An algorithm to compute automorphism groups of K3 surfaces

Ichiro Shimada

Hiroshima University

July 2013 Busan

Let X be an algebraic K3 surface.

We denote by S_X the Néron-Severi lattice of X.

Suppose that X is defined over \mathbb{C} , or is supersingular in odd characteristic. Then, thanks to the Torelli-type theorem due to Piatetski-Shapiro and Shafarevich (1971) and Ogus (1978, 1983), we can study the automorphism group

$\operatorname{Aut}(X)$

of X by S_X .

We denote by $O(S_X)$ the orthogonal group of S_X . Then we have a natural homomorphism

$$\operatorname{Aut}(X) \to \operatorname{O}(S_X).$$

It is known that this homomorphism has only a finite kernel. We present an algorithm to give a finite set of generators of the image of this homomorphism. We concentrate on **complex** K3 surfaces.

With the cup-product,

$$H:=H^2(X,\mathbb{Z})$$

is an even unimodular lattice of signature (3, 19). Let T_X is the orthogonal complement of $S_X = H \cap H^{1,1}$ in H. Let $\omega_X \in T_X \otimes \mathbb{C}$ be a non-zero holomorphic 2-form, and put

$$\mathcal{C}_X := \{ \ g \in \mathrm{O}(\mathcal{T}_X) \ | \ \omega_X^g = \lambda \, \omega_X \ \text{ for some } \ \lambda \in \mathbb{C}^{\times} \}.$$

We denote by

 $\operatorname{Nef}(X) := \{ x \in S_X \otimes \mathbb{R} \mid \langle x, [C] \rangle \ge 0 \text{ for any curve } C \}$

the nef cone of X, and put

$$\operatorname{Aut}(\operatorname{Nef}(X)) := \{ g \in \operatorname{O}(S_X) \mid \operatorname{Nef}(X)^g = \operatorname{Nef}(X) \}.$$

Then we have:

Theorem. Via the natural actions of Aut(X) on S_X and T_X , the group Aut(X) is identified with the subgroup of

 $Aut(Nef(X)) \times C_X$

consisting of pairs

$$(g,h) \in Aut(Nef(X)) \times C_X$$

such that g and h are restrictions of an element $\gamma \in O(H)$ to S_X and T_X , respectively.

Remark. There is a simple criterion for the existence of γ by means of discriminant forms.

Hence it is imprtant to calculate Aut(Nef(X)).

The nef cone Nef(X) is bounded by the hyperplanes $([C])^{\perp}$ perpendicular to the classes of (-2)-curves (that is, smooth rational curves) on X.

The cases where Nef(X) has only finitely many walls (\iff Aut(X) is finite) were classified by Nikulin (1981, 2000) and Vinberg (2007).

The fact that Aut(X) is finitely generated was proved by Sterk (1985) and Lieblich-Maulik (2011).

Vinberg (1983) gave a set of generators of infinite Aut(X) for two most algebraic K3 surfaces.

Using an idea of Borcherds, Kondo (1998) gave a set of generators of Aut of a generic Jacobian Kummer surface.

Since then, automorphism groups of several K3 surfaces have been determined by this method:

Kondo-Keum (2001): Kummer surfaces of product type Dolgachev-Keum (2002): Hessian quartics Dolgachev-Kondo (2003): a supersingular K3 surface in char 2 Kondo-S. (2012): a supersingular K3 surface in char 3

Our method is a generalization of Borcherds-Kondo method.

Example

Let X be a complex K3 surface with Picard number 3 (that is, S_X is of rank 3).

Suppose that X admits an elliptic fibration

$$\phi: X \to \mathbb{P}^1$$

with a section $\mathbb{P}^1 \to X$. Considering this section as the origin, we can consider the Mordell-Weil group MW_{ϕ} .

We assume that MW_{ϕ} is of rank 1 (that is, ϕ has no reducible fibers).

Then the group Aut(X) contains the subgroup

$$\mathrm{MW}_{\phi} \rtimes \{\pm 1\} \cong (\mathbb{Z}/2) * (\mathbb{Z}/2)$$

generated by the translations and the inversion.

We denote by $f_{\phi} \in S_X$ the class of a fiber of $\phi : X \to \mathbb{P}^1$ and by $z_{\phi} \in S_X$ the class of the zero section of ϕ .

Then there is $v_3 \in S_X$ such that f_{ϕ}, z_{ϕ}, v_3 form a basis of S_X , and that the Gram matrix of S_X with respect to f_{ϕ}, z_{ϕ}, v_3 is

$$\operatorname{Gram}_{\mathcal{S}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -2k \end{bmatrix},$$

where $-2k := v_3^2$. (The number 2k is the discriminant of the Mordell-Weil lattice of $\phi : X \to \mathbb{P}^1$.)

We further assume that the period $\mathbb{C} \omega_X$ of X is sufficiently generic. Then the natural homomorphism

$$\operatorname{Aut}(X) \to \operatorname{O}(S_X) \cong \{ g \in \operatorname{GL}_3(\mathbb{Z}) \mid g \cdot \operatorname{Gram}_S \cdot {}^tg = \operatorname{Gram}_S \}$$

is injective. The image of $MW_{\phi} \rtimes \{\pm 1\} \cong (\mathbb{Z}/2) * (\mathbb{Z}/2)$ is generated by

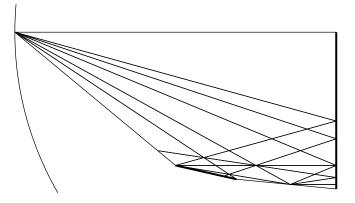
$$h_1 := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad h_2 := \begin{bmatrix} 1 & 0 & 0 \\ k & 1 & -1 \\ 2k & 0 & -1 \end{bmatrix}$$

Suppose that k = 11. Then we need one more generator for Aut(X):

$$h_3 := \left[\begin{array}{rrrr} 20 & 9 & -3 \\ 7 & 2 & -1 \\ 154 & 66 & -23 \end{array} \right]$$

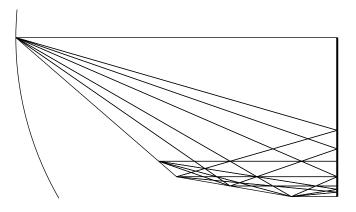
The set of (-2)-curves on X is decomposed into at most two orbits under the action of Aut(X). There is only one Jacobian fibration on X modulo Aut(X).

The fundamental domain of Aut(X) for the case k = 11 in Nef(X) in the projective disc model is as follows.



Suppose that k = 12. Then we need two more generators:

$$h_3 := \begin{bmatrix} 37 & 12 & -5 \\ 36 & 13 & -5 \\ 360 & 120 & -49 \end{bmatrix}, \quad h_4 := \begin{bmatrix} 97 & 48 & -14 \\ 0 & 1 & 0 \\ 672 & 336 & -97 \end{bmatrix}$$



Generalized Borcherds-Kondo method.

Suppose that we have a primitive embedding

$$S_X \hookrightarrow L$$

of S_X into an even **unimodular** hyperbolic lattice

$$L := II_{1,n-1}$$

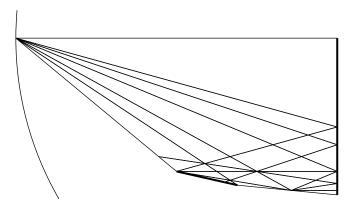
of rank *n*, where n = 10, 18 or 26. Let $\mathcal{P}_L \subset L \otimes \mathbb{R}$ be the positive cone of *L* containing Nef(*X*). Then the hyperplanes $(r)^{\perp}$ in \mathcal{P}_L perpendicular to the vectors $r \in L$ with $r^2 = -2$ decompose \mathcal{P}_L into a union of closed chambers, which we call *Conway chambers*. They are fundamental domain of the reflection group in O⁺(*L*). Conway (1983) described the shape of Conway chambers.

The tessellation of \mathcal{P}_L by the Conway chambers induces a tessellation of $\mathcal{P}_{S_X} = (S_X \otimes \mathbb{R}) \cap \mathcal{P}_L$. We call the chambers of this induced tessellation *induced chambers*.

Under certain conditions on $S_X \hookrightarrow L$, we have the following:

- The decomposition by induced chambers is $O^+(S_X)$ -invariant.
- The number of $O^+(S_X)$ -orbits on the set of induced chambers is finite.
- The nef cone Nef(X) is a union of induced chambers.
- Each induced chamber has only finitely many walls, and hence its automorphism group is finite.

Therefore we can find all $O^+(S_X)$ -congruence classes of induced chambers, and hence we obtain the fundamental domain.



Remark.

Borcherds (1987) proved that, if the orthogonal complement of S_X in L is a root lattice, then the induced chambers are $O^+(S_X)$ -congruent to each other.

Remark.

We have applied our algorithm to the Néron-Severi lattice of the complex Fermat quartic. There are too many $O^+(S_X)$ -congruence classes of induced chambers.

Remark.

The preprint is available from http://arxiv.org/abs/1304.7427