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Example
Consider two surfaces S+ and S− in C3 defined by

w2(G (x , y)±
√
5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y2 − 64 x2y

+10 x2 + 108 xy3 − 20 xy2 − 44 y5 + 10 y4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y2 +

+20 x2y − 40 xy3 + 20 y5.

Since S+ and S− are conjugate by Gal(Q(
√
5)/Q),

they can not be distinguished algebraically.
But S+ and S− are not homeomorphic (in the classical topology).

Many examples of non-homeomorphic conjugate complex varieties
are known since Serre (1964).
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Introduction

Definition

A smooth projective surface X is called a K3 surface if

∃ a nowhere vanishing holomorphic 2-form ωX on X , and

π1(X ) = {1}.

We consider the following geometric problems on K3 surfaces:

enumerate elliptic fibrations on a given K3 surface,

enumerate elliptic K3 surfaces up to some equivalence
relation,

enumerate projective models of a given K3 surface,

enumerate projective models of K3 surfaces,

determine the automorphism group of a given K3 surface,

. . . .
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The aim of this talk

Thanks to the theory of period mapping for K3 surfaces and the
Torelli-type theorem due to Piatetski-Shapiro and Shafarevich,
some of these problems are reduced to computational problems in
lattice theory, and the latter can often be solved by means of
computer.

In this talk, we explain how to use lattice theory and computer in
the study of K3 surfaces.

We then demonstrate this method on the problems of constructing
Zariski pairs of plane curves of degree 6.
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A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form

⟨ ⟩ : L× L → Z.

Let L be a lattice of rank n. We choose a basis e1, . . . , en of L.
The lattice L is given by the Gram matrix

G := (⟨ei , ej⟩)i ,j=1,...,n .

O(L) is the group of all isometries of L.

L is unimodular if detG = ±1.

The signature sgn(L) is the signature of the real quadratic
space L⊗ R.
A lattice L is said to be hyperbolic if sgn(L) = (1, n − 1), and
is positive-definite if sgn(L) = (n, 0).

A lattice L is even if v2 ∈ 2Z for all v ∈ L.

A sublattice L′ of L is primitive if L/L′ is torsion free.
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Lattices associated to a K3 surface

K3 surfaces are diffeomorphic to each other.

Suppose that X is a K3 surface.
Then H2(X ,Z) with the cup product is an even unimodular lattice
of signature (3, 19), and hence is isomorphic to the K3 lattice

U⊕3 ⊕ E−⊕2
8 ,

where U is the hyperbolic plane with a Gram matrix(
0 1
1 0

)
,

and E−
8 is the negative definite root lattice of type E8.
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−2 0 0 1 0 0 0 0

0 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

1 0 1 −2 1 0 0 0

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2


The Gram matrix of E−

8
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The Néron-Severi lattice

SX := H2(X ,Z) ∩ H1,1(X )

is the sublattice of H2(X ,Z) generated by classes of curves on X ,
which is primitive. It is an even hyperbolic lattice of rank ≤ 20.
Moreover the sublattice SX of H2(X ,Z) is primitive.

Our goal is to extract geometric information of X from the Gram
matrix of SX .

Problem

Suppose that an even hyperbolic lattice S of rank ≤ 20 is given.
Is there a K3 surface X such that S ∼= SX ?
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By the surjectivity of the period map, we have the following:

Theorem

Let S be a primitive hyperbolic sublattice of U⊕3 ⊕ E−⊕2
8 . Then

there exists a K3 surface X such that S ∼= SX .

Problem

Suppose that an even lattice L and an even unimodular lattice M
are given. Can L be embedded into M primitively?

A lattice L is canonically embedded into its dual lattice

L∨ := Hom(L,Z)

as a submodule of finite index. The finite abelian group

DL := L∨/L

is called the discriminant group of L.
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The symm. bil. form on L extends to a Q-valued symm. bil. form
on L∨, and it defines a finite quadratic form

qL : DL → Q/2Z, x̄ 7→ x2 mod 2Z.

The calculation of (DL, qL). Let G be a Gram matrix of L. We
have U,V ∈ GLn(Z) such that

VGU−1 =

 d1
. . .

dn

 ,

with 1 = d1 = · · · = dk < dk+1 ≤ · · · ≤ dn. Then

DL
∼=

⊕
i>k

Z/(di ).

The ith row vector of U, regarded as an element of L∨ with respect
to the dual basis e∨1 , . . . , e

∨
n , generate the factor Z/(di ) of DL.
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Theorem (Hasse principle)

Suppose that s+, s− ∈ Z≥0 and a finite quadratic form (D, q) are
given. We can determine by an effective method whether there
exists an even lattice L such that sgn(L) = (s+, s−) and
(DL, qL) ∼= (D, q).

Theorem

Let M be an even unimodular lattice. We can see whether
∃ a primitive embedding L ↪→ M
by seeing whether
∃ the “orthogonal complement” of L in M,
which is characterized by the signature and the discriminant form.

Corollary

We can determine whether a given even hyperbolic lattice of rank
≤ 20 is a Néron–Severi lattice of a K3 surface X or not.
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Polarized K3 surfaces

We consider the projective models of X . For h ∈ SX ∼= Pic(X ), let
Lh → X be a line bundle whose class is h.

Definition

A vector h ∈ SX of h2 = d > 0 is a polarization of degree d if
|Lh| ̸= ∅ and has no fixed-components.

Let h be a polarization of degree d . Then |Lh| defines
Φh : X → P1+d/2. We denote by

X −→ Xh −→ P1+d/2

the Stein factorization of Φh. The normal surface Xh is the
projective model of (X , h), and has only rational double points as
its singularities.
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Example

A plane curve B ⊂ P2 is a simple sextic if B is of degree 6 and has
only simple singularities (ADE -singularities). Let B be a simple
sextic, and YB → P2 the double covering branched along B. The
minimal resolution XB of YB is a K3 surface.

We denote by
ΦB : XB → YB → P2

the composite of the min. resol. and the double covering, and by
hB ∈ SXB

the class of the pull-back of a line. Then hB is a
polarization of degree 2, and YB is its projective model.
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Problem

Suppose that h ∈ SX with h2 > 0 is given. Is h a polarization?
If so, what is the ADE-type of SingXh?

We consider the second problem first. Suppose that h is a
polarization.

Proposition

The ADE-type of SingXh is equal to the ADE-type of the root
system {r ∈ SX | ⟨h, r⟩ = 0, ⟨r , r⟩ = −2}.

The sublattice {x ∈ SX | ⟨h, x⟩ = 0} is negative-definite.

Problem

Given a positive-definite lattice L. Calculate the set
{r ∈ L | ⟨r , r⟩ = 2}.
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For a triple QT := [Q, λ, c], where

Q is a pos-def n × n symmetric matrix with entries in Q,

λ is a column vector of length n with entries in Q,

c ∈ Q,

we define FQT : Rn → R by

FQT (v) := v Q tv + 2 v λ+ c .

We have an algorithm to calculate the finite set

E (QT ) := { v ∈ Zn | FQT (v) ≤ 0 }.

Corollary

When a polarization h is given, we can determine the ADE-type of
SingXh.
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Let L be an even hyperbolic lattice. Let PL be one of the two
connected components of {x ∈ L⊗ R | x2 > 0}.
For v ∈ L⊗ R with v2 < 0, we put

(v)⊥ := { x ∈ PL | ⟨x , v⟩ = 0 }.

We put
RL := { r ∈ L | r2 = −2 }.

Each r ∈ RL defines a reflection sr ∈ O(L) into (r)⊥:

sr : x 7→ x + ⟨x , r⟩r .

The closure in PL of each connected component of

PL \
∪

r∈RL
(r)⊥

is a standard fundamental domain of the action on PL of

W (L) := ⟨ sr | r ∈ RL ⟩.
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Let P(X ) ⊂ SX ⊗ R be the positive cone that contains an ample
class (e.g., the class of a hyperplane section).

Proposition

By Riemann-Roch, we see that the cone

N(X ) := {x ∈ P(X ) | ⟨x , [C ]⟩ ≥ 0 for any curve C on X }.

is a std. fund. domain of the action of W (SX ) on P(X ).

It is obvious that, if h is a polarization, then h ∈ N(X ). For the
converse, we need an additional condition. For example,

Proposition

A vector h ∈ SX with h2 = 2 is a polarization of degree 2 if and
only if h ∈ N(X ) and {e ∈ SX | e2 = 0, ⟨e, h⟩ = 1} = ∅.
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Problem

Suppose that h ∈ SX with h2 > 0 is given.
Does h belong to N(X )?

When we have an ample vector h0 ∈ N(X ), this problem is reduced
to the following:

Problem

Suppose that we are given vectors h0, h ∈ PL. Calculate the set

{ r ∈ L | ⟨r , h0⟩ > 0, ⟨r , h⟩ < 0, ⟨r , r⟩ = −2 }.

There is an algorithm for this task.
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h
h0

x2 = −2

(h)⊥

(h0)
⊥
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Zariski pairs

For a simple sextic B ⊂ P2,

RB : the ADE -type of SingB,

degsB : the list of degrees of irreducible components of B.

We say that B and B ′ are of the same config type and write
B ∼cfg B ′ if

RB = RB′ , degsB = degsB ′,

their intersection patterns of irreducible comps are same.

Example

Zariski showed the existence of a pair [B,B ′] such that

RB = RB′ = 6A2, degsB = degsB ′ = [6], and

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3), π1(P2 \ B ′) ∼= Z/(2)× Z/(3).
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For a simple sextic B with

ΦB : XB → YB → P2,

let EB be the set of exceptional curves of XB → YB , and let

ΣB := ⟨ [E ] | E ∈ EB ⟩ ⊕ ⟨hB⟩ ⊂ SXB
⊂ H2(XB ,Z),

where hB is the class of the pull-back of a line. We denote the
primitive closure of ΣB by

ΣB ⊂ SXB
⊂ H2(XB ,Z).

After the partial results by Urabe, Yang (1996) made the complete
list configuration type of simple sextics by classifying all such ΣB ,
and found 11159 types.
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We write B ∼emb B ′ if there exists a homeomorphism

ψ : (P2,B) →∼ (P2,B ′).

We have B ∼emb B ′ =⇒ B ∼cfg B ′.

# of config types = 11159 < # of emb-top types =?

Definition

A Zariski pair is a pair [B,B ′] of simple sextics such that
B ∼cfg B ′ but B ̸∼embB

′.
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We consider the finite abelian group

G (B) := ΣB/ΣB .

We put
ΘB := (ΣB ⊂ H2(XB ,Z))⊥.

Theorem

If B ∼emb B ′, then ΘB
∼= ΘB′ .

In fact, ΘB is a topological invariant of the open surface

UB := Φ−1
B (P2 \ B) ⊂ XB ,

because we have ΘB
∼= H2(UB ,Z)/Ker, where

Ker := { v ∈ H2(UB) | ⟨v , x⟩ = 0 for all x ∈ H2(UB) }.
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Since Θ⊥
B = ΣB , the discriminant groups of ΣB and ΘB are

isomorphic,

Corollary

If B ∼cfg B ′ but |G (B)| ̸= |G (B ′)|, then B ̸∼embB
′.

This corollary produces many examples of Zariski pairs.

Example

In Zariski’s example [B,B ′] with RB = RB′ = 6A2,
degsB = degsB ′ = [6] and

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3), π1(P2 \ B ′) ∼= Z/(2)× Z/(3),

we have G (B) ∼= Z/3Z and G (B ′) = 0.
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Singular K3 surfaces

Definition

A K3 surface X is called singular if rank(SX ) = 20.

Theorem (Shioda and Inose)

The map
X 7→ T (X ) := (SX ⊂ H2(X ,Z))⊥

is a bijection from the set of isom. classes of singular K3 surfaces
to the set of isom. classes of oriented pos.-definite even lattices of
rank 2.

In fact, Shioda and Inose gave a recipe to construct the singular
K3 surface X form the lattice T (X ).
In particular, every singular K3 surface X is defined over Q, and a
Gram matrix of SX is always available.
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Theorem (S. and Schütt)

Let X and X ′ be singular K3 surfaces defined over Q such that
qT (X )

∼= qT (X ′). Then there exists σ ∈ Gal(Q/Q) such that
X ′ ∼= X σ.

If B is a simple sextic with total Milnor number 19, then XB is a
singular K3 surface with ΘB

∼= T (XB).

Corollary

Let B be a simple sextic with total Milnor number 19 defined over
Q. If the genus containing T (XB) contains more than one isom.
class of lattices, then ∃ σ ∈ Gal(Q/Q) such that B ̸∼embB

σ.

Thus we obtain example of arithmetic Zariski pairs.
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The first example revisited
Consider the config type of sextics B = L+ Q, where

deg L = 1, degQ = 5,

L and Q are tangent at one point with multiplicity 5
(A9-singularity), and

Q has one A10-singular point.

Such sextics are projectively isomorphic to

z · (G (x , y , z)±
√
5 · H(x , y , z)) = 0,

where G (x , y , z) and H(x , y , z) are homogenizations of the
polynoms in the 1st slide with L = {z = 0}.
The genus containing T (XB) consists of[

2 1
1 28

]
(for +

√
5),

[
8 3
3 8

]
(for −

√
5).
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Example
Consider two surfaces S+ and S− in C3 defined by

w2(G (x , y)±
√
5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y2 − 64 x2y

+10 x2 + 108 xy3 − 20 xy2 − 44 y5 + 10 y4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y2 +

+20 x2y − 40 xy3 + 20 y5.

Since S+ and S− are conjugate by Gal(Q(
√
5)/Q),

they can not be distinguished algebraically.
But S+ and S− are not homeomorphic (in the classical topology).

Many examples of non-homeomorphic conjugate complex varieties
are known since Serre (1964).
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