacobian Kummer surface.

Since then, automorphism groups of several K3 surfaces have
been determined by this method:
Kondo-Keum (2001): Kummer surfaces of product type
Dolgachev-Keum (2002): Hessian quartics
Dolgachev-Kondo (2003): a supersingular K3 surface in char 2
Kondo-S. (2012): a supersingular K3 surface in char 3

Our method is a generalization of Borcherds-Kondo method.
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Example

Let X be a complex K3 surface with Picard number 3 (that is,
SX is of rank 3).
Suppose that X admits an elliptic fibration

φ : X → P1

with a section P1 → X . Considering this section as the origin,
we can consider the Mordell-Weil group MWφ.

We assume that MWφ is of rank 1 (that is, φ has no reducible
fibers).

Then the group Aut(X ) contains the subgroup

MWφ o {±1} ∼= (Z/2) ∗ (Z/2)

generated by the translations and the inversion.
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We denote by fφ ∈ SX the class of a fiber of φ : X → P1 and
by zφ ∈ SX the class of the zero section of φ.

Then there is v3 ∈ SX such that fφ, zφ, v3 form a basis of SX ,
and that the Gram matrix of SX with respect to fφ, zφ, v3 is

GramS =

 0 1 0
1 −2 0
0 0 −2k

 ,

where −2k := v 2
3 . (The number 2k is the discriminant of the

Mordell-Weil lattice of φ : X → P1.)
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We further assume that the period C ωX of X is sufficiently
generic. Then the natural homomorphism

Aut(X ) → O(SX ) ∼= { g ∈ GL3(Z) | g · GramS · tg = GramS }

is injective. The image of MWφ o {±1} ∼= (Z/2) ∗ (Z/2) is
generated by

h1 :=

 1 0 0
0 1 0
0 0 −1

 , h2 :=

 1 0 0
k 1 −1
2k 0 −1

 .
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Suppose that k = 11.
Then we need one more generator for Aut(X ):

h3 :=

 20 9 −3
7 2 −1

154 66 −23

 .

The set of (−2)-curves on X is decomposed into at most two
orbits under the action of Aut(X ). There is only one Jacobian
fibration on X modulo Aut(X ).
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The fundamental domain of Aut(X ) for the case k = 11 in
Nef(X ) in the projective disc model is as follows.
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Suppose that k = 12. Then we need two more generators:

h3 :=

 37 12 −5
36 13 −5
360 120 −49

 , h4 :=

 97 48 −14
0 1 0

672 336 −97

 .
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Generalized Borcherds-Kondo method.

Suppose that we have a primitive embedding

SX ↪→ L

of SX into an even unimodular hyperbolic lattice

L := II1,n−1

of rank n, where n = 10, 18 or 26. Let PL ⊂ L ⊗ R be the
positive cone of L containing Nef(X ). Then the hyperplanes
(r)⊥ in PL perpendicular to the vectors r ∈ L with r 2 = −2
decompose PL into a union of closed chambers, which we call
Conway chambers. They are fundamental domain of the
reflection group in O+(L). Conway (1983) described the shape
of Conway chambers.
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The tessellation of PL by the Conway chambers induces a
tessellation of PSX

= (SX ⊗ R) ∩ PL. We call the chambers of
this induced tessellation induced chambers.

Under certain conditions on SX ↪→ L, we have the following:

The decomposition by induced chambers is
O+(SX )-invariant.

The number of O+(SX )-orbits on the set of induced
chambers is finite.

The nef cone Nef(X ) is a union of induced chambers.

Each induced chamber has only finitely many walls, and
hence its automorphism group is finite.
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Therefore we can find all O+(SX )-congruence classes of
induced chambers, and hence we obtain the fundamental
domain.
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Remark.

Borcherds (1987) proved that, if the orthogonal complement
of SX in L is a root lattice, then the induced chambers are
O+(SX )-congruent to each other.

Remark.

We have applied our algorithm to the Néron-Severi lattice of
the complex Fermat quartic. There are too many
O+(SX )-congruence classes of induced chambers.

Remark.

The preprint is available from
http://arxiv.org/abs/1304.7427
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