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1. Introduction

In this note, we explain Borcherds method to calculate the automorphism

group of a certain chamber in a hyperbolic space associated with an even hy-

perbolic lattice, and its application to the study of the automorphism groups

of K3 surfaces. We then present some examples of our computations. See the

preprint [18] for details.

2. Borcherds method

First we fix some terminologies and notation. Let S be a lattice; that is, S is

a free Z-module of finite rank with a non-degenerate symmetric bilinear form

〈 , 〉 : S × S → Z.

We say that S is hyperbolic if S ⊗R is of signature (1, n− 1). A positive cone of

a hyperbolic lattice S is one of the two connected components of

{ x ∈ S ⊗ R | x2 > 0 }.

Let P(S) be a positive cone of a hyperbolic lattice S. The stabilizer subgroup in

O(S) of P(S) is denoted by O+(S). We say that S is even if x2 ∈ 2Z holds for

any x ∈ S. Suppose that S is even. A root is a vector r ∈ S such that r2 = −2.

Each root r ∈ S defines a reflection

sr : x 7→ x + 〈x, r〉r.

We denote by W (S) the subgroup of O+(S) generated by all the reflections sr

with respect to the roots. Then W (S) is a normal subgroup of O+(S), and W (S)

acts on P(S). For v ∈ S ⊗ R with v2 < 0, we put

(v)⊥ := { x ∈ P(S) | 〈x, v〉 = 0 }.

Let N be the closure in P(S) of a connected component of

P(S) \
∪

r2=−2

(r)⊥,
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and we consider its automorphism group

Aut(N) := { g ∈ O+(S) | N g = N }.

(We let O(S) act on S ⊗ R from the right.) Then N is a standard fundamental

domain of the action of W (S) on P(S), and O+(S) is the semi-direct product

W (S) o Aut(N). Let G be a subgroup of O+(S) with finite index. Borcherds

method [1, 2] is a method to calculate a finite set of generators of

Aut(N) ∩ G

by embedding S into an even hyperbolic unimodular lattice of rank n = 10, 18

or 26 primitively.

Remark 2.1. The lattices for which Aut(N) is finite are classified by Nikulin [11,

12] and Vinberg [23]. Therefore we will be concerned with the cases where

Aut(N) is infinite.

Borcherds method is based on the theory of Weyl vectors due to Conway [3].

Let Ln denote the even hyperbolic unimodular lattice of rank n = 10, 18 or 26.

Then Ln is unique up to isomorphisms. Let D be the closure in P(Ln) of a

connected component of

P(Ln) \
∪

r2=−2

(r)⊥,

which is a standard fundamental domain of the action of W (Ln) on P(Ln). We

call D a Conway chamber. We say that a vector w ∈ Ln is a Weyl vector of D if

{ (r)⊥ | r2 = −2, 〈w, r〉 = 1 }

is the set of walls of D.

Theorem 2.2 (Conway [3]). A Weyl vector exists.

In fact, Conway [3] gave an explicit description of Weyl vectors.

Example 2.3. Let U denote the hyperbolic plane with a Gram matrix(
0 1

1 0

)
,

and let Λ be the negative-definite Leech lattice. Then we have L26
∼= U ⊕ Λ.

Under this isomorphism, we denote vectors of L26 by (x, y, λ), where (x, y) ∈ U

and λ ∈ Λ. Then w0 := (1, 0, 0) is a Weyl vector of a Conway chamber D0. The

set of walls of D0 is equal to {(r)⊥ | r ∈ R0}, where

R0 := { (−1 − λ2/2, 1, λ) | λ ∈ Λ }.

Hence Aut(D0) ⊂ O+(L26) is isomorphic to the Conway group Co∞.
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Suppose that we are given the following objects:

• an even hyperbolic lattice S of rank < 26,

• a subgroup G ⊂ O+(S) of finite index, and

• a standard fundamental domain N of the action of W (S) on P(S).

We assume that S is embedded in Ln primitively, and that any element of G can

be extended to an isometry of Ln. (In the actual application to the study of K3

surfaces, the second condition can be easily checked by the theory of discriminant

forms.) Moreover, when n = 26, we further assume that the orthogonal comple-

ment R of S in L26 cannot be embedded into Λ. (This condition is satisfied if R

has a vector of square norm −2.)

A Conway chamber D is said to be S-nondegenerate if D := D ∩ P(S) con-

tains a non-empty open subset of P(S). In this case, we say that D is an induced

chamber. Since P(Ln) is tiled by Conway chambers, P(S) is tiled by induced

chambers. Moreover, since a root of S is a root of Ln, the given standard fun-

damental domain N in P(S) is a union of induced chambers. Two induced

chambers D and D′ are said to be G-congruent if there exists g ∈ G such that

D′ = Dg.

Proposition 2.4. The number of G-congruence classes of induced chambers is

finite.

Proposition 2.5. The number of walls of an induced chamber D = D∩P(S) is

finite, and we can calculate the set of walls of D from the Weyl vector of D.

Hence Aut(D) ∩ G = {g ∈ G |Dg = D} is finite for any induced chamber D.

Moreover, for two induced chambers D and D′, we can determine whether D

and D′ are G-congruent or not.

Borcherds method makes a complete list D of representatives of all G-congruence

classes of induced chambers contained in N . We start from an induced chamber

D0 contained in N , set Γ := {} and D := [D0], and proceed as follows. For an

induced chamber Di ∈ D = [D0, . . . , Dk], we calculate the set of walls of Di and

the finite group Aut(Di) ∩ G. We append a set of generators of Aut(Di) ∩ G to

Γ. For each wall (v)⊥ of Di that is not a wall of N , we calculate the induced

chamber D′ adjacent to Di along (v)⊥, and determine whether D′ is G-congruent

to some Dj ∈ D. If there are no such Dj, then we set Dk+1 := D′ and append it

to D as a representative of a new G-congruence class. If there exist Dj ∈ D and

h ∈ G such that D′ = Dh
j , then we append h to Γ. We repeat this process until

we reach the end of the list D. By Proposition 2, this algorithm terminates.
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Then the group Aut(N) ∩ G is generated by the elements in the finite set Γ.

Moreover, for each D ∈ D, let F (D) ⊂ D be a fundamental domain of the action

of the finite group Aut(D)∩G on D. Then their union
∪

F (D) is a fundamental

domain of the action of Aut(N) ∩ G on N .

3. The automorphism group of a K3 surface

Let X be a complex algebraic K3 surface, or a supersingular K3 surface in odd

characteristic. In virtue of the Torelli-type theorem due to Piatetski-Shapiro and

Shafarevich [15] and Ogus [13, 14], we can study Aut(X) by the Néron-Severi

lattice SX of X. Using Borcherds method, we will obtain a finite set of generators

of the image the natural homomorphism

ϕX : Aut(X) → O(SX).

For simplicity, we concentrate upon a complex algebraic K3 surface X. Then

we have

SX := { [D] ∈ H2(X, Z) | D is a divisor of X }.
Note that SX is an even hyperbolic lattice. Let P(SX) be the positive cone of

SX containing an ample class, and we put

N(X) := { x ∈ P(SX) | 〈x, [C]〉 ≥ 0 for any curve C on X }.

Then N(X) is bounded by ([C])⊥, where C runs through the set of smooth

rational curves on X. Since C2 = −2 for any smooth rational curve C on X,

the domain N(X) is a standard fundamental domain of the action of the Weyl

group W (SX) on P(SX). (See [16], for example.) By Torelli theorem due to

Piatetski-Shapiro and Shafarevich [15], the natural homomorphism ϕX has only

finite kernel. Let Gω denote the subgroup of O+(SX) consisting of elements

g ∈ O+(SX) that lift to a Hodge isometry of H2(X, Z). Note that Gω is of finite

index in O+(SX). Then we have

Im ϕX := Aut(N(X)) ∩ Gω.

Therefore, applying Borcherds method, we can calculate a finite set of generators

of Im ϕX .

Example 3.1. The first application was done by Kondo [9]. Let C be a generic

genus 2 curve, and let Jac(C) be the Jacobian variety of C. We consider the

Kummer surface

X := Km(Jac(C))

associated with Jac(C); that is, X is the minimal resolution of the quotient

Jac(C)/〈ι〉 with 16 ordinary nodes, where ι is the inversion x 7→ −x of Jac(C).
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Let p0, . . . , p5 be the Weierstrass points of C, and let Θ0 be the image of

C ↪→ Jac(C) = Pic0(C)

given by p 7→ [p − p0]. For a 2-torsion point t of Jac(C), let Θt denote the

translate of Θ0 by t. Then Θt/〈ι〉 is a rational curve passing through exactly 6

points of the 16 ordinary nodes of Jac(C)/〈ι〉. Let Dt be the strict transform of

Θt/〈ι〉 by the minimal resolution X → Jac(C)/〈ι〉, and let Et be the exceptional

curve over the node of Jac(C)/〈ι〉 corresponding to t. Since we have assumed

that C is generic, these 32 = 16 + 16 curves {Dt, Ct} on X generate the Néron-

Severi lattice SX of X. We have rank(SX) = 17 and disc(SX) = 64. On the

other hand, the subgroup Gω is of index 32 in O+(SX).

We embed SX into L26 = U ⊕Λ, where U is the hyperbolic plane and Λ is the

Leech lattice. Then, at the end of the Borcherds method, we have D = {D0},
and |Aut(D0) ∩ Gω| = 32. The induced chamber D0 has 316 walls, which are

decomposed by the action of Aut(D0) ∩ Gω into 23 orbits as

316 = 32 × 1 + 4 × 15 + 32 × 7 (23 = 1 + 15 + 7).

The first orbit consists of 32 walls of N(X), and corresponds to the set {Dt, Ct}
of smooth rational curves on X. From the other 22 orbits, we obtain extra

automorphisms. Hence the image of ϕX : Aut(X) → O(SX) is generated by the

finite group Aut(D0) ∩ Gω and those 22 extra automorphisms.

Since this work, automorphism groups of the following K3 surfaces have been

determined by this method;

• the supersingular K3 surface in characteristic 2 with Artin invariant 1 by

Dolgachev and Kondo [4],

• complex Kummer surfaces of product type by Keum and Kondo [8],

• the Hessian quartic surface by Dolgachev and Keum [5],

• the singular K3 surface X with disc TX = 7 by Ujikawa [21], where TX is

the transcendental lattice of X, and

• the supersingular K3 surface in characteristic 3 with Artin invariant 1 by

Kondo and Shimada [10].

The classical result of Vinberg [22] can be also treated by this method.

However, in all these cases, there exists only one G-congruence classes, and

the computation is very easy. In fact, Borcherds [1, Lemma 5.1] proved the

following:

Lemma 3.2 (Borcherds). If the orthogonal complement R of S in L26 is a root

lattice, then any two induced chambers are O+(S)-congruent.
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4. New Examples

We have written Borcherds method using the C library gmp [6], and carried

out the computation in some cases with many G-congruence classes. It turns

out that, in the case where the orthogonal complement R of S in L26 is not a

root lattice, the number of G-congruence classes of induced chambers can be

very large.

Our main algorithm contains sub-algorithms that calculate the set of walls of

a given induced chamber, compute the adjacent induced chamber along a given

wall, and determine whether an induced chamber is G-congruent to another

induced chamber. In these algorithms, we use methods given in our previous

paper [17]. In order to calculate the set of walls of an induced chamber, we had

to employ the standard algorithm of linear programming.

Example 4.1. Let X be a K3 surface with rank(SX) = 20 and disc(SX) = 11.

Then the transcendental lattice TX of X has a Gram matrix[
2 1

1 6

]
,

and X is unique up to isomorphisms by the theorem of Shioda and Inose [20].

We embed SX into L26 = U ⊕ E8 ⊕ E8 ⊕ E8. Then we have |D| = 1098. The

domain
∪

D has 719 walls, among which 347 are walls of N(X). In particular,

the action of Aut(X) on the set of smooth rational curves on X has at most 347

orbits. The output Γ consists of 789 elements.

Example 4.2. Let X be a K3 surface with rank(SX) = 20 and disc(SX) = 15,

which is unique up to isomorphisms. Then we have |D| = 2051. The output Γ

consists of 1098 elements.

Example 4.3. Let X be a K3 surface with rank(SX) = 20 and disc(SX) = 16,

which is unique up to isomorphisms. Then we have |D| = 4538. The output Γ

consists of 3308 elements.

See the author’s web page [19] for the numerical outputs of the computation

of these three cases.

When rank SX is small, we can embed SX into L10.
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Example 4.4. Let X be a K3 surface whose Néron-Severi lattice SX has a Gram

matrix 
2 4 1 0

4 2 0 1

1 0 −2 0

0 1 0 −2

 ,

and whose period is sufficiently generic. We embed SX into L10 = U ⊕E8. Then

we have |D| = 504. The output Γ consists of 7 elements.

Example 5. Let k be an integer > 1. Let X be a K3 surface whose Néron-

Severi lattice SX has a Gram matrix 0 1 0

1 −2 0

0 0 −2k

 ,

and whose period is sufficiently generic. This K3 surface X has an elliptic

fibration φ : X → P1 with a zero section. We can assume that the vector

[1, 0, 0] ∈ SX is the class fφ of a fiber of φ and that the vector [0, 1, 0] ∈ SX

is the class zφ of the zero section of φ. Since k > 1, the Mordell-Weil group

MWφ of φ : X → P1 is of rank 1. Therefore Aut(X) contains a subgroup

MWφ o 〈ιX〉 ∼= Z/2Z ∗ Z/2Z generated by the translations by MWφ and the

inversion ιX of φ : X → P1. This subgroup is generated by the two involutions

h1 := ιX =

 1 0 0

0 1 0

0 0 −1

 , h2 :=

 1 0 0

k 1 −1

2k 0 −1

 .

The norm of [1, x, y] ∈ SX ⊗R is 2x− 2x2 − 2ky2. Hence, by the map [1, x, y] 7→
(x, y), the hyperbolic plane associated with SX is identified with

HX := { (x, y) ∈ R2 | (x − 1/2)2 + (
√

ky)2 < 1/4 }.

The vector fφ corresponds to the point (0, 0) of HX , and the hyperplane (zφ)
⊥

is given by x = 1/2.

Suppose that 2k = −18. The union

F :=
∪
D∈D

D

is depicted in Figure 4.2 using HX . For each D ∈ D, we have Aut(D)∩Gω = {1},
and hence F is the fundamental domain of the action of Aut(X) on N(X). The
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Figure 4.1. HX

domain F has 4 walls, two of which are walls of N(X) and is depicted by thick

lines, while the other two walls correspond to the two automorphisms h1 and h2.

Suppose that 2k = −20. Then F is depicted in Figure 4.3. For each D ∈ D,

we have Aut(D) ∩ Gω = {1}, and hence F is the fundamental domain of the

action of Aut(X) on N(X). The domain F has 5 walls, two of which are walls of

N(X), while the other 3 walls correspond to the automorphisms h1 and h2 and

an extra automorphism

h3 :=

 121 40 −18

120 41 −18

1080 360 −161

 .

See the author’s web page [19] for more examples of this type.

5. Intractable examples

We applied our algorithm to the following K3 surfaces.

(1) The complex Fermat quartic surface X ⊂ P3. The Picard number of X is

20, and a Gram matrix of the transcendental lattice is[
8 0

0 8

]
.

Note that X contains 48 lines. We can calculate a Gram matrix of SX , because

SX is generated by the classes of 20 lines on X.

(2) The double plane π : X → P2 branched along the Fermat curve B ⊂ P2

of degree 6 in characteristic 5. This K3 surface X is supersingular with Artin
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Figure 4.2. F for the case −2k = −18

Figure 4.3. F for the case −2k = −20

invariant 1, and contains 252 smooth rational curves that are mapped to lines on

P2 isomorphically by π. The lattice SX is generated by the classes of 22 curves

among them. Thus we can calculate a Gram matrix of SX .

The computation for these two cases did not terminate in a reasonable time,

because there are too many G-congruence classes of induced chambers. However,

we obtained many interesting automorphisms of these K3 surfaces. For the

supersingular case (2), see the preprint [7].
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